Properties

Label 640.2.c.c.129.2
Level $640$
Weight $2$
Character 640.129
Analytic conductor $5.110$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.2
Root \(-0.854638 - 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 640.129
Dual form 640.2.c.c.129.5

$q$-expansion

\(f(q)\) \(=\) \(q-1.70928i q^{3} +(2.17009 + 0.539189i) q^{5} -2.63090i q^{7} +0.0783777 q^{9} +O(q^{10})\) \(q-1.70928i q^{3} +(2.17009 + 0.539189i) q^{5} -2.63090i q^{7} +0.0783777 q^{9} -5.41855 q^{11} -6.34017i q^{13} +(0.921622 - 3.70928i) q^{15} +3.41855i q^{17} +3.26180 q^{19} -4.49693 q^{21} +1.36910i q^{23} +(4.41855 + 2.34017i) q^{25} -5.26180i q^{27} -2.00000 q^{29} +4.68035 q^{31} +9.26180i q^{33} +(1.41855 - 5.70928i) q^{35} -5.75872i q^{37} -10.8371 q^{39} -7.75872 q^{41} +4.44748i q^{43} +(0.170086 + 0.0422604i) q^{45} -4.78765i q^{47} +0.0783777 q^{49} +5.84324 q^{51} -1.65983i q^{53} +(-11.7587 - 2.92162i) q^{55} -5.57531i q^{57} -3.26180 q^{59} -2.49693 q^{61} -0.206204i q^{63} +(3.41855 - 13.7587i) q^{65} -7.86603i q^{67} +2.34017 q^{69} +6.15676 q^{71} +13.5753i q^{73} +(4.00000 - 7.55252i) q^{75} +14.2557i q^{77} +12.6803 q^{79} -8.75872 q^{81} +14.9711i q^{83} +(-1.84324 + 7.41855i) q^{85} +3.41855i q^{87} +8.52359 q^{89} -16.6803 q^{91} -8.00000i q^{93} +(7.07838 + 1.75872i) q^{95} -4.58145i q^{97} -0.424694 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{5} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{5} - 6 q^{9} - 4 q^{11} + 12 q^{15} + 4 q^{19} + 8 q^{21} - 2 q^{25} - 12 q^{29} - 16 q^{31} - 20 q^{35} - 8 q^{39} + 4 q^{41} - 10 q^{45} - 6 q^{49} + 48 q^{51} - 20 q^{55} - 4 q^{59} + 20 q^{61} - 8 q^{65} - 8 q^{69} + 24 q^{71} + 24 q^{75} + 32 q^{79} - 2 q^{81} - 24 q^{85} + 20 q^{89} - 56 q^{91} + 36 q^{95} - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70928i 0.986851i −0.869788 0.493425i \(-0.835745\pi\)
0.869788 0.493425i \(-0.164255\pi\)
\(4\) 0 0
\(5\) 2.17009 + 0.539189i 0.970492 + 0.241133i
\(6\) 0 0
\(7\) 2.63090i 0.994386i −0.867640 0.497193i \(-0.834364\pi\)
0.867640 0.497193i \(-0.165636\pi\)
\(8\) 0 0
\(9\) 0.0783777 0.0261259
\(10\) 0 0
\(11\) −5.41855 −1.63375 −0.816877 0.576812i \(-0.804297\pi\)
−0.816877 + 0.576812i \(0.804297\pi\)
\(12\) 0 0
\(13\) 6.34017i 1.75845i −0.476409 0.879224i \(-0.658062\pi\)
0.476409 0.879224i \(-0.341938\pi\)
\(14\) 0 0
\(15\) 0.921622 3.70928i 0.237962 0.957731i
\(16\) 0 0
\(17\) 3.41855i 0.829120i 0.910022 + 0.414560i \(0.136065\pi\)
−0.910022 + 0.414560i \(0.863935\pi\)
\(18\) 0 0
\(19\) 3.26180 0.748307 0.374154 0.927367i \(-0.377933\pi\)
0.374154 + 0.927367i \(0.377933\pi\)
\(20\) 0 0
\(21\) −4.49693 −0.981310
\(22\) 0 0
\(23\) 1.36910i 0.285478i 0.989760 + 0.142739i \(0.0455909\pi\)
−0.989760 + 0.142739i \(0.954409\pi\)
\(24\) 0 0
\(25\) 4.41855 + 2.34017i 0.883710 + 0.468035i
\(26\) 0 0
\(27\) 5.26180i 1.01263i
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 4.68035 0.840615 0.420307 0.907382i \(-0.361922\pi\)
0.420307 + 0.907382i \(0.361922\pi\)
\(32\) 0 0
\(33\) 9.26180i 1.61227i
\(34\) 0 0
\(35\) 1.41855 5.70928i 0.239779 0.965044i
\(36\) 0 0
\(37\) 5.75872i 0.946728i −0.880867 0.473364i \(-0.843039\pi\)
0.880867 0.473364i \(-0.156961\pi\)
\(38\) 0 0
\(39\) −10.8371 −1.73533
\(40\) 0 0
\(41\) −7.75872 −1.21171 −0.605855 0.795575i \(-0.707169\pi\)
−0.605855 + 0.795575i \(0.707169\pi\)
\(42\) 0 0
\(43\) 4.44748i 0.678234i 0.940744 + 0.339117i \(0.110128\pi\)
−0.940744 + 0.339117i \(0.889872\pi\)
\(44\) 0 0
\(45\) 0.170086 + 0.0422604i 0.0253550 + 0.00629981i
\(46\) 0 0
\(47\) 4.78765i 0.698351i −0.937057 0.349175i \(-0.886462\pi\)
0.937057 0.349175i \(-0.113538\pi\)
