Defining parameters
Level: | \( N \) | \(=\) | \( 64 = 2^{6} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 64.h (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 32 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(64, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 264 | 0 | 264 |
Cusp forms | 248 | 0 | 248 |
Eisenstein series | 16 | 0 | 16 |
Decomposition of \(S_{9}^{\mathrm{old}}(64, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(64, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 2}\)