Properties

Label 640.2.c.d.129.1
Level $640$
Weight $2$
Character 640.129
Analytic conductor $5.110$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.1
Root \(1.45161 - 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 640.129
Dual form 640.2.c.d.129.6

$q$-expansion

\(f(q)\) \(=\) \(q-2.90321i q^{3} +(0.311108 - 2.21432i) q^{5} +3.52543i q^{7} -5.42864 q^{9} +O(q^{10})\) \(q-2.90321i q^{3} +(0.311108 - 2.21432i) q^{5} +3.52543i q^{7} -5.42864 q^{9} -3.80642 q^{11} -2.62222i q^{13} +(-6.42864 - 0.903212i) q^{15} -5.80642i q^{17} -5.05086 q^{19} +10.2351 q^{21} -0.474572i q^{23} +(-4.80642 - 1.37778i) q^{25} +7.05086i q^{27} -2.00000 q^{29} +2.75557 q^{31} +11.0509i q^{33} +(7.80642 + 1.09679i) q^{35} +7.18421i q^{37} -7.61285 q^{39} +5.18421 q^{41} +1.95407i q^{43} +(-1.68889 + 12.0207i) q^{45} -5.33185i q^{47} -5.42864 q^{49} -16.8573 q^{51} -5.37778i q^{53} +(-1.18421 + 8.42864i) q^{55} +14.6637i q^{57} +5.05086 q^{59} +12.2351 q^{61} -19.1383i q^{63} +(-5.80642 - 0.815792i) q^{65} -7.76049i q^{67} -1.37778 q^{69} +4.85728 q^{71} -6.66370i q^{73} +(-4.00000 + 13.9541i) q^{75} -13.4193i q^{77} -5.24443 q^{79} +4.18421 q^{81} -12.1476i q^{83} +(-12.8573 - 1.80642i) q^{85} +5.80642i q^{87} +12.1017 q^{89} +9.24443 q^{91} -8.00000i q^{93} +(-1.57136 + 11.1842i) q^{95} -13.8064i q^{97} +20.6637 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{5} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{5} - 6 q^{9} + 4 q^{11} - 12 q^{15} - 4 q^{19} + 8 q^{21} - 2 q^{25} - 12 q^{29} + 16 q^{31} + 20 q^{35} + 8 q^{39} + 4 q^{41} - 10 q^{45} - 6 q^{49} - 48 q^{51} + 20 q^{55} + 4 q^{59} + 20 q^{61} - 8 q^{65} - 8 q^{69} - 24 q^{71} - 24 q^{75} - 32 q^{79} - 2 q^{81} - 24 q^{85} + 20 q^{89} + 56 q^{91} - 36 q^{95} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.90321i 1.67617i −0.545540 0.838085i \(-0.683675\pi\)
0.545540 0.838085i \(-0.316325\pi\)
\(4\) 0 0
\(5\) 0.311108 2.21432i 0.139132 0.990274i
\(6\) 0 0
\(7\) 3.52543i 1.33249i 0.745735 + 0.666243i \(0.232099\pi\)
−0.745735 + 0.666243i \(0.767901\pi\)
\(8\) 0 0
\(9\) −5.42864 −1.80955
\(10\) 0 0
\(11\) −3.80642 −1.14768 −0.573840 0.818967i \(-0.694547\pi\)
−0.573840 + 0.818967i \(0.694547\pi\)
\(12\) 0 0
\(13\) 2.62222i 0.727272i −0.931541 0.363636i \(-0.881535\pi\)
0.931541 0.363636i \(-0.118465\pi\)
\(14\) 0 0
\(15\) −6.42864 0.903212i −1.65987 0.233208i
\(16\) 0 0
\(17\) 5.80642i 1.40826i −0.710069 0.704132i \(-0.751336\pi\)
0.710069 0.704132i \(-0.248664\pi\)
\(18\) 0 0
\(19\) −5.05086 −1.15875 −0.579373 0.815063i \(-0.696702\pi\)
−0.579373 + 0.815063i \(0.696702\pi\)
\(20\) 0 0
\(21\) 10.2351 2.23347
\(22\) 0 0
\(23\) 0.474572i 0.0989552i −0.998775 0.0494776i \(-0.984244\pi\)
0.998775 0.0494776i \(-0.0157556\pi\)
\(24\) 0 0
\(25\) −4.80642 1.37778i −0.961285 0.275557i
\(26\) 0 0
\(27\) 7.05086i 1.35694i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 2.75557 0.494915 0.247457 0.968899i \(-0.420405\pi\)
0.247457 + 0.968899i \(0.420405\pi\)
\(32\) 0 0
\(33\) 11.0509i 1.92371i
\(34\) 0 0
\(35\) 7.80642 + 1.09679i 1.31953 + 0.185391i
\(36\) 0 0
\(37\) 7.18421i 1.18108i 0.807010 + 0.590538i \(0.201085\pi\)
−0.807010 + 0.590538i \(0.798915\pi\)
\(38\) 0 0
\(39\) −7.61285 −1.21903
\(40\) 0 0
\(41\) 5.18421 0.809637 0.404819 0.914397i \(-0.367335\pi\)
0.404819 + 0.914397i \(0.367335\pi\)
\(42\) 0 0
\(43\) 1.95407i 0.297992i 0.988838 + 0.148996i \(0.0476042\pi\)
−0.988838 + 0.148996i \(0.952396\pi\)
\(44\) 0 0
\(45\) −1.68889 + 12.0207i −0.251765 + 1.79195i
\(46\) 0 0
\(47\) 5.33185i 0.777730i −0.921295 0.388865i \(-0.872867\pi\)
0.921295 0.388865i \(-0.127133\pi\)