\(48\) 0 0
\(49\) 0.0783777 0.0111968
\(50\) 0 0
\(51\) 5.84324 0.818218
\(52\) 0 0
\(53\) 1.65983i 0.227995i −0.993481 0.113997i \(-0.963634\pi\)
0.993481 0.113997i \(-0.0363656\pi\)
\(54\) 0 0
\(55\) −11.7587 2.92162i −1.58555 0.393951i
\(56\) 0 0
\(57\) 5.57531i 0.738467i
\(58\) 0 0
\(59\) −3.26180 −0.424650 −0.212325 0.977199i \(-0.568103\pi\)
−0.212325 + 0.977199i \(0.568103\pi\)
\(60\) 0 0
\(61\) −2.49693 −0.319699 −0.159849 0.987141i \(-0.551101\pi\)
−0.159849 + 0.987141i \(0.551101\pi\)
\(62\) 0 0
\(63\) 0.206204i 0.0259792i
\(64\) 0 0
\(65\) 3.41855 13.7587i 0.424019 1.70656i
\(66\) 0 0
\(67\) 7.86603i 0.960989i −0.876998 0.480494i \(-0.840457\pi\)
0.876998 0.480494i \(-0.159543\pi\)
\(68\) 0 0
\(69\) 2.34017 0.281724
\(70\) 0 0
\(71\) 6.15676 0.730672 0.365336 0.930876i \(-0.380954\pi\)
0.365336 + 0.930876i \(0.380954\pi\)
\(72\) 0 0
\(73\) 13.5753i 1.58887i 0.607350 + 0.794435i \(0.292233\pi\)
−0.607350 + 0.794435i \(0.707767\pi\)
\(74\) 0 0
\(75\) 4.00000 7.55252i 0.461880 0.872090i
\(76\) 0 0
\(77\) 14.2557i 1.62458i
\(78\) 0 0
\(79\) 12.6803 1.42665 0.713325 0.700833i \(-0.247188\pi\)
0.713325 + 0.700833i \(0.247188\pi\)
\(80\) 0 0
\(81\) −8.75872 −0.973192
\(82\) 0 0
\(83\) 14.9711i 1.64329i 0.570001 + 0.821644i \(0.306943\pi\)
−0.570001 + 0.821644i \(0.693057\pi\)
\(84\) 0 0
\(85\) −1.84324 + 7.41855i −0.199928 + 0.804655i
\(86\) 0 0
\(87\) 3.41855i 0.366507i
\(88\) 0 0
\(89\) 8.52359 0.903499 0.451749 0.892145i \(-0.350800\pi\)
0.451749 + 0.892145i \(0.350800\pi\)
\(90\) 0 0
\(91\) −16.6803 −1.74858
\(92\) 0 0
\(93\) 8.00000i 0.829561i
\(94\) 0 0
\(95\) 7.07838 + 1.75872i 0.726226 + 0.180441i
\(96\) 0 0
\(97\) 4.58145i 0.465176i −0.972575 0.232588i \(-0.925281\pi\)
0.972575 0.232588i \(-0.0747193\pi\)
\(98\) 0 0
\(99\) −0.424694 −0.0426833
\(100\) 0 0
\(101\) 2.31351 0.230203 0.115101 0.993354i \(-0.463281\pi\)
0.115101 + 0.993354i \(0.463281\pi\)
\(102\) 0 0
\(103\) 16.2062i 1.59684i 0.602098 + 0.798422i \(0.294332\pi\)
−0.602098 + 0.798422i \(0.705668\pi\)
\(104\) 0 0
\(105\) −9.75872 2.42469i −0.952354 0.236626i
\(106\) 0 0
\(107\) 15.6514i 1.51308i 0.653948 + 0.756540i \(0.273112\pi\)
−0.653948 + 0.756540i \(0.726888\pi\)
\(108\) 0 0
\(109\) 12.3402 1.18197 0.590987 0.806681i \(-0.298738\pi\)
0.590987 + 0.806681i \(0.298738\pi\)
\(110\) 0 0
\(111\) −9.84324 −0.934279
\(112\) 0 0
\(113\) 9.36069i 0.880580i −0.897856 0.440290i \(-0.854876\pi\)
0.897856 0.440290i \(-0.145124\pi\)
\(114\) 0 0
\(115\) −0.738205 + 2.97107i −0.0688379 + 0.277054i
\(116\) 0 0
\(117\) 0.496928i 0.0459411i
\(118\) 0 0
\(119\) 8.99386 0.824466
\(120\) 0 0
\(121\) 18.3607 1.66915
\(122\) 0 0
\(123\) 13.2618i 1.19578i
\(124\) 0 0
\(125\) 8.32684 + 7.46081i 0.744775 + 0.667315i
\(126\) 0 0
\(127\) 1.95055i 0.173083i −0.996248 0.0865417i \(-0.972418\pi\)
0.996248 0.0865417i \(-0.0275816\pi\)
\(128\) 0 0
\(129\) 7.60197 0.669316
\(130\) 0 0
\(131\) 15.5753 1.36082 0.680410 0.732831i \(-0.261802\pi\)
0.680410 + 0.732831i \(0.261802\pi\)
\(132\) 0 0
\(133\) 8.58145i 0.744106i
\(134\) 0 0
\(135\) 2.83710 11.4186i 0.244179 0.982752i
\(136\) 0 0
\(137\) 15.2039i 1.29896i −0.760379 0.649480i \(-0.774987\pi\)
0.760379 0.649480i \(-0.225013\pi\)
\(138\) 0 0
\(139\) 2.58145 0.218956 0.109478 0.993989i \(-0.465082\pi\)
0.109478 + 0.993989i \(0.465082\pi\)
\(140\) 0 0
\(141\) −8.18342 −0.689168
\(142\) 0 0
\(143\) 34.3545i 2.87287i
\(144\) 0 0
\(145\) −4.34017 1.07838i −0.360432 0.0895544i
\(146\) 0 0
\(147\) 0.133969i 0.0110496i
\(148\) 0 0
\(149\) 1.81658 0.148820 0.0744101 0.997228i \(-0.476293\pi\)
0.0744101 + 0.997228i \(0.476293\pi\)
\(150\) 0 0
