Properties

Label 64.9.j
Level $64$
Weight $9$
Character orbit 64.j
Rep. character $\chi_{64}(3,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $504$
Newform subspaces $1$
Sturm bound $72$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 64.j (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 64 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 1 \)
Sturm bound: \(72\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(64, [\chi])\).

Total New Old
Modular forms 520 520 0
Cusp forms 504 504 0
Eisenstein series 16 16 0

Trace form

\( 504 q - 8 q^{2} - 8 q^{3} - 8 q^{4} - 8 q^{5} - 8 q^{6} - 8 q^{7} - 8 q^{8} - 8 q^{9} - 8 q^{10} - 8 q^{11} - 8 q^{12} - 8 q^{13} - 8 q^{14} - 8 q^{15} - 8 q^{16} - 8 q^{17} - 8 q^{18} - 8 q^{19} - 8 q^{20}+ \cdots + 52480 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(64, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
64.9.j.a 64.j 64.j $504$ $26.072$ None 64.9.j.a \(-8\) \(-8\) \(-8\) \(-8\) $\mathrm{SU}(2)[C_{16}]$