Properties

Label 64.4.e.a.49.3
Level $64$
Weight $4$
Character 64.49
Analytic conductor $3.776$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 64.e (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.77612224037\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Defining polynomial: \(x^{10} - 2 x^{9} - x^{8} + 6 x^{7} + 14 x^{6} - 80 x^{5} + 56 x^{4} + 96 x^{3} - 64 x^{2} - 512 x + 1024\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{20} \)
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 49.3
Root \(-1.62580 - 1.16481i\) of defining polynomial
Character \(\chi\) \(=\) 64.49
Dual form 64.4.e.a.17.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.756776 + 0.756776i) q^{3} +(8.22587 + 8.22587i) q^{5} -2.67171i q^{7} +25.8546i q^{9} +O(q^{10})\) \(q+(-0.756776 + 0.756776i) q^{3} +(8.22587 + 8.22587i) q^{5} -2.67171i q^{7} +25.8546i q^{9} +(45.2213 + 45.2213i) q^{11} +(35.3968 - 35.3968i) q^{13} -12.4503 q^{15} -72.4991 q^{17} +(-19.4427 + 19.4427i) q^{19} +(2.02188 + 2.02188i) q^{21} -139.462i q^{23} +10.3299i q^{25} +(-39.9991 - 39.9991i) q^{27} +(66.0434 - 66.0434i) q^{29} -188.682 q^{31} -68.4447 q^{33} +(21.9771 - 21.9771i) q^{35} +(-84.0653 - 84.0653i) q^{37} +53.5748i q^{39} -104.629i q^{41} +(31.4857 + 31.4857i) q^{43} +(-212.676 + 212.676i) q^{45} +488.151 q^{47} +335.862 q^{49} +(54.8656 - 54.8656i) q^{51} +(149.560 + 149.560i) q^{53} +743.968i q^{55} -29.4275i q^{57} +(-284.698 - 284.698i) q^{59} +(-228.069 + 228.069i) q^{61} +69.0758 q^{63} +582.338 q^{65} +(-139.151 + 139.151i) q^{67} +(105.541 + 105.541i) q^{69} -453.655i q^{71} +259.747i q^{73} +(-7.81740 - 7.81740i) q^{75} +(120.818 - 120.818i) q^{77} -323.190 q^{79} -637.533 q^{81} +(563.897 - 563.897i) q^{83} +(-596.368 - 596.368i) q^{85} +99.9602i q^{87} -866.853i q^{89} +(-94.5697 - 94.5697i) q^{91} +(142.790 - 142.790i) q^{93} -319.866 q^{95} -936.077 q^{97} +(-1169.18 + 1169.18i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 2q^{3} - 2q^{5} + O(q^{10}) \) \( 10q + 2q^{3} - 2q^{5} - 18q^{11} - 2q^{13} + 124q^{15} - 4q^{17} + 26q^{19} + 52q^{21} - 184q^{27} - 202q^{29} - 368q^{31} - 4q^{33} - 476q^{35} - 10q^{37} + 838q^{43} + 194q^{45} + 944q^{47} + 94q^{49} + 1500q^{51} - 378q^{53} - 1706q^{59} + 910q^{61} - 2628q^{63} - 492q^{65} - 1942q^{67} + 580q^{69} + 2954q^{75} - 268q^{77} + 4416q^{79} + 482q^{81} + 2562q^{83} - 12q^{85} - 3332q^{91} - 2192q^{93} - 6900q^{95} - 4q^{97} - 4958q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/64\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(63\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.756776 + 0.756776i −0.145642 + 0.145642i −0.776168 0.630526i \(-0.782839\pi\)
0.630526 + 0.776168i \(0.282839\pi\)
\(4\) 0 0
\(5\) 8.22587 + 8.22587i 0.735744 + 0.735744i 0.971751 0.236007i \(-0.0758389\pi\)
−0.236007 + 0.971751i \(0.575839\pi\)
\(6\) 0 0
\(7\) 2.67171i 0.144259i −0.997395 0.0721293i \(-0.977021\pi\)
0.997395 0.0721293i \(-0.0229794\pi\)
\(8\) 0 0
\(9\) 25.8546i 0.957577i
\(10\) 0 0
\(11\) 45.2213 + 45.2213i 1.23952 + 1.23952i 0.960197 + 0.279323i \(0.0901099\pi\)
0.279323 + 0.960197i \(0.409890\pi\)
\(12\) 0 0
\(13\) 35.3968 35.3968i 0.755176 0.755176i −0.220264 0.975440i \(-0.570692\pi\)