\(151\) 5.16290 0.420151 0.210075 0.977685i \(-0.432629\pi\)
0.210075 + 0.977685i \(0.432629\pi\)
\(152\) 0 0
\(153\) 0.267938i 0.0216615i
\(154\) 0 0
\(155\) 10.1568 + 2.52359i 0.815810 + 0.202700i
\(156\) 0 0
\(157\) 13.7587i 1.09807i 0.835801 + 0.549033i \(0.185004\pi\)
−0.835801 + 0.549033i \(0.814996\pi\)
\(158\) 0 0
\(159\) −2.83710 −0.224997
\(160\) 0 0
\(161\) 3.60197 0.283875
\(162\) 0 0
\(163\) 6.29072i 0.492728i 0.969177 + 0.246364i \(0.0792358\pi\)
−0.969177 + 0.246364i \(0.920764\pi\)
\(164\) 0 0
\(165\) −4.99386 + 20.0989i −0.388771 + 1.56470i
\(166\) 0 0
\(167\) 3.89269i 0.301226i 0.988593 + 0.150613i \(0.0481247\pi\)
−0.988593 + 0.150613i \(0.951875\pi\)
\(168\) 0 0
\(169\) −27.1978 −2.09214
\(170\) 0 0
\(171\) 0.255652 0.0195502
\(172\) 0 0
\(173\) 1.44521i 0.109877i 0.998490 + 0.0549387i \(0.0174964\pi\)
−0.998490 + 0.0549387i \(0.982504\pi\)
\(174\) 0 0
\(175\) 6.15676 11.6248i 0.465407 0.878749i
\(176\) 0 0
\(177\) 5.57531i 0.419066i
\(178\) 0 0
\(179\) −11.9421 −0.892598 −0.446299 0.894884i \(-0.647258\pi\)
−0.446299 + 0.894884i \(0.647258\pi\)
\(180\) 0 0
\(181\) 15.3607 1.14175 0.570876 0.821037i \(-0.306604\pi\)
0.570876 + 0.821037i \(0.306604\pi\)
\(182\) 0 0
\(183\) 4.26794i 0.315495i
\(184\) 0 0
\(185\) 3.10504 12.4969i 0.228287 0.918792i
\(186\) 0 0
\(187\) 18.5236i 1.35458i
\(188\) 0 0
\(189\) −13.8432 −1.00695
\(190\) 0 0
\(191\) −25.3607 −1.83504 −0.917518 0.397695i \(-0.869810\pi\)
−0.917518 + 0.397695i \(0.869810\pi\)
\(192\) 0 0
\(193\) 4.58145i 0.329780i 0.986312 + 0.164890i \(0.0527269\pi\)
−0.986312 + 0.164890i \(0.947273\pi\)
\(194\) 0 0
\(195\) −23.5174 5.84324i −1.68412 0.418443i
\(196\) 0 0
\(197\) 16.8638i 1.20149i 0.799439 + 0.600747i \(0.205130\pi\)
−0.799439 + 0.600747i \(0.794870\pi\)
\(198\) 0 0
\(199\) −9.84324 −0.697769 −0.348885 0.937166i \(-0.613439\pi\)
−0.348885 + 0.937166i \(0.613439\pi\)
\(200\) 0 0
\(201\) −13.4452 −0.948352
\(202\) 0 0
\(203\) 5.26180i 0.369306i
\(204\) 0 0
\(205\) −16.8371 4.18342i −1.17595 0.292183i
\(206\) 0 0
\(207\) 0.107307i 0.00745836i
\(208\) 0 0
\(209\) −17.6742 −1.22255
\(210\) 0 0
\(211\) 15.5753 1.07225 0.536124 0.844139i \(-0.319888\pi\)
0.536124 + 0.844139i \(0.319888\pi\)
\(212\) 0 0
\(213\) 10.5236i 0.721065i
\(214\) 0 0
\(215\) −2.39803 + 9.65142i −0.163544 + 0.658221i
\(216\) 0 0
\(217\) 12.3135i 0.835896i
\(218\) 0 0
\(219\) 23.2039 1.56798
\(220\) 0 0
\(221\) 21.6742 1.45796
\(222\) 0 0
\(223\) 16.9854i 1.13743i −0.822535 0.568715i \(-0.807441\pi\)
0.822535 0.568715i \(-0.192559\pi\)
\(224\) 0 0
\(225\) 0.346316 + 0.183417i 0.0230877 + 0.0122278i
\(226\) 0 0
\(227\) 19.9649i 1.32512i 0.749009 + 0.662559i \(0.230530\pi\)
−0.749009 + 0.662559i \(0.769470\pi\)
\(228\) 0 0
\(229\) −23.6742 −1.56444 −0.782218 0.623005i \(-0.785912\pi\)
−0.782218 + 0.623005i \(0.785912\pi\)
\(230\) 0 0
\(231\) 24.3668 1.60322
\(232\) 0 0
\(233\) 13.5753i 0.889348i 0.895693 + 0.444674i \(0.146680\pi\)
−0.895693 + 0.444674i \(0.853320\pi\)
\(234\) 0 0
\(235\) 2.58145 10.3896i 0.168395 0.677744i
\(236\) 0 0
\(237\) 21.6742i 1.40789i
\(238\) 0 0
\(239\) −8.36683 −0.541206 −0.270603 0.962691i \(-0.587223\pi\)
−0.270603 + 0.962691i \(0.587223\pi\)
\(240\) 0 0
\(241\) 9.91548 0.638712 0.319356 0.947635i \(-0.396533\pi\)
0.319356 + 0.947635i \(0.396533\pi\)
\(242\) 0 0
\(243\) 0.814315i 0.0522383i
\(244\) 0 0
\(245\) 0.170086 + 0.0422604i 0.0108664 + 0.00269992i
\(246\) 0 0
\(247\) 20.6803i 1.31586i
\(248\) 0 0
\(249\) 25.5897 1.62168
\(250\) 0 0
\(251\) 17.6163 1.11193 0.555967 0.831204i \(-0.312348\pi\)
0.555967 + 0.831204i \(0.312348\pi\)
\(252\) 0 0
\(253\) 7.41855i 0.466400i