\(48\) 0 0
\(49\) −5.42864 −0.775520
\(50\) 0 0
\(51\) −16.8573 −2.36049
\(52\) 0 0
\(53\) 5.37778i 0.738695i −0.929291 0.369348i \(-0.879581\pi\)
0.929291 0.369348i \(-0.120419\pi\)
\(54\) 0 0
\(55\) −1.18421 + 8.42864i −0.159679 + 1.13652i
\(56\) 0 0
\(57\) 14.6637i 1.94225i
\(58\) 0 0
\(59\) 5.05086 0.657565 0.328783 0.944406i \(-0.393362\pi\)
0.328783 + 0.944406i \(0.393362\pi\)
\(60\) 0 0
\(61\) 12.2351 1.56654 0.783270 0.621682i \(-0.213550\pi\)
0.783270 + 0.621682i \(0.213550\pi\)
\(62\) 0 0
\(63\) 19.1383i 2.41120i
\(64\) 0 0
\(65\) −5.80642 0.815792i −0.720198 0.101187i
\(66\) 0 0
\(67\) 7.76049i 0.948095i −0.880499 0.474047i \(-0.842793\pi\)
0.880499 0.474047i \(-0.157207\pi\)
\(68\) 0 0
\(69\) −1.37778 −0.165866
\(70\) 0 0
\(71\) 4.85728 0.576453 0.288226 0.957562i \(-0.406934\pi\)
0.288226 + 0.957562i \(0.406934\pi\)
\(72\) 0 0
\(73\) 6.66370i 0.779927i −0.920830 0.389964i \(-0.872488\pi\)
0.920830 0.389964i \(-0.127512\pi\)
\(74\) 0 0
\(75\) −4.00000 + 13.9541i −0.461880 + 1.61128i
\(76\) 0 0
\(77\) 13.4193i 1.52927i
\(78\) 0 0
\(79\) −5.24443 −0.590045 −0.295022 0.955490i \(-0.595327\pi\)
−0.295022 + 0.955490i \(0.595327\pi\)
\(80\) 0 0
\(81\) 4.18421 0.464912
\(82\) 0 0
\(83\) 12.1476i 1.33338i −0.745336 0.666689i \(-0.767711\pi\)
0.745336 0.666689i \(-0.232289\pi\)
\(84\) 0 0
\(85\) −12.8573 1.80642i −1.39457 0.195934i
\(86\) 0 0
\(87\) 5.80642i 0.622514i
\(88\) 0 0
\(89\) 12.1017 1.28278 0.641389 0.767216i \(-0.278358\pi\)
0.641389 + 0.767216i \(0.278358\pi\)
\(90\) 0 0
\(91\) 9.24443 0.969080
\(92\) 0 0
\(93\) 8.00000i 0.829561i
\(94\) 0 0
\(95\) −1.57136 + 11.1842i −0.161218 + 1.14748i
\(96\) 0 0
\(97\) 13.8064i 1.40183i −0.713245 0.700915i \(-0.752775\pi\)
0.713245 0.700915i \(-0.247225\pi\)
\(98\) 0 0
\(99\) 20.6637 2.07678
\(100\) 0 0
\(101\) −19.7146 −1.96167 −0.980836 0.194836i \(-0.937583\pi\)
−0.980836 + 0.194836i \(0.937583\pi\)
\(102\) 0 0
\(103\) 3.13828i 0.309223i 0.987975 + 0.154612i \(0.0494127\pi\)
−0.987975 + 0.154612i \(0.950587\pi\)
\(104\) 0 0
\(105\) 3.18421 22.6637i 0.310747 2.21175i
\(106\) 0 0
\(107\) 5.39207i 0.521272i −0.965437 0.260636i \(-0.916068\pi\)
0.965437 0.260636i \(-0.0839322\pi\)
\(108\) 0 0
\(109\) 8.62222 0.825858 0.412929 0.910763i \(-0.364506\pi\)
0.412929 + 0.910763i \(0.364506\pi\)
\(110\) 0 0
\(111\) 20.8573 1.97969
\(112\) 0 0
\(113\) 5.51114i 0.518444i 0.965818 + 0.259222i \(0.0834662\pi\)
−0.965818 + 0.259222i \(0.916534\pi\)
\(114\) 0 0
\(115\) −1.05086 0.147643i −0.0979927 0.0137678i
\(116\) 0 0
\(117\) 14.2351i 1.31603i
\(118\) 0 0
\(119\) 20.4701 1.87649
\(120\) 0 0
\(121\) 3.48886 0.317169
\(122\) 0 0
\(123\) 15.0509i 1.35709i
\(124\) 0 0
\(125\) −4.54617 + 10.2143i −0.406622 + 0.913597i
\(126\) 0 0
\(127\) 10.2810i 0.912291i 0.889905 + 0.456145i \(0.150770\pi\)
−0.889905 + 0.456145i \(0.849230\pi\)
\(128\) 0 0
\(129\) 5.67307 0.499486
\(130\) 0 0
\(131\) 4.66370 0.407470 0.203735 0.979026i \(-0.434692\pi\)
0.203735 + 0.979026i \(0.434692\pi\)
\(132\) 0 0
\(133\) 17.8064i 1.54401i
\(134\) 0 0
\(135\) 15.6128 + 2.19358i 1.34374 + 0.188793i
\(136\) 0 0
\(137\) 11.3461i 0.969366i −0.874690 0.484683i \(-0.838935\pi\)
0.874690 0.484683i \(-0.161065\pi\)
\(138\) 0 0
\(139\) −11.8064 −1.00141 −0.500704 0.865619i \(-0.666925\pi\)
−0.500704 + 0.865619i \(0.666925\pi\)
\(140\) 0 0
\(141\) −15.4795 −1.30361
\(142\) 0 0
\(143\) 9.98126i 0.834675i
\(144\) 0 0
\(145\) −0.622216 + 4.42864i −0.0516722 + 0.367778i
\(146\) 0 0
\(147\) 15.7605i 1.29990i
\(148\) 0 0
\(149\) −5.47949 −0.448898 −0.224449 0.974486i \(-0.572058\pi\)
−0.224449 + 0.974486i \(0.572058\pi\)