0.975440 + 0.220264i \(0.0706918\pi\)
\(14\) 0 0
\(15\) −12.4503 −0.214310
\(16\) 0 0
\(17\) −72.4991 −1.03433 −0.517165 0.855886i \(-0.673013\pi\)
−0.517165 + 0.855886i \(0.673013\pi\)
\(18\) 0 0
\(19\) −19.4427 + 19.4427i −0.234761 + 0.234761i −0.814676 0.579916i \(-0.803085\pi\)
0.579916 + 0.814676i \(0.303085\pi\)
\(20\) 0 0
\(21\) 2.02188 + 2.02188i 0.0210100 + 0.0210100i
\(22\) 0 0
\(23\) 139.462i 1.26434i −0.774830 0.632170i \(-0.782165\pi\)
0.774830 0.632170i \(-0.217835\pi\)
\(24\) 0 0
\(25\) 10.3299i 0.0826390i
\(26\) 0 0
\(27\) −39.9991 39.9991i −0.285105 0.285105i
\(28\) 0 0
\(29\) 66.0434 66.0434i 0.422895 0.422895i −0.463304 0.886199i \(-0.653336\pi\)
0.886199 + 0.463304i \(0.153336\pi\)
\(30\) 0 0
\(31\) −188.682 −1.09317 −0.546584 0.837404i \(-0.684072\pi\)
−0.546584 + 0.837404i \(0.684072\pi\)
\(32\) 0 0
\(33\) −68.4447 −0.361051
\(34\) 0 0
\(35\) 21.9771 21.9771i 0.106137 0.106137i
\(36\) 0 0
\(37\) −84.0653 84.0653i −0.373520 0.373520i 0.495237 0.868758i \(-0.335081\pi\)
−0.868758 + 0.495237i \(0.835081\pi\)
\(38\) 0 0
\(39\) 53.5748i 0.219970i
\(40\) 0 0
\(41\) 104.629i 0.398545i −0.979944 0.199272i \(-0.936142\pi\)
0.979944 0.199272i \(-0.0638578\pi\)
\(42\) 0 0
\(43\) 31.4857 + 31.4857i 0.111663 + 0.111663i 0.760731 0.649067i \(-0.224841\pi\)
−0.649067 + 0.760731i \(0.724841\pi\)
\(44\) 0 0
\(45\) −212.676 + 212.676i −0.704532 + 0.704532i
\(46\) 0 0
\(47\) 488.151 1.51498 0.757491 0.652846i \(-0.226425\pi\)
0.757491 + 0.652846i \(0.226425\pi\)
\(48\) 0 0
\(49\) 335.862 0.979189
\(50\) 0 0
\(51\) 54.8656 54.8656i 0.150641 0.150641i
\(52\) 0 0
\(53\) 149.560 + 149.560i 0.387617 + 0.387617i 0.873837 0.486220i \(-0.161624\pi\)
−0.486220 + 0.873837i \(0.661624\pi\)
\(54\) 0 0
\(55\) 743.968i 1.82394i
\(56\) 0 0
\(57\) 29.4275i 0.0683819i
\(58\) 0 0
\(59\) −284.698 284.698i −0.628212 0.628212i 0.319406 0.947618i \(-0.396517\pi\)
−0.947618 + 0.319406i \(0.896517\pi\)
\(60\) 0 0
\(61\) −228.069 + 228.069i −0.478709 + 0.478709i −0.904719 0.426010i \(-0.859919\pi\)
0.426010 + 0.904719i \(0.359919\pi\)
\(62\) 0 0
\(63\) 69.0758 0.138139
\(64\) 0 0
\(65\) 582.338 1.11123
\(66\) 0 0
\(67\) −139.151 + 139.151i −0.253730 + 0.253730i −0.822498 0.568768i \(-0.807420\pi\)
0.568768 + 0.822498i \(0.307420\pi\)
\(68\) 0 0
\(69\) 105.541 + 105.541i 0.184140 + 0.184140i
\(70\) 0 0
\(71\) 453.655i 0.758294i −0.925336 0.379147i \(-0.876217\pi\)
0.925336 0.379147i \(-0.123783\pi\)
\(72\) 0 0
\(73\) 259.747i 0.416454i 0.978081 + 0.208227i \(0.0667692\pi\)
−0.978081 + 0.208227i \(0.933231\pi\)
\(74\) 0 0
\(75\) −7.81740 7.81740i −0.0120357 0.0120357i
\(76\) 0 0
\(77\) 120.818 120.818i 0.178811 0.178811i
\(78\) 0 0
\(79\) −323.190 −0.460275 −0.230138 0.973158i \(-0.573918\pi\)
−0.230138 + 0.973158i \(0.573918\pi\)
\(80\) 0 0
\(81\) −637.533 −0.874531
\(82\) 0 0
\(83\) 563.897 563.897i 0.745732 0.745732i −0.227943 0.973674i \(-0.573200\pi\)
0.973674 + 0.227943i \(0.0732000\pi\)
\(84\) 0 0
\(85\) −596.368 596.368i −0.761002 0.761002i
\(86\) 0 0
\(87\) 99.9602i 0.123182i
\(88\) 0 0
\(89\) 866.853i 1.03243i −0.856459 0.516215i \(-0.827341\pi\)
0.856459 0.516215i \(-0.172659\pi\)
\(90\) 0 0
\(91\) −94.5697 94.5697i −0.108941 0.108941i