\(254\) 0 0
\(255\) 12.6803 + 3.15061i 0.794074 + 0.197299i
\(256\) 0 0
\(257\) 3.68649i 0.229957i 0.993368 + 0.114978i \(0.0366799\pi\)
−0.993368 + 0.114978i \(0.963320\pi\)
\(258\) 0 0
\(259\) −15.1506 −0.941413
\(260\) 0 0
\(261\) −0.156755 −0.00970292
\(262\) 0 0
\(263\) 0.107307i 0.00661684i −0.999995 0.00330842i \(-0.998947\pi\)
0.999995 0.00330842i \(-0.00105311\pi\)
\(264\) 0 0
\(265\) 0.894960 3.60197i 0.0549770 0.221267i
\(266\) 0 0
\(267\) 14.5692i 0.891618i
\(268\) 0 0
\(269\) −3.85762 −0.235203 −0.117602 0.993061i \(-0.537521\pi\)
−0.117602 + 0.993061i \(0.537521\pi\)
\(270\) 0 0
\(271\) −21.3074 −1.29433 −0.647165 0.762350i \(-0.724046\pi\)
−0.647165 + 0.762350i \(0.724046\pi\)
\(272\) 0 0
\(273\) 28.5113i 1.72558i
\(274\) 0 0
\(275\) −23.9421 12.6803i −1.44377 0.764654i
\(276\) 0 0
\(277\) 1.44521i 0.0868344i −0.999057 0.0434172i \(-0.986176\pi\)
0.999057 0.0434172i \(-0.0138245\pi\)
\(278\) 0 0
\(279\) 0.366835 0.0219618
\(280\) 0 0
\(281\) 12.4391 0.742053 0.371026 0.928622i \(-0.379006\pi\)
0.371026 + 0.928622i \(0.379006\pi\)
\(282\) 0 0
\(283\) 6.29072i 0.373945i 0.982365 + 0.186972i \(0.0598675\pi\)
−0.982365 + 0.186972i \(0.940133\pi\)
\(284\) 0 0
\(285\) 3.00614 12.0989i 0.178069 0.716677i
\(286\) 0 0
\(287\) 20.4124i 1.20491i
\(288\) 0 0
\(289\) 5.31351 0.312559
\(290\) 0 0
\(291\) −7.83096 −0.459059
\(292\) 0 0
\(293\) 1.07838i 0.0629995i 0.999504 + 0.0314998i \(0.0100283\pi\)
−0.999504 + 0.0314998i \(0.989972\pi\)
\(294\) 0 0
\(295\) −7.07838 1.75872i −0.412119 0.102397i
\(296\) 0 0
\(297\) 28.5113i 1.65439i
\(298\) 0 0
\(299\) 8.68035 0.501997
\(300\) 0 0
\(301\) 11.7009 0.674427
\(302\) 0 0
\(303\) 3.95443i 0.227176i
\(304\) 0 0
\(305\) −5.41855 1.34632i −0.310265 0.0770898i
\(306\) 0 0
\(307\) 25.2267i 1.43977i −0.694096 0.719883i \(-0.744196\pi\)
0.694096 0.719883i \(-0.255804\pi\)
\(308\) 0 0
\(309\) 27.7009 1.57585
\(310\) 0 0
\(311\) 18.8371 1.06815 0.534077 0.845436i \(-0.320659\pi\)
0.534077 + 0.845436i \(0.320659\pi\)
\(312\) 0 0
\(313\) 15.2039i 0.859377i 0.902977 + 0.429689i \(0.141377\pi\)
−0.902977 + 0.429689i \(0.858623\pi\)
\(314\) 0 0
\(315\) 0.111183 0.447480i 0.00626444 0.0252126i
\(316\) 0 0
\(317\) 16.8638i 0.947163i −0.880750 0.473582i \(-0.842961\pi\)
0.880750 0.473582i \(-0.157039\pi\)
\(318\) 0 0
\(319\) 10.8371 0.606761
\(320\) 0 0
\(321\) 26.7526 1.49318
\(322\) 0 0
\(323\) 11.1506i 0.620437i
\(324\) 0 0
\(325\) 14.8371 28.0144i 0.823014 1.55396i
\(326\) 0 0
\(327\) 21.0928i 1.16643i
\(328\) 0 0
\(329\) −12.5958 −0.694430
\(330\) 0 0
\(331\) −23.5753 −1.29582 −0.647908 0.761719i \(-0.724356\pi\)
−0.647908 + 0.761719i \(0.724356\pi\)
\(332\) 0 0
\(333\) 0.451356i 0.0247341i
\(334\) 0 0
\(335\) 4.24128 17.0700i 0.231726 0.932632i
\(336\) 0 0
\(337\) 14.8371i 0.808228i −0.914709 0.404114i \(-0.867580\pi\)
0.914709 0.404114i \(-0.132420\pi\)
\(338\) 0 0
\(339\) −16.0000 −0.869001
\(340\) 0 0
\(341\) −25.3607 −1.37336
\(342\) 0 0
\(343\) 18.6225i 1.00552i
\(344\) 0 0
\(345\) 5.07838 + 1.26180i 0.273411 + 0.0679328i
\(346\) 0 0
\(347\) 0.133969i 0.00719184i 0.999994 + 0.00359592i \(0.00114462\pi\)
−0.999994 + 0.00359592i \(0.998855\pi\)
\(348\) 0 0
\(349\) −22.3135 −1.19441 −0.597207 0.802087i \(-0.703723\pi\)
−0.597207 + 0.802087i \(0.703723\pi\)
\(350\) 0 0
\(351\) −33.3607 −1.78066
\(352\) 0 0
\(353\) 22.8371i 1.21550i −0.794130 0.607748i \(-0.792073\pi\)
0.794130 0.607748i \(-0.207927\pi\)
\(354\) 0 0
\(355\) 13.3607 + 3.31965i 0.709112 + 0.176189i
\(356\) 0 0
\(357\) 15.3730i 0.813624i
\(358\) 0 0
\(359\) 31.8843 1.68279 0.841394 0.540422i \(-0.181735\pi\)
0.841394 + 0.540422i \(0.181735\pi\)