\(150\) 0 0
\(151\) −23.6128 −1.92159 −0.960793 0.277266i \(-0.910572\pi\)
−0.960793 + 0.277266i \(0.910572\pi\)
\(152\) 0 0
\(153\) 31.5210i 2.54832i
\(154\) 0 0
\(155\) 0.857279 6.10171i 0.0688583 0.490101i
\(156\) 0 0
\(157\) 0.815792i 0.0651073i 0.999470 + 0.0325536i \(0.0103640\pi\)
−0.999470 + 0.0325536i \(0.989636\pi\)
\(158\) 0 0
\(159\) −15.6128 −1.23818
\(160\) 0 0
\(161\) 1.67307 0.131856
\(162\) 0 0
\(163\) 10.9032i 0.854005i −0.904250 0.427003i \(-0.859569\pi\)
0.904250 0.427003i \(-0.140431\pi\)
\(164\) 0 0
\(165\) 24.4701 + 3.43801i 1.90500 + 0.267649i
\(166\) 0 0
\(167\) 6.57628i 0.508888i −0.967088 0.254444i \(-0.918108\pi\)
0.967088 0.254444i \(-0.0818925\pi\)
\(168\) 0 0
\(169\) 6.12399 0.471076
\(170\) 0 0
\(171\) 27.4193 2.09680
\(172\) 0 0
\(173\) 10.5303i 0.800608i 0.916382 + 0.400304i \(0.131095\pi\)
−0.916382 + 0.400304i \(0.868905\pi\)
\(174\) 0 0
\(175\) 4.85728 16.9447i 0.367176 1.28090i
\(176\) 0 0
\(177\) 14.6637i 1.10219i
\(178\) 0 0
\(179\) 6.29529 0.470532 0.235266 0.971931i \(-0.424404\pi\)
0.235266 + 0.971931i \(0.424404\pi\)
\(180\) 0 0
\(181\) 0.488863 0.0363369 0.0181684 0.999835i \(-0.494216\pi\)
0.0181684 + 0.999835i \(0.494216\pi\)
\(182\) 0 0
\(183\) 35.5210i 2.62579i
\(184\) 0 0
\(185\) 15.9081 + 2.23506i 1.16959 + 0.164325i
\(186\) 0 0
\(187\) 22.1017i 1.61624i
\(188\) 0 0
\(189\) −24.8573 −1.80810
\(190\) 0 0
\(191\) 10.4889 0.758947 0.379474 0.925203i \(-0.376105\pi\)
0.379474 + 0.925203i \(0.376105\pi\)
\(192\) 0 0
\(193\) 13.8064i 0.993808i 0.867805 + 0.496904i \(0.165530\pi\)
−0.867805 + 0.496904i \(0.834470\pi\)
\(194\) 0 0
\(195\) −2.36842 + 16.8573i −0.169606 + 1.20717i
\(196\) 0 0
\(197\) 16.7239i 1.19153i 0.803159 + 0.595765i \(0.203151\pi\)
−0.803159 + 0.595765i \(0.796849\pi\)
\(198\) 0 0
\(199\) 20.8573 1.47853 0.739267 0.673413i \(-0.235172\pi\)
0.739267 + 0.673413i \(0.235172\pi\)
\(200\) 0 0
\(201\) −22.5303 −1.58917
\(202\) 0 0
\(203\) 7.05086i 0.494873i
\(204\) 0 0
\(205\) 1.61285 11.4795i 0.112646 0.801763i
\(206\) 0 0
\(207\) 2.57628i 0.179064i
\(208\) 0 0
\(209\) 19.2257 1.32987
\(210\) 0 0
\(211\) 4.66370 0.321063 0.160531 0.987031i \(-0.448679\pi\)
0.160531 + 0.987031i \(0.448679\pi\)
\(212\) 0 0
\(213\) 14.1017i 0.966233i
\(214\) 0 0
\(215\) 4.32693 + 0.607926i 0.295094 + 0.0414602i
\(216\) 0 0
\(217\) 9.71456i 0.659467i
\(218\) 0 0
\(219\) −19.3461 −1.30729
\(220\) 0 0
\(221\) −15.2257 −1.02419
\(222\) 0 0
\(223\) 26.4558i 1.77161i −0.464054 0.885807i \(-0.653606\pi\)
0.464054 0.885807i \(-0.346394\pi\)
\(224\) 0 0
\(225\) 26.0923 + 7.47949i 1.73949 + 0.498633i
\(226\) 0 0
\(227\) 12.3225i 0.817872i 0.912563 + 0.408936i \(0.134100\pi\)
−0.912563 + 0.408936i \(0.865900\pi\)
\(228\) 0 0
\(229\) 13.2257 0.873979 0.436989 0.899467i \(-0.356045\pi\)
0.436989 + 0.899467i \(0.356045\pi\)
\(230\) 0 0
\(231\) −38.9590 −2.56331
\(232\) 0 0
\(233\) 6.66370i 0.436554i −0.975887 0.218277i \(-0.929956\pi\)
0.975887 0.218277i \(-0.0700436\pi\)
\(234\) 0 0
\(235\) −11.8064 1.65878i −0.770166 0.108207i
\(236\) 0 0
\(237\) 15.2257i 0.989015i
\(238\) 0 0
\(239\) 22.9590 1.48509 0.742547 0.669794i \(-0.233618\pi\)
0.742547 + 0.669794i \(0.233618\pi\)
\(240\) 0 0
\(241\) −14.0415 −0.904492 −0.452246 0.891893i \(-0.649377\pi\)
−0.452246 + 0.891893i \(0.649377\pi\)
\(242\) 0 0
\(243\) 9.00492i 0.577666i
\(244\) 0 0
\(245\) −1.68889 + 12.0207i −0.107899 + 0.767977i
\(246\) 0 0
\(247\) 13.2444i 0.842723i
\(248\) 0 0
\(249\) −35.2672 −2.23497
\(250\) 0 0
\(251\) 24.9304 1.57359 0.786797 0.617212i \(-0.211738\pi\)
0.786797 + 0.617212i \(0.211738\pi\)
\(252\) 0 0