\(92\) 0 0
\(93\) 142.790 142.790i 0.159211 0.159211i
\(94\) 0 0
\(95\) −319.866 −0.345448
\(96\) 0 0
\(97\) −936.077 −0.979837 −0.489919 0.871768i \(-0.662974\pi\)
−0.489919 + 0.871768i \(0.662974\pi\)
\(98\) 0 0
\(99\) −1169.18 + 1169.18i −1.18694 + 1.18694i
\(100\) 0 0
\(101\) −1.58844 1.58844i −0.00156491 0.00156491i 0.706324 0.707889i \(-0.250352\pi\)
−0.707889 + 0.706324i \(0.750352\pi\)
\(102\) 0 0
\(103\) 1388.28i 1.32807i −0.747700 0.664036i \(-0.768842\pi\)
0.747700 0.664036i \(-0.231158\pi\)
\(104\) 0 0
\(105\) 33.2635i 0.0309160i
\(106\) 0 0
\(107\) 821.526 + 821.526i 0.742243 + 0.742243i 0.973009 0.230767i \(-0.0741234\pi\)
−0.230767 + 0.973009i \(0.574123\pi\)
\(108\) 0 0
\(109\) 532.797 532.797i 0.468190 0.468190i −0.433138 0.901328i \(-0.642594\pi\)
0.901328 + 0.433138i \(0.142594\pi\)
\(110\) 0 0
\(111\) 127.237 0.108800
\(112\) 0 0
\(113\) −67.2680 −0.0560003 −0.0280002 0.999608i \(-0.508914\pi\)
−0.0280002 + 0.999608i \(0.508914\pi\)
\(114\) 0 0
\(115\) 1147.19 1147.19i 0.930230 0.930230i
\(116\) 0 0
\(117\) 915.168 + 915.168i 0.723140 + 0.723140i
\(118\) 0 0
\(119\) 193.696i 0.149211i
\(120\) 0 0
\(121\) 2758.92i 2.07282i
\(122\) 0 0
\(123\) 79.1808 + 79.1808i 0.0580447 + 0.0580447i
\(124\) 0 0
\(125\) 943.262 943.262i 0.674943 0.674943i
\(126\) 0 0
\(127\) −1903.59 −1.33005 −0.665026 0.746820i \(-0.731579\pi\)
−0.665026 + 0.746820i \(0.731579\pi\)
\(128\) 0 0
\(129\) −47.6552 −0.0325257
\(130\) 0 0
\(131\) −918.430 + 918.430i −0.612546 + 0.612546i −0.943609 0.331062i \(-0.892593\pi\)
0.331062 + 0.943609i \(0.392593\pi\)
\(132\) 0 0
\(133\) 51.9451 + 51.9451i 0.0338662 + 0.0338662i
\(134\) 0 0
\(135\) 658.054i 0.419528i
\(136\) 0 0
\(137\) 477.234i 0.297612i −0.988866 0.148806i \(-0.952457\pi\)
0.988866 0.148806i \(-0.0475430\pi\)
\(138\) 0 0
\(139\) 1513.89 + 1513.89i 0.923788 + 0.923788i 0.997295 0.0735064i \(-0.0234189\pi\)
−0.0735064 + 0.997295i \(0.523419\pi\)
\(140\) 0 0
\(141\) −369.421 + 369.421i −0.220644 + 0.220644i
\(142\) 0 0
\(143\) 3201.37 1.87211
\(144\) 0 0
\(145\) 1086.53 0.622285
\(146\) 0 0
\(147\) −254.172 + 254.172i −0.142611 + 0.142611i
\(148\) 0 0
\(149\) 375.353 + 375.353i 0.206377 + 0.206377i 0.802725 0.596349i \(-0.203382\pi\)
−0.596349 + 0.802725i \(0.703382\pi\)
\(150\) 0 0
\(151\) 2997.52i 1.61546i 0.589553 + 0.807730i \(0.299304\pi\)
−0.589553 + 0.807730i \(0.700696\pi\)
\(152\) 0 0
\(153\) 1874.43i 0.990451i
\(154\) 0 0
\(155\) −1552.07 1552.07i −0.804293 0.804293i
\(156\) 0 0
\(157\) −1509.01 + 1509.01i −0.767082 + 0.767082i −0.977592 0.210510i \(-0.932488\pi\)
0.210510 + 0.977592i \(0.432488\pi\)
\(158\) 0 0
\(159\) −226.368 −0.112906
\(160\) 0 0
\(161\) −372.601 −0.182392
\(162\) 0 0
\(163\) 1425.19 1425.19i 0.684844 0.684844i −0.276244 0.961088i \(-0.589090\pi\)
0.961088 + 0.276244i \(0.0890898\pi\)
\(164\) 0 0
\(165\) −563.017 563.017i −0.265641 0.265641i
\(166\) 0 0
\(167\) 792.415i 0.367179i −0.983003 0.183590i \(-0.941228\pi\)
0.983003 0.183590i \(-0.0587717\pi\)
\(168\) 0 0
\(169\) 308.861i 0.140583i
\(170\) 0 0
\(171\) −502.682 502.682i −0.224802 0.224802i
\(172\) 0 0
\(173\) −773.594 + 773.594i −0.339972 + 0.339972i −0.856357 0.516384i \(-0.827278\pi\)