\(360\) 0 0
\(361\) −8.36069 −0.440036
\(362\) 0 0
\(363\) 31.3835i 1.64721i
\(364\) 0 0
\(365\) −7.31965 + 29.4596i −0.383128 + 1.54199i
\(366\) 0 0
\(367\) 30.4619i 1.59010i −0.606547 0.795048i \(-0.707446\pi\)
0.606547 0.795048i \(-0.292554\pi\)
\(368\) 0 0
\(369\) −0.608111 −0.0316570
\(370\) 0 0
\(371\) −4.36683 −0.226715
\(372\) 0 0
\(373\) 10.0722i 0.521521i −0.965404 0.260760i \(-0.916027\pi\)
0.965404 0.260760i \(-0.0839732\pi\)
\(374\) 0 0
\(375\) 12.7526 14.2329i 0.658540 0.734982i
\(376\) 0 0
\(377\) 12.6803i 0.653071i
\(378\) 0 0
\(379\) −14.7792 −0.759159 −0.379579 0.925159i \(-0.623931\pi\)
−0.379579 + 0.925159i \(0.623931\pi\)
\(380\) 0 0
\(381\) −3.33403 −0.170808
\(382\) 0 0
\(383\) 14.4619i 0.738966i −0.929237 0.369483i \(-0.879535\pi\)
0.929237 0.369483i \(-0.120465\pi\)
\(384\) 0 0
\(385\) −7.68649 + 30.9360i −0.391740 + 1.57664i
\(386\) 0 0
\(387\) 0.348583i 0.0177195i
\(388\) 0 0
\(389\) 3.17727 0.161094 0.0805471 0.996751i \(-0.474333\pi\)
0.0805471 + 0.996751i \(0.474333\pi\)
\(390\) 0 0
\(391\) −4.68035 −0.236695
\(392\) 0 0
\(393\) 26.6225i 1.34293i
\(394\) 0 0
\(395\) 27.5174 + 6.83710i 1.38455 + 0.344012i
\(396\) 0 0
\(397\) 10.8227i 0.543177i 0.962413 + 0.271589i \(0.0875490\pi\)
−0.962413 + 0.271589i \(0.912451\pi\)
\(398\) 0 0
\(399\) −14.6681 −0.734321
\(400\) 0 0
\(401\) −12.5236 −0.625398 −0.312699 0.949852i \(-0.601233\pi\)
−0.312699 + 0.949852i \(0.601233\pi\)
\(402\) 0 0
\(403\) 29.6742i 1.47818i
\(404\) 0 0
\(405\) −19.0072 4.72261i −0.944475 0.234668i
\(406\) 0 0
\(407\) 31.2039i 1.54672i
\(408\) 0 0
\(409\) 13.2885 0.657072 0.328536 0.944491i \(-0.393445\pi\)
0.328536 + 0.944491i \(0.393445\pi\)
\(410\) 0 0
\(411\) −25.9877 −1.28188
\(412\) 0 0
\(413\) 8.58145i 0.422266i
\(414\) 0 0
\(415\) −8.07223 + 32.4885i −0.396250 + 1.59480i
\(416\) 0 0
\(417\) 4.41241i 0.216077i
\(418\) 0 0
\(419\) −0.255652 −0.0124894 −0.00624471 0.999981i \(-0.501988\pi\)
−0.00624471 + 0.999981i \(0.501988\pi\)
\(420\) 0 0
\(421\) −2.49693 −0.121693 −0.0608464 0.998147i \(-0.519380\pi\)
−0.0608464 + 0.998147i \(0.519380\pi\)
\(422\) 0 0
\(423\) 0.375245i 0.0182451i
\(424\) 0 0
\(425\) −8.00000 + 15.1050i −0.388057 + 0.732702i
\(426\) 0 0
\(427\) 6.56916i 0.317904i
\(428\) 0 0
\(429\) 58.7214 2.83510
\(430\) 0 0
\(431\) 0.993857 0.0478724 0.0239362 0.999713i \(-0.492380\pi\)
0.0239362 + 0.999713i \(0.492380\pi\)
\(432\) 0 0
\(433\) 17.6286i 0.847178i 0.905855 + 0.423589i \(0.139230\pi\)
−0.905855 + 0.423589i \(0.860770\pi\)
\(434\) 0 0
\(435\) −1.84324 + 7.41855i −0.0883768 + 0.355692i
\(436\) 0 0
\(437\) 4.46573i 0.213625i
\(438\) 0 0
\(439\) −40.5113 −1.93350 −0.966750 0.255725i \(-0.917686\pi\)
−0.966750 + 0.255725i \(0.917686\pi\)
\(440\) 0 0
\(441\) 0.00614307 0.000292527
\(442\) 0 0
\(443\) 17.7093i 0.841393i −0.907201 0.420697i \(-0.861786\pi\)
0.907201 0.420697i \(-0.138214\pi\)
\(444\) 0 0
\(445\) 18.4969 + 4.59583i 0.876839 + 0.217863i
\(446\) 0 0
\(447\) 3.10504i 0.146863i
\(448\) 0 0
\(449\) 1.28846 0.0608061 0.0304030 0.999538i \(-0.490321\pi\)
0.0304030 + 0.999538i \(0.490321\pi\)
\(450\) 0 0
\(451\) 42.0410 1.97964
\(452\) 0 0
\(453\) 8.82482i 0.414626i
\(454\) 0 0
\(455\) −36.1978 8.99386i −1.69698 0.421639i
\(456\) 0 0
\(457\) 26.3545i 1.23281i 0.787428 + 0.616407i \(0.211412\pi\)
−0.787428 + 0.616407i \(0.788588\pi\)
\(458\) 0 0
\(459\) 17.9877 0.839595
\(460\) 0 0
\(461\) −41.0349 −1.91119 −0.955593 0.294690i \(-0.904783\pi\)
−0.955593 + 0.294690i \(0.904783\pi\)
\(462\) 0 0
\(463\) 28.7708i 1.33709i 0.743670 + 0.668547i \(0.233083\pi\)
−0.743670 + 0.668547i \(0.766917\pi\)
\(464\) 0 0
\(465\) 4.31351 17.3607i 0.200034 0.805083i
