Defining parameters
Level: | \( N \) | \(=\) | \( 64 = 2^{6} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 64.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(64, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 70 | 16 | 54 |
Cusp forms | 58 | 16 | 42 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(64, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
64.9.d.a | $4$ | $26.072$ | \(\Q(i, \sqrt{1731})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{3}+\beta _{3}q^{5}-7\beta _{2}q^{7}+363q^{9}+\cdots\) |
64.9.d.b | $12$ | $26.072$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+\beta _{4}q^{5}+\beta _{10}q^{7}+(2795+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{9}^{\mathrm{old}}(64, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(64, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 2}\)