Defining parameters
Level: | \( N \) | \(=\) | \( 64 = 2^{6} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 64.f (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(64, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 34 | 102 |
Cusp forms | 120 | 30 | 90 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(64, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
64.9.f.a | $30$ | $26.072$ | None | \(0\) | \(2\) | \(-2\) | \(4\) |
Decomposition of \(S_{9}^{\mathrm{old}}(64, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(64, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 3}\)