\(466\) 0 0
\(467\) 5.12783i 0.237287i 0.992937 + 0.118644i \(0.0378546\pi\)
−0.992937 + 0.118644i \(0.962145\pi\)
\(468\) 0 0
\(469\) −20.6947 −0.955593
\(470\) 0 0
\(471\) 23.5174 1.08363
\(472\) 0 0
\(473\) 24.0989i 1.10807i
\(474\) 0 0
\(475\) 14.4124 + 7.63317i 0.661287 + 0.350234i
\(476\) 0 0
\(477\) 0.130094i 0.00595657i
\(478\) 0 0
\(479\) 13.6742 0.624790 0.312395 0.949952i \(-0.398869\pi\)
0.312395 + 0.949952i \(0.398869\pi\)
\(480\) 0 0
\(481\) −36.5113 −1.66477
\(482\) 0 0
\(483\) 6.15676i 0.280142i
\(484\) 0 0
\(485\) 2.47027 9.94214i 0.112169 0.451449i
\(486\) 0 0
\(487\) 8.51971i 0.386065i 0.981192 + 0.193033i \(0.0618323\pi\)
−0.981192 + 0.193033i \(0.938168\pi\)
\(488\) 0 0
\(489\) 10.7526 0.486249
\(490\) 0 0
\(491\) 4.73820 0.213832 0.106916 0.994268i \(-0.465902\pi\)
0.106916 + 0.994268i \(0.465902\pi\)
\(492\) 0 0
\(493\) 6.83710i 0.307928i
\(494\) 0 0
\(495\) −0.921622 0.228990i −0.0414238 0.0102923i
\(496\) 0 0
\(497\) 16.1978i 0.726570i
\(498\) 0 0
\(499\) 11.0928 0.496580 0.248290 0.968686i \(-0.420131\pi\)
0.248290 + 0.968686i \(0.420131\pi\)
\(500\) 0 0
\(501\) 6.65368 0.297265
\(502\) 0 0
\(503\) 8.42082i 0.375466i −0.982220 0.187733i \(-0.939886\pi\)
0.982220 0.187733i \(-0.0601139\pi\)
\(504\) 0 0
\(505\) 5.02052 + 1.24742i 0.223410 + 0.0555094i
\(506\) 0 0
\(507\) 46.4885i 2.06463i
\(508\) 0 0
\(509\) −26.0000 −1.15243 −0.576215 0.817298i \(-0.695471\pi\)
−0.576215 + 0.817298i \(0.695471\pi\)
\(510\) 0 0
\(511\) 35.7152 1.57995
\(512\) 0 0
\(513\) 17.1629i 0.757760i
\(514\) 0 0
\(515\) −8.73820 + 35.1689i −0.385051 + 1.54973i
\(516\) 0 0
\(517\) 25.9421i 1.14093i
\(518\) 0 0
\(519\) 2.47027 0.108433
\(520\) 0 0
\(521\) −10.3135 −0.451843 −0.225922 0.974145i \(-0.572539\pi\)
−0.225922 + 0.974145i \(0.572539\pi\)
\(522\) 0 0
\(523\) 16.2784i 0.711806i 0.934523 + 0.355903i \(0.115827\pi\)
−0.934523 + 0.355903i \(0.884173\pi\)
\(524\) 0 0
\(525\) −19.8699 10.5236i −0.867194 0.459287i
\(526\) 0 0
\(527\) 16.0000i 0.696971i
\(528\) 0 0
\(529\) 21.1256 0.918503
\(530\) 0 0
\(531\) −0.255652 −0.0110944
\(532\) 0 0
\(533\) 49.1917i 2.13073i
\(534\) 0 0
\(535\) −8.43907 + 33.9649i −0.364853 + 1.46843i
\(536\) 0 0
\(537\) 20.4124i 0.880860i
\(538\) 0 0
\(539\) −0.424694 −0.0182929
\(540\) 0 0
\(541\) −3.36069 −0.144487 −0.0722437 0.997387i \(-0.523016\pi\)
−0.0722437 + 0.997387i \(0.523016\pi\)
\(542\) 0 0
\(543\) 26.2557i 1.12674i
\(544\) 0 0
\(545\) 26.7792 + 6.65368i 1.14710 + 0.285013i
\(546\) 0 0
\(547\) 1.51148i 0.0646263i −0.999478 0.0323132i \(-0.989713\pi\)
0.999478 0.0323132i \(-0.0102874\pi\)
\(548\) 0 0
\(549\) −0.195704 −0.00835243
\(550\) 0 0
\(551\) −6.52359 −0.277914
\(552\) 0 0
\(553\) 33.3607i 1.41864i
\(554\) 0 0
\(555\) −21.3607 5.30737i −0.906711 0.225285i
\(556\) 0 0
\(557\) 36.2290i 1.53507i −0.641006 0.767536i \(-0.721483\pi\)
0.641006 0.767536i \(-0.278517\pi\)
\(558\) 0 0
\(559\) 28.1978 1.19264
\(560\) 0 0
\(561\) −31.6619 −1.33677
\(562\) 0 0
\(563\) 2.17501i 0.0916656i 0.998949 + 0.0458328i \(0.0145941\pi\)
−0.998949 + 0.0458328i \(0.985406\pi\)
\(564\) 0 0
\(565\) 5.04718 20.3135i 0.212336 0.854596i
\(566\) 0 0
\(567\) 23.0433i 0.967728i
\(568\) 0 0
\(569\) −33.1194 −1.38844 −0.694219 0.719764i \(-0.744250\pi\)
−0.694219 + 0.719764i \(0.744250\pi\)
\(570\) 0 0
\(571\) −18.4657 −0.772767 −0.386383 0.922338i \(-0.626276\pi\)
−0.386383 + 0.922338i \(0.626276\pi\)
\(572\) 0 0
\(573\) 43.3484i 1.81091i
\(574\) 0 0
\(575\) −3.20394 + 6.04945i −0.133613 + 0.252279i
\(576\) 0 0
\(577\) 14.2101i 0.591573i −0.955254 0.295787i \(-0.904418\pi\)
0.955254 0.295787i \(-0.0955818\pi\)