\(253\) 1.80642i 0.113569i
\(254\) 0 0
\(255\) −5.24443 + 37.3274i −0.328419 + 2.33753i
\(256\) 0 0
\(257\) 25.7146i 1.60403i 0.597304 + 0.802015i \(0.296239\pi\)
−0.597304 + 0.802015i \(0.703761\pi\)
\(258\) 0 0
\(259\) −25.3274 −1.57377
\(260\) 0 0
\(261\) 10.8573 0.672049
\(262\) 0 0
\(263\) 2.57628i 0.158860i −0.996840 0.0794302i \(-0.974690\pi\)
0.996840 0.0794302i \(-0.0253101\pi\)
\(264\) 0 0
\(265\) −11.9081 1.67307i −0.731511 0.102776i
\(266\) 0 0
\(267\) 35.1338i 2.15016i
\(268\) 0 0
\(269\) 25.7462 1.56977 0.784887 0.619639i \(-0.212721\pi\)
0.784887 + 0.619639i \(0.212721\pi\)
\(270\) 0 0
\(271\) −30.1847 −1.83359 −0.916795 0.399359i \(-0.869233\pi\)
−0.916795 + 0.399359i \(0.869233\pi\)
\(272\) 0 0
\(273\) 26.8385i 1.62434i
\(274\) 0 0
\(275\) 18.2953 + 5.24443i 1.10325 + 0.316251i
\(276\) 0 0
\(277\) 10.5303i 0.632707i −0.948641 0.316354i \(-0.897541\pi\)
0.948641 0.316354i \(-0.102459\pi\)
\(278\) 0 0
\(279\) −14.9590 −0.895571
\(280\) 0 0
\(281\) −7.93978 −0.473647 −0.236824 0.971553i \(-0.576106\pi\)
−0.236824 + 0.971553i \(0.576106\pi\)
\(282\) 0 0
\(283\) 10.9032i 0.648129i −0.946035 0.324064i \(-0.894951\pi\)
0.946035 0.324064i \(-0.105049\pi\)
\(284\) 0 0
\(285\) 32.4701 + 4.56199i 1.92336 + 0.270229i
\(286\) 0 0
\(287\) 18.2766i 1.07883i
\(288\) 0 0
\(289\) −16.7146 −0.983209
\(290\) 0 0
\(291\) −40.0830 −2.34971
\(292\) 0 0
\(293\) 4.42864i 0.258724i −0.991597 0.129362i \(-0.958707\pi\)
0.991597 0.129362i \(-0.0412929\pi\)
\(294\) 0 0
\(295\) 1.57136 11.1842i 0.0914881 0.651170i
\(296\) 0 0
\(297\) 26.8385i 1.55733i
\(298\) 0 0
\(299\) −1.24443 −0.0719673
\(300\) 0 0
\(301\) −6.88892 −0.397071
\(302\) 0 0
\(303\) 57.2355i 3.28810i
\(304\) 0 0
\(305\) 3.80642 27.0923i 0.217955 1.55130i
\(306\) 0 0
\(307\) 5.27163i 0.300868i −0.988620 0.150434i \(-0.951933\pi\)
0.988620 0.150434i \(-0.0480671\pi\)
\(308\) 0 0
\(309\) 9.11108 0.518311
\(310\) 0 0
\(311\) −0.387152 −0.0219534 −0.0109767 0.999940i \(-0.503494\pi\)
−0.0109767 + 0.999940i \(0.503494\pi\)
\(312\) 0 0
\(313\) 11.3461i 0.641322i 0.947194 + 0.320661i \(0.103905\pi\)
−0.947194 + 0.320661i \(0.896095\pi\)
\(314\) 0 0
\(315\) −42.3783 5.95407i −2.38774 0.335474i
\(316\) 0 0
\(317\) 16.7239i 0.939309i −0.882850 0.469655i \(-0.844378\pi\)
0.882850 0.469655i \(-0.155622\pi\)
\(318\) 0 0
\(319\) 7.61285 0.426238
\(320\) 0 0
\(321\) −15.6543 −0.873740
\(322\) 0 0
\(323\) 29.3274i 1.63182i
\(324\) 0 0
\(325\) −3.61285 + 12.6035i −0.200405 + 0.699115i
\(326\) 0 0
\(327\) 25.0321i 1.38428i
\(328\) 0 0
\(329\) 18.7971 1.03632
\(330\) 0 0
\(331\) 3.33630 0.183379 0.0916897 0.995788i \(-0.470773\pi\)
0.0916897 + 0.995788i \(0.470773\pi\)
\(332\) 0 0
\(333\) 39.0005i 2.13721i
\(334\) 0 0
\(335\) −17.1842 2.41435i −0.938874 0.131910i
\(336\) 0 0
\(337\) 3.61285i 0.196804i 0.995147 + 0.0984022i \(0.0313732\pi\)
−0.995147 + 0.0984022i \(0.968627\pi\)
\(338\) 0 0
\(339\) 16.0000 0.869001
\(340\) 0 0
\(341\) −10.4889 −0.568004
\(342\) 0 0
\(343\) 5.53972i 0.299117i
\(344\) 0 0
\(345\) −0.428639 + 3.05086i −0.0230772 + 0.164253i
\(346\) 0 0
\(347\) 15.7605i 0.846067i −0.906114 0.423034i \(-0.860965\pi\)
0.906114 0.423034i \(-0.139035\pi\)
\(348\) 0 0
\(349\) −0.285442 −0.0152794 −0.00763968 0.999971i \(-0.502432\pi\)
−0.00763968 + 0.999971i \(0.502432\pi\)
\(350\) 0 0
\(351\) 18.4889 0.986862
\(352\) 0 0
\(353\) 4.38715i 0.233505i −0.993161 0.116752i \(-0.962752\pi\)
0.993161 0.116752i \(-0.0372484\pi\)
\(354\) 0 0
\(355\) 1.51114 10.7556i 0.0802028 0.570846i
\(356\) 0 0
\(357\) 59.4291i 3.14532i
\(358\) 0 0
\(359\) −20.5906 −1.08673 −0.543364 0.839497i \(-0.682850\pi\)