0.516384 + 0.856357i \(0.327278\pi\)
\(174\) 0 0
\(175\) 27.5984 0.0119214
\(176\) 0 0
\(177\) 430.905 0.182988
\(178\) 0 0
\(179\) −426.050 + 426.050i −0.177902 + 0.177902i −0.790441 0.612539i \(-0.790148\pi\)
0.612539 + 0.790441i \(0.290148\pi\)
\(180\) 0 0
\(181\) −2618.06 2618.06i −1.07513 1.07513i −0.996938 0.0781951i \(-0.975084\pi\)
−0.0781951 0.996938i \(-0.524916\pi\)
\(182\) 0 0
\(183\) 345.194i 0.139440i
\(184\) 0 0
\(185\) 1383.02i 0.549631i
\(186\) 0 0
\(187\) −3278.50 3278.50i −1.28207 1.28207i
\(188\) 0 0
\(189\) −106.866 + 106.866i −0.0411288 + 0.0411288i
\(190\) 0 0
\(191\) −3216.39 −1.21848 −0.609240 0.792986i \(-0.708525\pi\)
−0.609240 + 0.792986i \(0.708525\pi\)
\(192\) 0 0
\(193\) 2852.57 1.06390 0.531950 0.846776i \(-0.321459\pi\)
0.531950 + 0.846776i \(0.321459\pi\)
\(194\) 0 0
\(195\) −440.700 + 440.700i −0.161842 + 0.161842i
\(196\) 0 0
\(197\) 1609.02 + 1609.02i 0.581918 + 0.581918i 0.935430 0.353512i \(-0.115013\pi\)
−0.353512 + 0.935430i \(0.615013\pi\)
\(198\) 0 0
\(199\) 747.136i 0.266146i 0.991106 + 0.133073i \(0.0424845\pi\)
−0.991106 + 0.133073i \(0.957516\pi\)
\(200\) 0 0
\(201\) 210.612i 0.0739074i
\(202\) 0 0
\(203\) −176.449 176.449i −0.0610062 0.0610062i
\(204\) 0 0
\(205\) 860.666 860.666i 0.293227 0.293227i
\(206\) 0 0
\(207\) 3605.73 1.21070
\(208\) 0 0
\(209\) −1758.44 −0.581981
\(210\) 0 0
\(211\) 2227.13 2227.13i 0.726645 0.726645i −0.243305 0.969950i \(-0.578231\pi\)
0.969950 + 0.243305i \(0.0782315\pi\)
\(212\) 0 0
\(213\) 343.315 + 343.315i 0.110439 + 0.110439i
\(214\) 0 0
\(215\) 517.995i 0.164311i
\(216\) 0 0
\(217\) 504.102i 0.157699i
\(218\) 0 0
\(219\) −196.570 196.570i −0.0606530 0.0606530i
\(220\) 0 0
\(221\) −2566.23 + 2566.23i −0.781102 + 0.781102i
\(222\) 0 0
\(223\) 358.053 0.107520 0.0537601 0.998554i \(-0.482879\pi\)
0.0537601 + 0.998554i \(0.482879\pi\)
\(224\) 0 0
\(225\) −267.075 −0.0791332
\(226\) 0 0
\(227\) −3455.40 + 3455.40i −1.01032 + 1.01032i −0.0103741 + 0.999946i \(0.503302\pi\)
−0.999946 + 0.0103741i \(0.996698\pi\)
\(228\) 0 0
\(229\) −1430.03 1430.03i −0.412659 0.412659i 0.470005 0.882664i \(-0.344252\pi\)
−0.882664 + 0.470005i \(0.844252\pi\)
\(230\) 0 0
\(231\) 182.864i 0.0520847i
\(232\) 0 0
\(233\) 926.479i 0.260496i 0.991481 + 0.130248i \(0.0415774\pi\)
−0.991481 + 0.130248i \(0.958423\pi\)
\(234\) 0 0
\(235\) 4015.47 + 4015.47i 1.11464 + 1.11464i
\(236\) 0 0
\(237\) 244.583 244.583i 0.0670352 0.0670352i
\(238\) 0 0
\(239\) 792.472 0.214480 0.107240 0.994233i \(-0.465799\pi\)
0.107240 + 0.994233i \(0.465799\pi\)
\(240\) 0 0
\(241\) 1449.01 0.387299 0.193650 0.981071i \(-0.437967\pi\)
0.193650 + 0.981071i \(0.437967\pi\)
\(242\) 0 0
\(243\) 1562.44 1562.44i 0.412473 0.412473i
\(244\) 0 0
\(245\) 2762.76 + 2762.76i 0.720433 + 0.720433i
\(246\) 0 0
\(247\) 1376.42i 0.354572i
\(248\) 0 0
\(249\) 853.487i 0.217219i
\(250\) 0 0
\(251\) 3580.04 + 3580.04i 0.900280 + 0.900280i 0.995460 0.0951802i \(-0.0303427\pi\)
−0.0951802 + 0.995460i \(0.530343\pi\)
\(252\) 0 0
\(253\) 6306.64 6306.64i 1.56717 1.56717i
\(254\) 0 0
\(255\) 902.634 0.221667
\(256\) 0 0
\(257\) −4708.87 −1.14292 −0.571461 0.820629i \(-0.693623\pi\)
−0.571461 + 0.820629i \(0.693623\pi\)
\(258\) 0 0
