Properties

Label 640.2.a
Level $640$
Weight $2$
Character orbit 640.a
Rep. character $\chi_{640}(1,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $12$
Sturm bound $192$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(192\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(640))\).

Total New Old
Modular forms 112 16 96
Cusp forms 81 16 65
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(4\)
\(+\)\(-\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(4\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(6\)
Minus space\(-\)\(10\)

Trace form

\( 16 q + 16 q^{9} + O(q^{10}) \) \( 16 q + 16 q^{9} + 16 q^{25} + 32 q^{33} + 32 q^{41} - 48 q^{49} - 32 q^{57} - 64 q^{73} + 80 q^{81} + 32 q^{89} - 64 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(640))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
640.2.a.a 640.a 1.a $1$ $5.110$ \(\Q\) None 640.2.a.a \(0\) \(-2\) \(-1\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}+q^{9}-2q^{11}+2q^{13}+\cdots\)
640.2.a.b 640.a 1.a $1$ $5.110$ \(\Q\) None 640.2.a.a \(0\) \(-2\) \(1\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+q^{5}+q^{9}-2q^{11}-2q^{13}+\cdots\)
640.2.a.c 640.a 1.a $1$ $5.110$ \(\Q\) None 640.2.a.c \(0\) \(0\) \(-1\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}-2q^{7}-3q^{9}+6q^{11}-2q^{13}+\cdots\)
640.2.a.d 640.a 1.a $1$ $5.110$ \(\Q\) None 640.2.a.c \(0\) \(0\) \(-1\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{5}+2q^{7}-3q^{9}-6q^{11}-2q^{13}+\cdots\)
640.2.a.e 640.a 1.a $1$ $5.110$ \(\Q\) None 640.2.a.c \(0\) \(0\) \(1\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}-2q^{7}-3q^{9}-6q^{11}+2q^{13}+\cdots\)
640.2.a.f 640.a 1.a $1$ $5.110$ \(\Q\) None 640.2.a.c \(0\) \(0\) \(1\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{5}+2q^{7}-3q^{9}+6q^{11}+2q^{13}+\cdots\)
640.2.a.g 640.a 1.a $1$ $5.110$ \(\Q\) None 640.2.a.a \(0\) \(2\) \(-1\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{5}+q^{9}+2q^{11}+2q^{13}+\cdots\)
640.2.a.h 640.a 1.a $1$ $5.110$ \(\Q\) None 640.2.a.a \(0\) \(2\) \(1\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{5}+q^{9}+2q^{11}-2q^{13}+\cdots\)
640.2.a.i 640.a 1.a $2$ $5.110$ \(\Q(\sqrt{5}) \) None 640.2.a.i \(0\) \(-2\) \(-2\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{3}-q^{5}+(-1+\beta )q^{7}+\cdots\)
640.2.a.j 640.a 1.a $2$ $5.110$ \(\Q(\sqrt{5}) \) None 640.2.a.i \(0\) \(-2\) \(2\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{3}+q^{5}+(1-\beta )q^{7}+(3+\cdots)q^{9}+\cdots\)
640.2.a.k 640.a 1.a $2$ $5.110$ \(\Q(\sqrt{5}) \) None 640.2.a.i \(0\) \(2\) \(-2\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}-q^{5}+(1-\beta )q^{7}+(3+2\beta )q^{9}+\cdots\)
640.2.a.l 640.a 1.a $2$ $5.110$ \(\Q(\sqrt{5}) \) None 640.2.a.i \(0\) \(2\) \(2\) \(-2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+q^{5}+(-1+\beta )q^{7}+(3+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(640))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(640)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 2}\)