−0.543364 + 0.839497i \(0.682850\pi\)
\(360\) 0 0
\(361\) 6.51114 0.342691
\(362\) 0 0
\(363\) 10.1289i 0.531630i
\(364\) 0 0
\(365\) −14.7556 2.07313i −0.772342 0.108513i
\(366\) 0 0
\(367\) 16.5575i 0.864297i −0.901802 0.432148i \(-0.857756\pi\)
0.901802 0.432148i \(-0.142244\pi\)
\(368\) 0 0
\(369\) −28.1432 −1.46508
\(370\) 0 0
\(371\) 18.9590 0.984302
\(372\) 0 0
\(373\) 24.8988i 1.28921i 0.764516 + 0.644605i \(0.222978\pi\)
−0.764516 + 0.644605i \(0.777022\pi\)
\(374\) 0 0
\(375\) 29.6543 + 13.1985i 1.53134 + 0.681568i
\(376\) 0 0
\(377\) 5.24443i 0.270102i
\(378\) 0 0
\(379\) −9.31756 −0.478611 −0.239305 0.970944i \(-0.576920\pi\)
−0.239305 + 0.970944i \(0.576920\pi\)
\(380\) 0 0
\(381\) 29.8479 1.52915
\(382\) 0 0
\(383\) 32.5575i 1.66361i −0.555066 0.831806i \(-0.687307\pi\)
0.555066 0.831806i \(-0.312693\pi\)
\(384\) 0 0
\(385\) −29.7146 4.17484i −1.51439 0.212770i
\(386\) 0 0
\(387\) 10.6079i 0.539231i
\(388\) 0 0
\(389\) −18.9906 −0.962863 −0.481432 0.876484i \(-0.659883\pi\)
−0.481432 + 0.876484i \(0.659883\pi\)
\(390\) 0 0
\(391\) −2.75557 −0.139355
\(392\) 0 0
\(393\) 13.5397i 0.682988i
\(394\) 0 0
\(395\) −1.63158 + 11.6128i −0.0820939 + 0.584306i
\(396\) 0 0
\(397\) 32.9906i 1.65575i 0.560911 + 0.827876i \(0.310451\pi\)
−0.560911 + 0.827876i \(0.689549\pi\)
\(398\) 0 0
\(399\) −51.6958 −2.58803
\(400\) 0 0
\(401\) −16.1017 −0.804081 −0.402041 0.915622i \(-0.631699\pi\)
−0.402041 + 0.915622i \(0.631699\pi\)
\(402\) 0 0
\(403\) 7.22570i 0.359938i
\(404\) 0 0
\(405\) 1.30174 9.26517i 0.0646840 0.460390i
\(406\) 0 0
\(407\) 27.3461i 1.35550i
\(408\) 0 0
\(409\) 33.3876 1.65091 0.825456 0.564466i \(-0.190918\pi\)
0.825456 + 0.564466i \(0.190918\pi\)
\(410\) 0 0
\(411\) −32.9403 −1.62482
\(412\) 0 0
\(413\) 17.8064i 0.876197i
\(414\) 0 0
\(415\) −26.8988 3.77923i −1.32041 0.185515i
\(416\) 0 0
\(417\) 34.2766i 1.67853i
\(418\) 0 0
\(419\) −27.4193 −1.33952 −0.669760 0.742578i \(-0.733603\pi\)
−0.669760 + 0.742578i \(0.733603\pi\)
\(420\) 0 0
\(421\) 12.2351 0.596301 0.298150 0.954519i \(-0.403630\pi\)
0.298150 + 0.954519i \(0.403630\pi\)
\(422\) 0 0
\(423\) 28.9447i 1.40734i
\(424\) 0 0
\(425\) −8.00000 + 27.9081i −0.388057 + 1.35374i
\(426\) 0 0
\(427\) 43.1338i 2.08739i
\(428\) 0 0
\(429\) 28.9777 1.39906
\(430\) 0 0
\(431\) 28.4701 1.37136 0.685679 0.727904i \(-0.259505\pi\)
0.685679 + 0.727904i \(0.259505\pi\)
\(432\) 0 0
\(433\) 34.0098i 1.63441i 0.576348 + 0.817204i \(0.304477\pi\)
−0.576348 + 0.817204i \(0.695523\pi\)
\(434\) 0 0
\(435\) 12.8573 + 1.80642i 0.616459 + 0.0866114i
\(436\) 0 0
\(437\) 2.39700i 0.114664i
\(438\) 0 0
\(439\) −14.8385 −0.708205 −0.354103 0.935207i \(-0.615214\pi\)
−0.354103 + 0.935207i \(0.615214\pi\)
\(440\) 0 0
\(441\) 29.4701 1.40334
\(442\) 0 0
\(443\) 13.0968i 0.622247i 0.950369 + 0.311124i \(0.100705\pi\)
−0.950369 + 0.311124i \(0.899295\pi\)
\(444\) 0 0
\(445\) 3.76494 26.7971i 0.178475 1.27030i
\(446\) 0 0
\(447\) 15.9081i 0.752429i
\(448\) 0 0
\(449\) 21.3876 1.00934 0.504672 0.863311i \(-0.331613\pi\)
0.504672 + 0.863311i \(0.331613\pi\)
\(450\) 0 0
\(451\) −19.7333 −0.929205
\(452\) 0 0
\(453\) 68.5531i 3.22091i
\(454\) 0 0
\(455\) 2.87601 20.4701i 0.134830 0.959654i
\(456\) 0 0
\(457\) 17.9813i 0.841128i −0.907263 0.420564i \(-0.861832\pi\)
0.907263 0.420564i \(-0.138168\pi\)
\(458\) 0 0
\(459\) 40.9403 1.91093
\(460\) 0 0
\(461\) 10.7368 0.500064 0.250032 0.968238i \(-0.419559\pi\)
0.250032 + 0.968238i \(0.419559\pi\)
\(462\) 0 0
\(463\) 9.30327i 0.432360i 0.976354 + 0.216180i \(0.0693598\pi\)
−0.976354 + 0.216180i \(0.930640\pi\)
\(464\) 0 0
\(465\) −17.7146 2.48886i −0.821493 0.115418i