\(259\) −224.598 + 224.598i −0.0538835 + 0.0538835i
\(260\) 0 0
\(261\) 1707.53 + 1707.53i 0.404955 + 0.404955i
\(262\) 0 0
\(263\) 2967.82i 0.695830i −0.937526 0.347915i \(-0.886890\pi\)
0.937526 0.347915i \(-0.113110\pi\)
\(264\) 0 0
\(265\) 2460.53i 0.570374i
\(266\) 0 0
\(267\) 656.013 + 656.013i 0.150365 + 0.150365i
\(268\) 0 0
\(269\) −663.633 + 663.633i −0.150418 + 0.150418i −0.778305 0.627887i \(-0.783920\pi\)
0.627887 + 0.778305i \(0.283920\pi\)
\(270\) 0 0
\(271\) −8058.74 −1.80640 −0.903199 0.429223i \(-0.858788\pi\)
−0.903199 + 0.429223i \(0.858788\pi\)
\(272\) 0 0
\(273\) 143.136 0.0317326
\(274\) 0 0
\(275\) −467.130 + 467.130i −0.102433 + 0.102433i
\(276\) 0 0
\(277\) 482.477 + 482.477i 0.104654 + 0.104654i 0.757495 0.652841i \(-0.226423\pi\)
−0.652841 + 0.757495i \(0.726423\pi\)
\(278\) 0 0
\(279\) 4878.29i 1.04679i
\(280\) 0 0
\(281\) 5899.10i 1.25235i 0.779682 + 0.626175i \(0.215381\pi\)
−0.779682 + 0.626175i \(0.784619\pi\)
\(282\) 0 0
\(283\) 679.897 + 679.897i 0.142812 + 0.142812i 0.774898 0.632086i \(-0.217801\pi\)
−0.632086 + 0.774898i \(0.717801\pi\)
\(284\) 0 0
\(285\) 242.067 242.067i 0.0503116 0.0503116i
\(286\) 0 0
\(287\) −279.538 −0.0574935
\(288\) 0 0
\(289\) 343.118 0.0698388
\(290\) 0 0
\(291\) 708.401 708.401i 0.142705 0.142705i
\(292\) 0 0
\(293\) −3552.87 3552.87i −0.708398 0.708398i 0.257800 0.966198i \(-0.417002\pi\)
−0.966198 + 0.257800i \(0.917002\pi\)
\(294\) 0 0
\(295\) 4683.78i 0.924407i
\(296\) 0 0
\(297\) 3617.62i 0.706786i
\(298\) 0 0
\(299\) −4936.50 4936.50i −0.954799 0.954799i
\(300\) 0 0
\(301\) 84.1205 84.1205i 0.0161084 0.0161084i
\(302\) 0 0
\(303\) 2.40419 0.000455831
\(304\) 0 0
\(305\) −3752.13 −0.704415
\(306\) 0 0
\(307\) −2735.56 + 2735.56i −0.508556 + 0.508556i −0.914083 0.405527i \(-0.867088\pi\)
0.405527 + 0.914083i \(0.367088\pi\)
\(308\) 0 0
\(309\) 1050.62 + 1050.62i 0.193423 + 0.193423i
\(310\) 0 0
\(311\) 5796.70i 1.05692i 0.848960 + 0.528458i \(0.177229\pi\)
−0.848960 + 0.528458i \(0.822771\pi\)
\(312\) 0 0
\(313\) 8362.62i 1.51017i −0.655627 0.755085i \(-0.727596\pi\)
0.655627 0.755085i \(-0.272404\pi\)
\(314\) 0 0
\(315\) 568.209 + 568.209i 0.101635 + 0.101635i
\(316\) 0 0
\(317\) −344.406 + 344.406i −0.0610214 + 0.0610214i −0.736959 0.675938i \(-0.763739\pi\)
0.675938 + 0.736959i \(0.263739\pi\)
\(318\) 0 0
\(319\) 5973.13 1.04837
\(320\) 0 0
\(321\) −1243.42 −0.216203
\(322\) 0 0
\(323\) 1409.58 1409.58i 0.242820 0.242820i
\(324\) 0 0
\(325\) 365.644 + 365.644i 0.0624071 + 0.0624071i
\(326\) 0 0
\(327\) 806.416i 0.136376i
\(328\) 0 0
\(329\) 1304.20i 0.218549i
\(330\) 0 0
\(331\) −2687.86 2687.86i −0.446339 0.446339i 0.447797 0.894135i \(-0.352209\pi\)
−0.894135 + 0.447797i \(0.852209\pi\)
\(332\) 0 0
\(333\) 2173.47 2173.47i 0.357675 0.357675i
\(334\) 0 0
\(335\) −2289.27 −0.373361
\(336\) 0 0
\(337\) −1795.31 −0.290199 −0.145099 0.989417i \(-0.546350\pi\)
−0.145099 + 0.989417i \(0.546350\pi\)
\(338\) 0 0
\(339\) 50.9068 50.9068i 0.00815598 0.00815598i
\(340\) 0 0
\(341\) −8532.42 8532.42i −1.35500 1.35500i
\(342\) 0 0
\(343\) 1813.72i 0.285515i
\(344\) 0 0
\(345\) 1736.34i 0.270960i
\(346\) 0 0
\(347\) 1967.33 + 1967.33i 0.304357 + 0.304357i 0.842716 0.538359i \(-0.180955\pi\)