\(578\) 0 0
\(579\) 7.83096 0.325444
\(580\) 0 0
\(581\) 39.3874 1.63406
\(582\) 0 0
\(583\) 8.99386i 0.372487i
\(584\) 0 0
\(585\) 0.267938 1.07838i 0.0110779 0.0445854i
\(586\) 0 0
\(587\) 11.7503i 0.484987i −0.970153 0.242494i \(-0.922035\pi\)
0.970153 0.242494i \(-0.0779654\pi\)
\(588\) 0 0
\(589\) 15.2663 0.629038
\(590\) 0 0
\(591\) 28.8248 1.18569
\(592\) 0 0
\(593\) 8.00000i 0.328521i −0.986417 0.164260i \(-0.947476\pi\)
0.986417 0.164260i \(-0.0525237\pi\)
\(594\) 0 0
\(595\) 19.5174 + 4.84939i 0.800137 + 0.198806i
\(596\) 0 0
\(597\) 16.8248i 0.688594i
\(598\) 0 0
\(599\) −20.5646 −0.840248 −0.420124 0.907467i \(-0.638013\pi\)
−0.420124 + 0.907467i \(0.638013\pi\)
\(600\) 0 0
\(601\) −8.60811 −0.351132 −0.175566 0.984468i \(-0.556176\pi\)
−0.175566 + 0.984468i \(0.556176\pi\)
\(602\) 0 0
\(603\) 0.616522i 0.0251067i
\(604\) 0 0
\(605\) 39.8443 + 9.89988i 1.61990 + 0.402487i
\(606\) 0 0
\(607\) 0.259528i 0.0105339i 0.999986 + 0.00526695i \(0.00167653\pi\)
−0.999986 + 0.00526695i \(0.998323\pi\)
\(608\) 0 0
\(609\) 8.99386 0.364449
\(610\) 0 0
\(611\) −30.3545 −1.22801
\(612\) 0 0
\(613\) 47.1650i 1.90498i 0.304576 + 0.952488i \(0.401485\pi\)
−0.304576 + 0.952488i \(0.598515\pi\)
\(614\) 0 0
\(615\) −7.15061 + 28.7792i −0.288341 + 1.16049i
\(616\) 0 0
\(617\) 40.2967i 1.62228i −0.584849 0.811142i \(-0.698846\pi\)
0.584849 0.811142i \(-0.301154\pi\)
\(618\) 0 0
\(619\) −30.6102 −1.23033 −0.615164 0.788399i \(-0.710910\pi\)
−0.615164 + 0.788399i \(0.710910\pi\)
\(620\) 0 0
\(621\) 7.20394 0.289084
\(622\) 0 0
\(623\) 22.4247i 0.898426i
\(624\) 0 0
\(625\) 14.0472 + 20.6803i 0.561887 + 0.827214i
\(626\) 0 0
\(627\) 30.2101i 1.20647i
\(628\) 0 0
\(629\) 19.6865 0.784952
\(630\) 0 0
\(631\) −2.21008 −0.0879819 −0.0439909 0.999032i \(-0.514007\pi\)
−0.0439909 + 0.999032i \(0.514007\pi\)
\(632\) 0 0
\(633\) 26.6225i 1.05815i
\(634\) 0 0
\(635\) 1.05172 4.23287i 0.0417361 0.167976i
\(636\) 0 0
\(637\) 0.496928i 0.0196890i
\(638\) 0 0
\(639\) 0.482553 0.0190895
\(640\) 0 0
\(641\) 7.92777 0.313128 0.156564 0.987668i \(-0.449958\pi\)
0.156564 + 0.987668i \(0.449958\pi\)
\(642\) 0 0
\(643\) 5.18115i 0.204325i 0.994768 + 0.102162i \(0.0325761\pi\)
−0.994768 + 0.102162i \(0.967424\pi\)
\(644\) 0 0
\(645\) 16.4969 + 4.09890i 0.649566 + 0.161394i
\(646\) 0 0
\(647\) 12.2062i 0.479875i 0.970788 + 0.239938i \(0.0771270\pi\)
−0.970788 + 0.239938i \(0.922873\pi\)
\(648\) 0 0
\(649\) 17.6742 0.693773
\(650\) 0 0
\(651\) −21.0472 −0.824904
\(652\) 0 0
\(653\) 32.4969i 1.27170i 0.771811 + 0.635852i \(0.219351\pi\)
−0.771811 + 0.635852i \(0.780649\pi\)
\(654\) 0 0
\(655\) 33.7998 + 8.39803i 1.32067 + 0.328138i
\(656\) 0 0
\(657\) 1.06400i 0.0415107i
\(658\) 0 0
\(659\) 29.4186 1.14598 0.572992 0.819561i \(-0.305783\pi\)
0.572992 + 0.819561i \(0.305783\pi\)
\(660\) 0 0
\(661\) −26.0677 −1.01392 −0.506958 0.861971i \(-0.669230\pi\)
−0.506958 + 0.861971i \(0.669230\pi\)
\(662\) 0 0
\(663\) 37.0472i 1.43879i
\(664\) 0 0
\(665\) 4.62702 18.6225i 0.179428 0.722149i
\(666\) 0 0
\(667\) 2.73820i 0.106024i
\(668\) 0 0
\(669\) −29.0328 −1.12247
\(670\) 0 0
\(671\) 13.5297 0.522310
\(672\) 0 0
\(673\) 9.62863i 0.371156i −0.982629 0.185578i \(-0.940584\pi\)
0.982629 0.185578i \(-0.0594158\pi\)
\(674\) 0 0
\(675\) 12.3135 23.2495i 0.473947 0.894874i
\(676\) 0 0
\(677\) 19.0205i 0.731018i −0.930808 0.365509i \(-0.880895\pi\)
0.930808 0.365509i \(-0.119105\pi\)
\(678\) 0 0
\(679\) −12.0533 −0.462564
\(680\) 0 0
\(681\) 34.1256 1.30769
\(682\) 0 0
\(683\) 17.4947i 0.669415i 0.942322 + 0.334707i \(0.108637\pi\)
−0.942322 + 0.334707i \(0.891363\pi\)
\(684\) 0 0