\(466\) 0 0
\(467\) 8.70964i 0.403034i 0.979485 + 0.201517i \(0.0645871\pi\)
−0.979485 + 0.201517i \(0.935413\pi\)
\(468\) 0 0
\(469\) 27.3590 1.26332
\(470\) 0 0
\(471\) 2.36842 0.109131
\(472\) 0 0
\(473\) 7.43801i 0.342000i
\(474\) 0 0
\(475\) 24.2766 + 6.95899i 1.11388 + 0.319300i
\(476\) 0 0
\(477\) 29.1941i 1.33670i
\(478\) 0 0
\(479\) 23.2257 1.06121 0.530605 0.847619i \(-0.321965\pi\)
0.530605 + 0.847619i \(0.321965\pi\)
\(480\) 0 0
\(481\) 18.8385 0.858964
\(482\) 0 0
\(483\) 4.85728i 0.221014i
\(484\) 0 0
\(485\) −30.5718 4.29529i −1.38820 0.195039i
\(486\) 0 0
\(487\) 32.8528i 1.48870i 0.667787 + 0.744352i \(0.267241\pi\)
−0.667787 + 0.744352i \(0.732759\pi\)
\(488\) 0 0
\(489\) −31.6543 −1.43146
\(490\) 0 0
\(491\) −2.94914 −0.133093 −0.0665465 0.997783i \(-0.521198\pi\)
−0.0665465 + 0.997783i \(0.521198\pi\)
\(492\) 0 0
\(493\) 11.6128i 0.523016i
\(494\) 0 0
\(495\) 6.42864 45.7560i 0.288946 2.05658i
\(496\) 0 0
\(497\) 17.1240i 0.768116i
\(498\) 0 0
\(499\) 35.0321 1.56825 0.784127 0.620601i \(-0.213111\pi\)
0.784127 + 0.620601i \(0.213111\pi\)
\(500\) 0 0
\(501\) −19.0923 −0.852983
\(502\) 0 0
\(503\) 16.2908i 0.726373i −0.931717 0.363186i \(-0.881689\pi\)
0.931717 0.363186i \(-0.118311\pi\)
\(504\) 0 0
\(505\) −6.13335 + 43.6543i −0.272931 + 1.94259i
\(506\) 0 0
\(507\) 17.7792i 0.789603i
\(508\) 0 0
\(509\) −26.0000 −1.15243 −0.576215 0.817298i \(-0.695471\pi\)
−0.576215 + 0.817298i \(0.695471\pi\)
\(510\) 0 0
\(511\) 23.4924 1.03924
\(512\) 0 0
\(513\) 35.6128i 1.57235i
\(514\) 0 0
\(515\) 6.94914 + 0.976342i 0.306216 + 0.0430228i
\(516\) 0 0
\(517\) 20.2953i 0.892586i
\(518\) 0 0
\(519\) 30.5718 1.34195
\(520\) 0 0
\(521\) 11.7146 0.513224 0.256612 0.966514i \(-0.417394\pi\)
0.256612 + 0.966514i \(0.417394\pi\)
\(522\) 0 0
\(523\) 38.0370i 1.66324i 0.555342 + 0.831622i \(0.312587\pi\)
−0.555342 + 0.831622i \(0.687413\pi\)
\(524\) 0 0
\(525\) −49.1941 14.1017i −2.14700 0.615449i
\(526\) 0 0
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) 22.7748 0.990208
\(530\) 0 0
\(531\) −27.4193 −1.18990
\(532\) 0 0
\(533\) 13.5941i 0.588826i
\(534\) 0 0
\(535\) −11.9398 1.67752i −0.516202 0.0725254i
\(536\) 0 0
\(537\) 18.2766i 0.788691i
\(538\) 0 0
\(539\) 20.6637 0.890049
\(540\) 0 0
\(541\) 11.5111 0.494902 0.247451 0.968900i \(-0.420407\pi\)
0.247451 + 0.968900i \(0.420407\pi\)
\(542\) 0 0
\(543\) 1.41927i 0.0609068i
\(544\) 0 0
\(545\) 2.68244 19.0923i 0.114903 0.817826i
\(546\) 0 0
\(547\) 30.2208i 1.29215i 0.763275 + 0.646073i \(0.223590\pi\)
−0.763275 + 0.646073i \(0.776410\pi\)
\(548\) 0 0
\(549\) −66.4197 −2.83473
\(550\) 0 0
\(551\) 10.1017 0.430347
\(552\) 0 0
\(553\) 18.4889i 0.786226i
\(554\) 0 0
\(555\) 6.48886 46.1847i 0.275437 1.96043i
\(556\) 0 0
\(557\) 9.75605i 0.413377i 0.978407 + 0.206688i \(0.0662687\pi\)
−0.978407 + 0.206688i \(0.933731\pi\)
\(558\) 0 0
\(559\) 5.12399 0.216721
\(560\) 0 0
\(561\) 64.1659 2.70909
\(562\) 0 0
\(563\) 4.50622i 0.189914i 0.995481 + 0.0949572i \(0.0302714\pi\)
−0.995481 + 0.0949572i \(0.969729\pi\)
\(564\) 0 0
\(565\) 12.2034 + 1.71456i 0.513402 + 0.0721320i
\(566\) 0 0
\(567\) 14.7511i 0.619489i
\(568\) 0 0
\(569\) −5.30465 −0.222383 −0.111191 0.993799i \(-0.535467\pi\)
−0.111191 + 0.993799i \(0.535467\pi\)
\(570\) 0 0
\(571\) 16.3970 0.686193 0.343096 0.939300i \(-0.388524\pi\)
0.343096 + 0.939300i \(0.388524\pi\)
\(572\) 0 0
\(573\) 30.4514i 1.27213i
\(574\) 0 0
\(575\) −0.653858 + 2.28100i −0.0272678 + 0.0951241i
\(576\) 0 0
\(577\) 39.8163i 1.65757i −0.559565 0.828786i \(-0.689032\pi\)
0.559565 0.828786i \(-0.310968\pi\)
\(578\) 0 0