−0.538359 + 0.842716i \(0.680955\pi\)
\(348\) 0 0
\(349\) −7363.37 + 7363.37i −1.12938 + 1.12938i −0.139097 + 0.990279i \(0.544420\pi\)
−0.990279 + 0.139097i \(0.955580\pi\)
\(350\) 0 0
\(351\) −2831.68 −0.430609
\(352\) 0 0
\(353\) 10644.3 1.60493 0.802466 0.596698i \(-0.203521\pi\)
0.802466 + 0.596698i \(0.203521\pi\)
\(354\) 0 0
\(355\) 3731.70 3731.70i 0.557911 0.557911i
\(356\) 0 0
\(357\) −146.585 146.585i −0.0217313 0.0217313i
\(358\) 0 0
\(359\) 7459.42i 1.09664i 0.836269 + 0.548319i \(0.184732\pi\)
−0.836269 + 0.548319i \(0.815268\pi\)
\(360\) 0 0
\(361\) 6102.96i 0.889775i
\(362\) 0 0
\(363\) −2087.89 2087.89i −0.301889 0.301889i
\(364\) 0 0
\(365\) −2136.65 + 2136.65i −0.306403 + 0.306403i
\(366\) 0 0
\(367\) 6251.35 0.889149 0.444574 0.895742i \(-0.353355\pi\)
0.444574 + 0.895742i \(0.353355\pi\)
\(368\) 0 0
\(369\) 2705.14 0.381637
\(370\) 0 0
\(371\) 399.582 399.582i 0.0559171 0.0559171i
\(372\) 0 0
\(373\) 8911.86 + 8911.86i 1.23710 + 1.23710i 0.961180 + 0.275921i \(0.0889827\pi\)
0.275921 + 0.961180i \(0.411017\pi\)
\(374\) 0 0
\(375\) 1427.68i 0.196600i
\(376\) 0 0
\(377\) 4675.45i 0.638721i
\(378\) 0 0
\(379\) −1184.03 1184.03i −0.160473 0.160473i 0.622303 0.782776i \(-0.286197\pi\)
−0.782776 + 0.622303i \(0.786197\pi\)
\(380\) 0 0
\(381\) 1440.59 1440.59i 0.193711 0.193711i
\(382\) 0 0
\(383\) 2880.38 0.384283 0.192142 0.981367i \(-0.438457\pi\)
0.192142 + 0.981367i \(0.438457\pi\)
\(384\) 0 0
\(385\) 1987.66 0.263119
\(386\) 0 0
\(387\) −814.050 + 814.050i −0.106926 + 0.106926i
\(388\) 0 0
\(389\) 9244.24 + 9244.24i 1.20489 + 1.20489i 0.972662 + 0.232226i \(0.0746009\pi\)
0.232226 + 0.972662i \(0.425399\pi\)
\(390\) 0 0
\(391\) 10110.9i 1.30774i
\(392\) 0 0
\(393\) 1390.09i 0.178424i
\(394\) 0 0
\(395\) −2658.52 2658.52i −0.338645 0.338645i
\(396\) 0 0
\(397\) −4257.80 + 4257.80i −0.538270 + 0.538270i −0.923020 0.384751i \(-0.874287\pi\)
0.384751 + 0.923020i \(0.374287\pi\)
\(398\) 0 0
\(399\) −78.6216 −0.00986467
\(400\) 0 0
\(401\) 12722.6 1.58437 0.792187 0.610278i \(-0.208942\pi\)
0.792187 + 0.610278i \(0.208942\pi\)
\(402\) 0 0
\(403\) −6678.72 + 6678.72i −0.825535 + 0.825535i
\(404\) 0 0
\(405\) −5244.26 5244.26i −0.643431 0.643431i
\(406\) 0 0
\(407\) 7603.08i 0.925972i
\(408\) 0 0
\(409\) 232.991i 0.0281678i −0.999901 0.0140839i \(-0.995517\pi\)
0.999901 0.0140839i \(-0.00448320\pi\)
\(410\) 0 0
\(411\) 361.159 + 361.159i 0.0433447 + 0.0433447i
\(412\) 0 0
\(413\) −760.629 + 760.629i −0.0906250 + 0.0906250i
\(414\) 0 0
\(415\) 9277.08 1.09734
\(416\) 0 0
\(417\) −2291.35 −0.269084
\(418\) 0 0
\(419\) 6125.69 6125.69i 0.714223 0.714223i −0.253193 0.967416i \(-0.581481\pi\)
0.967416 + 0.253193i \(0.0814807\pi\)
\(420\) 0 0
\(421\) −8308.44 8308.44i −0.961825 0.961825i 0.0374725 0.999298i \(-0.488069\pi\)
−0.999298 + 0.0374725i \(0.988069\pi\)
\(422\) 0 0
\(423\) 12620.9i 1.45071i
\(424\) 0 0
\(425\) 748.907i 0.0854760i
\(426\) 0 0
\(427\) 609.333 + 609.333i 0.0690579 + 0.0690579i
\(428\) 0 0
\(429\) −2422.72 + 2422.72i −0.272657 + 0.272657i
\(430\) 0 0
\(431\) −8737.57 −0.976506 −0.488253 0.872702i \(-0.662366\pi\)
−0.488253 + 0.872702i \(0.662366\pi\)
\(432\) 0 0