\(685\) 8.19779 32.9939i 0.313222 1.26063i
\(686\) 0 0
\(687\) 40.4657i 1.54386i
\(688\) 0 0
\(689\) −10.5236 −0.400917
\(690\) 0 0
\(691\) 16.3090 0.620423 0.310211 0.950668i \(-0.399600\pi\)
0.310211 + 0.950668i \(0.399600\pi\)
\(692\) 0 0
\(693\) 1.11733i 0.0424437i
\(694\) 0 0
\(695\) 5.60197 + 1.39189i 0.212495 + 0.0527973i
\(696\) 0 0
\(697\) 26.5236i 1.00465i
\(698\) 0 0
\(699\) 23.2039 0.877653
\(700\) 0 0
\(701\) 12.9672 0.489764 0.244882 0.969553i \(-0.421251\pi\)
0.244882 + 0.969553i \(0.421251\pi\)
\(702\) 0 0
\(703\) 18.7838i 0.708444i
\(704\) 0 0
\(705\) −17.7587 4.41241i −0.668832 0.166181i
\(706\) 0 0
\(707\) 6.08661i 0.228911i
\(708\) 0 0
\(709\) 7.36069 0.276437 0.138218 0.990402i \(-0.455862\pi\)
0.138218 + 0.990402i \(0.455862\pi\)
\(710\) 0 0
\(711\) 0.993857 0.0372725
\(712\) 0 0
\(713\) 6.40787i 0.239977i
\(714\) 0 0
\(715\) −18.5236 + 74.5523i −0.692743 + 2.78810i
\(716\) 0 0
\(717\) 14.3012i 0.534089i
\(718\) 0 0
\(719\) −19.3197 −0.720502 −0.360251 0.932856i \(-0.617309\pi\)
−0.360251 + 0.932856i \(0.617309\pi\)
\(720\) 0 0
\(721\) 42.6369 1.58788
\(722\) 0 0
\(723\) 16.9483i 0.630313i
\(724\) 0 0
\(725\) −8.83710 4.68035i −0.328202 0.173824i
\(726\) 0 0
\(727\) 21.1545i 0.784577i −0.919842 0.392288i \(-0.871684\pi\)
0.919842 0.392288i \(-0.128316\pi\)
\(728\) 0 0
\(729\) −27.6681 −1.02474
\(730\) 0 0
\(731\) −15.2039 −0.562338
\(732\) 0 0
\(733\) 22.7526i 0.840386i −0.907435 0.420193i \(-0.861962\pi\)
0.907435 0.420193i \(-0.138038\pi\)
\(734\) 0 0
\(735\) 0.0722347 0.290725i 0.00266442 0.0107235i
\(736\) 0 0
\(737\) 42.6225i 1.57002i
\(738\) 0 0
\(739\) 28.4534 1.04668 0.523338 0.852125i \(-0.324686\pi\)
0.523338 + 0.852125i \(0.324686\pi\)
\(740\) 0 0
\(741\) −35.3484 −1.29856
\(742\) 0 0
\(743\) 3.79380i 0.139181i −0.997576 0.0695904i \(-0.977831\pi\)
0.997576 0.0695904i \(-0.0221692\pi\)
\(744\) 0 0
\(745\) 3.94214 + 0.979481i 0.144429 + 0.0358854i
\(746\) 0 0
\(747\) 1.17340i 0.0429324i
\(748\) 0 0
\(749\) 41.1773 1.50458
\(750\) 0 0
\(751\) −17.3607 −0.633501 −0.316750 0.948509i \(-0.602592\pi\)
−0.316750 + 0.948509i \(0.602592\pi\)
\(752\) 0 0
\(753\) 30.1112i 1.09731i
\(754\) 0 0
\(755\) 11.2039 + 2.78378i 0.407753 + 0.101312i
\(756\) 0 0
\(757\) 4.76487i 0.173182i 0.996244 + 0.0865910i \(0.0275973\pi\)
−0.996244 + 0.0865910i \(0.972403\pi\)
\(758\) 0 0
\(759\) −12.6803 −0.460267
\(760\) 0 0
\(761\) −14.1978 −0.514670 −0.257335 0.966322i \(-0.582844\pi\)
−0.257335 + 0.966322i \(0.582844\pi\)
\(762\) 0 0
\(763\) 32.4657i 1.17534i
\(764\) 0 0
\(765\) −0.144469 + 0.581449i −0.00522330 + 0.0210223i
\(766\) 0 0
\(767\) 20.6803i 0.746724i
\(768\) 0 0
\(769\) −54.7091 −1.97286 −0.986430 0.164181i \(-0.947502\pi\)
−0.986430 + 0.164181i \(0.947502\pi\)
\(770\) 0 0
\(771\) 6.30122 0.226933
\(772\) 0 0
\(773\) 11.0205i 0.396381i −0.980164 0.198190i \(-0.936494\pi\)
0.980164 0.198190i \(-0.0635064\pi\)
\(774\) 0 0
\(775\) 20.6803 + 10.9528i 0.742860 + 0.393437i
\(776\) 0 0
\(777\) 25.8966i 0.929034i
\(778\) 0 0
\(779\) −25.3074 −0.906731
\(780\) 0 0
\(781\) −33.3607 −1.19374
\(782\) 0 0
\(783\) 10.5236i 0.376082i
\(784\) 0 0
\(785\) −7.41855 + 29.8576i −0.264779 + 1.06566i
\(786\) 0 0
\(787\) 33.6925i 1.20101i 0.799622 + 0.600503i \(0.205033\pi\)
−0.799622 + 0.600503i \(0.794967\pi\)
\(788\) 0 0
\(789\) −0.183417 −0.00652984
\(790\) 0 0
\(791\) −24.6270 −0.875636
\(792\) 0 0
\(793\) 15.8310i 0.562174i
\(794\) 0 0
\(795\) −6.15676 1.52973i −0.218358 0.0542541i
\(796\) 0 0
\(797\) 23.7009i 0.839528i −0.907633 0.419764i \(-0.862113\pi\)
0.907633 0.419764i \(-0.137887\pi\)
\(798\) 0 0
\(799\) 16.3668 0.579017
\(800\) 0 0
\(801\) 0.668060