\(579\) 40.0830 1.66579
\(580\) 0 0
\(581\) 42.8256 1.77671
\(582\) 0 0
\(583\) 20.4701i 0.847786i
\(584\) 0 0
\(585\) 31.5210 + 4.42864i 1.30323 + 0.183102i
\(586\) 0 0
\(587\) 15.1699i 0.626130i −0.949732 0.313065i \(-0.898644\pi\)
0.949732 0.313065i \(-0.101356\pi\)
\(588\) 0 0
\(589\) −13.9180 −0.573480
\(590\) 0 0
\(591\) 48.5531 1.99721
\(592\) 0 0
\(593\) 8.00000i 0.328521i −0.986417 0.164260i \(-0.947476\pi\)
0.986417 0.164260i \(-0.0525237\pi\)
\(594\) 0 0
\(595\) 6.36842 45.3274i 0.261080 1.85824i
\(596\) 0 0
\(597\) 60.5531i 2.47827i
\(598\) 0 0
\(599\) 1.83500 0.0749762 0.0374881 0.999297i \(-0.488064\pi\)
0.0374881 + 0.999297i \(0.488064\pi\)
\(600\) 0 0
\(601\) −36.1432 −1.47431 −0.737156 0.675723i \(-0.763832\pi\)
−0.737156 + 0.675723i \(0.763832\pi\)
\(602\) 0 0
\(603\) 42.1289i 1.71562i
\(604\) 0 0
\(605\) 1.08541 7.72546i 0.0441283 0.314084i
\(606\) 0 0
\(607\) 17.5353i 0.711735i −0.934536 0.355867i \(-0.884185\pi\)
0.934536 0.355867i \(-0.115815\pi\)
\(608\) 0 0
\(609\) −20.4701 −0.829491
\(610\) 0 0
\(611\) −13.9813 −0.565621
\(612\) 0 0
\(613\) 33.9309i 1.37046i −0.728329 0.685228i \(-0.759703\pi\)
0.728329 0.685228i \(-0.240297\pi\)
\(614\) 0 0
\(615\) −33.3274 4.68244i −1.34389 0.188814i
\(616\) 0 0
\(617\) 9.68598i 0.389943i 0.980809 + 0.194971i \(0.0624614\pi\)
−0.980809 + 0.194971i \(0.937539\pi\)
\(618\) 0 0
\(619\) −41.4005 −1.66403 −0.832014 0.554755i \(-0.812812\pi\)
−0.832014 + 0.554755i \(0.812812\pi\)
\(620\) 0 0
\(621\) 3.34614 0.134276
\(622\) 0 0
\(623\) 42.6637i 1.70929i
\(624\) 0 0
\(625\) 21.2034 + 13.2444i 0.848137 + 0.529777i
\(626\) 0 0
\(627\) 55.8163i 2.22909i
\(628\) 0 0
\(629\) 41.7146 1.66327
\(630\) 0 0
\(631\) 27.8163 1.10735 0.553674 0.832733i \(-0.313225\pi\)
0.553674 + 0.832733i \(0.313225\pi\)
\(632\) 0 0
\(633\) 13.5397i 0.538155i
\(634\) 0 0
\(635\) 22.7654 + 3.19850i 0.903418 + 0.126929i
\(636\) 0 0
\(637\) 14.2351i 0.564014i
\(638\) 0 0
\(639\) −26.3684 −1.04312
\(640\) 0 0
\(641\) 42.8988 1.69440 0.847200 0.531275i \(-0.178287\pi\)
0.847200 + 0.531275i \(0.178287\pi\)
\(642\) 0 0
\(643\) 27.9639i 1.10279i −0.834245 0.551395i \(-0.814096\pi\)
0.834245 0.551395i \(-0.185904\pi\)
\(644\) 0 0
\(645\) 1.76494 12.5620i 0.0694943 0.494628i
\(646\) 0 0
\(647\) 7.13828i 0.280635i 0.990107 + 0.140317i \(0.0448123\pi\)
−0.990107 + 0.140317i \(0.955188\pi\)
\(648\) 0 0
\(649\) −19.2257 −0.754675
\(650\) 0 0
\(651\) 28.2034 1.10538
\(652\) 0 0
\(653\) 17.7649i 0.695196i 0.937644 + 0.347598i \(0.113003\pi\)
−0.937644 + 0.347598i \(0.886997\pi\)
\(654\) 0 0
\(655\) 1.45091 10.3269i 0.0566919 0.403507i
\(656\) 0 0
\(657\) 36.1748i 1.41131i
\(658\) 0 0
\(659\) −20.1936 −0.786630 −0.393315 0.919404i \(-0.628672\pi\)
−0.393315 + 0.919404i \(0.628672\pi\)
\(660\) 0 0
\(661\) −22.0701 −0.858426 −0.429213 0.903203i \(-0.641209\pi\)
−0.429213 + 0.903203i \(0.641209\pi\)
\(662\) 0 0
\(663\) 44.2034i 1.71672i
\(664\) 0 0
\(665\) −39.4291 5.53972i −1.52900 0.214821i
\(666\) 0 0
\(667\) 0.949145i 0.0367510i
\(668\) 0 0
\(669\) −76.8069 −2.96953
\(670\) 0 0
\(671\) −46.5718 −1.79789
\(672\) 0 0
\(673\) 26.0098i 1.00261i −0.865272 0.501303i \(-0.832854\pi\)
0.865272 0.501303i \(-0.167146\pi\)
\(674\) 0 0
\(675\) 9.71456 33.8894i 0.373914 1.30440i
\(676\) 0 0
\(677\) 7.86665i 0.302340i −0.988508 0.151170i \(-0.951696\pi\)
0.988508 0.151170i \(-0.0483041\pi\)
\(678\) 0 0
\(679\) 48.6735 1.86792
\(680\) 0 0
\(681\) 35.7748 1.37089
\(682\) 0 0
\(683\) 18.2494i 0.698292i −0.937068 0.349146i \(-0.886472\pi\)
0.937068 0.349146i \(-0.113528\pi\)
\(684\) 0 0
\(685\) −25.1240 3.52987i −0.959938 0.134870i