\(433\) −11627.5 −1.29049 −0.645247 0.763974i \(-0.723245\pi\)
−0.645247 + 0.763974i \(0.723245\pi\)
\(434\) 0 0
\(435\) −822.260 + 822.260i −0.0906306 + 0.0906306i
\(436\) 0 0
\(437\) 2711.51 + 2711.51i 0.296817 + 0.296817i
\(438\) 0 0
\(439\) 17631.8i 1.91690i −0.285261 0.958450i \(-0.592080\pi\)
0.285261 0.958450i \(-0.407920\pi\)
\(440\) 0 0
\(441\) 8683.57i 0.937649i
\(442\) 0 0
\(443\) 4549.81 + 4549.81i 0.487964 + 0.487964i 0.907663 0.419699i \(-0.137864\pi\)
−0.419699 + 0.907663i \(0.637864\pi\)
\(444\) 0 0
\(445\) 7130.62 7130.62i 0.759604 0.759604i
\(446\) 0 0
\(447\) −568.116 −0.0601140
\(448\) 0 0
\(449\) −12926.5 −1.35867 −0.679334 0.733830i \(-0.737731\pi\)
−0.679334 + 0.733830i \(0.737731\pi\)
\(450\) 0 0
\(451\) 4731.46 4731.46i 0.494004 0.494004i
\(452\) 0 0
\(453\) −2268.45 2268.45i −0.235278 0.235278i
\(454\) 0 0
\(455\) 1555.84i 0.160305i
\(456\) 0 0
\(457\) 9320.32i 0.954018i −0.878898 0.477009i \(-0.841721\pi\)
0.878898 0.477009i \(-0.158279\pi\)
\(458\) 0 0
\(459\) 2899.90 + 2899.90i 0.294892 + 0.294892i
\(460\) 0 0
\(461\) 12885.0 12885.0i 1.30177 1.30177i 0.374566 0.927200i \(-0.377792\pi\)
0.927200 0.374566i \(-0.122208\pi\)
\(462\) 0 0
\(463\) −7038.37 −0.706482 −0.353241 0.935532i \(-0.614920\pi\)
−0.353241 + 0.935532i \(0.614920\pi\)
\(464\) 0 0
\(465\) 2349.14 0.234277
\(466\) 0 0
\(467\) −6001.76 + 6001.76i −0.594707 + 0.594707i −0.938899 0.344192i \(-0.888153\pi\)
0.344192 + 0.938899i \(0.388153\pi\)
\(468\) 0 0
\(469\) 371.769 + 371.769i 0.0366028 + 0.0366028i
\(470\) 0 0
\(471\) 2283.96i 0.223438i
\(472\) 0 0
\(473\) 2847.65i 0.276818i
\(474\) 0 0
\(475\) −200.840 200.840i −0.0194004 0.0194004i
\(476\) 0 0
\(477\) −3866.82 + 3866.82i −0.371173 + 0.371173i
\(478\) 0 0
\(479\) 587.317 0.0560234 0.0280117 0.999608i \(-0.491082\pi\)
0.0280117 + 0.999608i \(0.491082\pi\)
\(480\) 0 0
\(481\) −5951.28 −0.564148
\(482\) 0 0
\(483\) 281.975 281.975i 0.0265638 0.0265638i
\(484\) 0 0
\(485\) −7700.05 7700.05i −0.720910 0.720910i
\(486\) 0 0
\(487\) 8366.45i 0.778481i −0.921136 0.389240i \(-0.872738\pi\)
0.921136 0.389240i \(-0.127262\pi\)
\(488\) 0 0
\(489\) 2157.10i 0.199483i
\(490\) 0 0
\(491\) −1529.30 1529.30i −0.140563 0.140563i 0.633324 0.773887i \(-0.281690\pi\)
−0.773887 + 0.633324i \(0.781690\pi\)
\(492\) 0 0
\(493\) −4788.09 + 4788.09i −0.437413 + 0.437413i
\(494\) 0 0
\(495\) −19235.0 −1.74656
\(496\) 0 0
\(497\) −1212.03 −0.109390
\(498\) 0 0
\(499\) −11364.5 + 11364.5i −1.01952 + 1.01952i −0.0197191 + 0.999806i \(0.506277\pi\)
−0.999806 + 0.0197191i \(0.993723\pi\)
\(500\) 0 0
\(501\) 599.681 + 599.681i 0.0534766 + 0.0534766i
\(502\) 0 0
\(503\) 12570.2i 1.11427i −0.830421 0.557137i \(-0.811900\pi\)
0.830421 0.557137i \(-0.188100\pi\)
\(504\) 0 0
\(505\) 26.1326i 0.00230274i
\(506\) 0 0
\(507\) 233.738 + 233.738i 0.0204747 + 0.0204747i
\(508\) 0 0
\(509\) 11880.4 11880.4i 1.03456 1.03456i 0.0351750 0.999381i \(-0.488801\pi\)
0.999381 0.0351750i \(-0.0111989\pi\)
\(510\) 0 0
\(511\) 693.968 0.0600770
\(512\) 0 0
\(513\) 1555.38 0.133863
\(514\) 0 0
\(515\) 11419.8 11419.8i 0.977122 0.977122i
\(516\) 0 0
\(517\) 22074.8 + 22074.8i 1.87785 + 1.87785i
\(518\) 0 0
\(519\) 1170.87i 0.0990283i
\(520\) 0 0