\(686\) 0 0
\(687\) 38.3970i 1.46494i
\(688\) 0 0
\(689\) −14.1017 −0.537232
\(690\) 0 0
\(691\) −25.2543 −0.960718 −0.480359 0.877072i \(-0.659494\pi\)
−0.480359 + 0.877072i \(0.659494\pi\)
\(692\) 0 0
\(693\) 72.8484i 2.76728i
\(694\) 0 0
\(695\) −3.67307 + 26.1432i −0.139328 + 0.991668i
\(696\) 0 0
\(697\) 30.1017i 1.14018i
\(698\) 0 0
\(699\) −19.3461 −0.731738
\(700\) 0 0
\(701\) −34.8069 −1.31464 −0.657319 0.753612i \(-0.728310\pi\)
−0.657319 + 0.753612i \(0.728310\pi\)
\(702\) 0 0
\(703\) 36.2864i 1.36857i
\(704\) 0 0
\(705\) −4.81579 + 34.2766i −0.181373 + 1.29093i
\(706\) 0 0
\(707\) 69.5022i 2.61390i
\(708\) 0 0
\(709\) −7.51114 −0.282087 −0.141043 0.990003i \(-0.545046\pi\)
−0.141043 + 0.990003i \(0.545046\pi\)
\(710\) 0 0
\(711\) 28.4701 1.06771
\(712\) 0 0
\(713\) 1.30772i 0.0489744i
\(714\) 0 0
\(715\) 22.1017 + 3.10525i 0.826557 + 0.116130i
\(716\) 0 0
\(717\) 66.6548i 2.48927i
\(718\) 0 0
\(719\) 26.7556 0.997814 0.498907 0.866655i \(-0.333735\pi\)
0.498907 + 0.866655i \(0.333735\pi\)
\(720\) 0 0
\(721\) −11.0638 −0.412036
\(722\) 0 0
\(723\) 40.7654i 1.51608i
\(724\) 0 0
\(725\) 9.61285 + 2.75557i 0.357012 + 0.102339i
\(726\) 0 0
\(727\) 25.6271i 0.950458i 0.879862 + 0.475229i \(0.157635\pi\)
−0.879862 + 0.475229i \(0.842365\pi\)
\(728\) 0 0
\(729\) 38.6958 1.43318
\(730\) 0 0
\(731\) 11.3461 0.419652
\(732\) 0 0
\(733\) 19.6543i 0.725949i 0.931799 + 0.362975i \(0.118239\pi\)
−0.931799 + 0.362975i \(0.881761\pi\)
\(734\) 0 0
\(735\) 34.8988 + 4.90321i 1.28726 + 0.180858i
\(736\) 0 0
\(737\) 29.5397i 1.08811i
\(738\) 0 0
\(739\) 32.5433 1.19712 0.598562 0.801077i \(-0.295739\pi\)
0.598562 + 0.801077i \(0.295739\pi\)
\(740\) 0 0
\(741\) 38.4514 1.41255
\(742\) 0 0
\(743\) 23.1383i 0.848861i 0.905461 + 0.424430i \(0.139526\pi\)
−0.905461 + 0.424430i \(0.860474\pi\)
\(744\) 0 0
\(745\) −1.70471 + 12.1334i −0.0624559 + 0.444532i
\(746\) 0 0
\(747\) 65.9452i 2.41281i
\(748\) 0 0
\(749\) 19.0094 0.694587
\(750\) 0 0
\(751\) 2.48886 0.0908199 0.0454099 0.998968i \(-0.485541\pi\)
0.0454099 + 0.998968i \(0.485541\pi\)
\(752\) 0 0
\(753\) 72.3783i 2.63761i
\(754\) 0 0
\(755\) −7.34614 + 52.2864i −0.267353 + 1.90290i
\(756\) 0 0
\(757\) 21.2859i 0.773650i 0.922153 + 0.386825i \(0.126428\pi\)
−0.922153 + 0.386825i \(0.873572\pi\)
\(758\) 0 0
\(759\) 5.24443 0.190361
\(760\) 0 0
\(761\) 19.1240 0.693244 0.346622 0.938005i \(-0.387329\pi\)
0.346622 + 0.938005i \(0.387329\pi\)
\(762\) 0 0
\(763\) 30.3970i 1.10045i
\(764\) 0 0
\(765\) 69.7975 + 9.80642i 2.52354 + 0.354552i
\(766\) 0 0
\(767\) 13.2444i 0.478229i
\(768\) 0 0
\(769\) 33.9625 1.22472 0.612360 0.790579i \(-0.290220\pi\)
0.612360 + 0.790579i \(0.290220\pi\)
\(770\) 0 0
\(771\) 74.6548 2.68863
\(772\) 0 0
\(773\) 0.133353i 0.00479638i 0.999997 + 0.00239819i \(0.000763368\pi\)
−0.999997 + 0.00239819i \(0.999237\pi\)
\(774\) 0 0
\(775\) −13.2444 3.79658i −0.475754 0.136377i
\(776\) 0 0
\(777\) 73.5308i 2.63790i
\(778\) 0 0
\(779\) −26.1847 −0.938164
\(780\) 0 0
\(781\) −18.4889 −0.661584
\(782\) 0 0
\(783\) 14.1017i 0.503954i
\(784\) 0 0
\(785\) 1.80642 + 0.253799i 0.0644740 + 0.00905848i
\(786\) 0 0
\(787\) 1.12537i 0.0401150i −0.999799 0.0200575i \(-0.993615\pi\)
0.999799 0.0200575i \(-0.00638494\pi\)
\(788\) 0 0
\(789\) −7.47949 −0.266277
\(790\) 0 0
\(791\) −19.4291 −0.690820
\(792\) 0 0
\(793\) 32.0830i 1.13930i
\(794\) 0 0
\(795\) −4.85728 + 34.5718i −0.172270 + 1.22614i
\(796\) 0 0
\(797\) 5.11108i 0.181044i −0.995894 0.0905218i \(-0.971147\pi\)
0.995894 0.0905218i \(-0.0288535\pi\)
\(798\) 0 0
\(799\) −30.9590 −1.09525
\(800\) 0 0
\(801\) −65.6958