\(521\) 6612.98i 0.556085i 0.960569 + 0.278042i \(0.0896856\pi\)
−0.960569 + 0.278042i \(0.910314\pi\)
\(522\) 0 0
\(523\) −5129.30 5129.30i −0.428850 0.428850i 0.459387 0.888236i \(-0.348069\pi\)
−0.888236 + 0.459387i \(0.848069\pi\)
\(524\) 0 0
\(525\) −20.8858 + 20.8858i −0.00173625 + 0.00173625i
\(526\) 0 0
\(527\) 13679.3 1.13070
\(528\) 0 0
\(529\) −7282.60 −0.598553
\(530\) 0 0
\(531\) 7360.75 7360.75i 0.601562 0.601562i
\(532\) 0 0
\(533\) −3703.53 3703.53i −0.300972 0.300972i
\(534\) 0 0
\(535\) 13515.5i 1.09220i
\(536\) 0 0
\(537\) 644.849i 0.0518199i
\(538\) 0 0
\(539\) 15188.1 + 15188.1i 1.21372 + 1.21372i
\(540\) 0 0
\(541\) −10968.5 + 10968.5i −0.871672 + 0.871672i −0.992655 0.120983i \(-0.961395\pi\)
0.120983 + 0.992655i \(0.461395\pi\)
\(542\) 0 0
\(543\) 3962.57 0.313168
\(544\) 0 0
\(545\) 8765.44 0.688936
\(546\) 0 0
\(547\) −13088.8 + 13088.8i −1.02311 + 1.02311i −0.0233784 + 0.999727i \(0.507442\pi\)
−0.999727 + 0.0233784i \(0.992558\pi\)
\(548\) 0 0
\(549\) −5896.63 5896.63i −0.458401 0.458401i
\(550\) 0 0
\(551\) 2568.12i 0.198558i
\(552\) 0 0
\(553\) 863.469i 0.0663986i
\(554\) 0 0
\(555\) 1046.64 + 1046.64i 0.0800491 + 0.0800491i
\(556\) 0 0
\(557\) 5049.87 5049.87i 0.384147 0.384147i −0.488447 0.872594i \(-0.662436\pi\)
0.872594 + 0.488447i \(0.162436\pi\)
\(558\) 0 0
\(559\) 2228.98 0.168651
\(560\) 0 0
\(561\) 4962.18 0.373446
\(562\) 0 0
\(563\) 3249.06 3249.06i 0.243217 0.243217i −0.574962 0.818180i \(-0.694983\pi\)
0.818180 + 0.574962i \(0.194983\pi\)
\(564\) 0 0
\(565\) −553.338 553.338i −0.0412019 0.0412019i
\(566\) 0 0
\(567\) 1703.30i 0.126159i
\(568\) 0 0
\(569\) 2806.05i 0.206741i −0.994643 0.103371i \(-0.967037\pi\)
0.994643 0.103371i \(-0.0329628\pi\)
\(570\) 0 0
\(571\) 12038.8 + 12038.8i 0.882324 + 0.882324i 0.993770 0.111446i \(-0.0355483\pi\)
−0.111446 + 0.993770i \(0.535548\pi\)
\(572\) 0 0
\(573\) 2434.08 2434.08i 0.177461 0.177461i
\(574\) 0 0
\(575\) 1440.62 0.104484
\(576\) 0 0
\(577\) 7206.84 0.519973 0.259987 0.965612i \(-0.416282\pi\)
0.259987 + 0.965612i \(0.416282\pi\)
\(578\) 0 0
\(579\) −2158.76 + 2158.76i −0.154948 + 0.154948i
\(580\) 0 0
\(581\) −1506.57 1506.57i −0.107578 0.107578i
\(582\) 0 0
\(583\) 13526.6i 0.960918i
\(584\) 0 0
\(585\) 15056.1i 1.06409i
\(586\) 0 0
\(587\) −10377.0 10377.0i −0.729647 0.729647i 0.240903 0.970549i \(-0.422557\pi\)
−0.970549 + 0.240903i \(0.922557\pi\)
\(588\) 0 0
\(589\) 3668.48 3668.48i 0.256633 0.256633i
\(590\) 0 0
\(591\) −2435.33 −0.169503
\(592\) 0 0
\(593\) −4758.60 −0.329531 −0.164766 0.986333i \(-0.552687\pi\)
−0.164766 + 0.986333i \(0.552687\pi\)
\(594\) 0 0
\(595\) −1593.32 + 1593.32i −0.109781 + 0.109781i
\(596\) 0 0
\(597\) −565.414 565.414i −0.0387619 0.0387619i
\(598\) 0 0
\(599\) 14256.4i 0.972455i 0.873832 + 0.486227i \(0.161627\pi\)
−0.873832 + 0.486227i \(0.838373\pi\)
\(600\) 0 0
\(601\) 10385.2i 0.704862i −0.935838 0.352431i \(-0.885355\pi\)
0.935838 0.352431i \(-0.114645\pi\)
\(602\) 0 0
\(603\) −3597.68 3597.68i −0.242966 0.242966i
\(604\) 0 0
\(605\) −22694.5 + 22694.5i −1.52506 + 1.52506i
\(606\) 0 0
\(607\) 16243.6 1.08618 0.543088 0.839676i \(-0.317255\pi\)
0.543088 + 0.839676i \(0.317255\pi\)
\(608\) 0 0
\(609\) 267.064 0.0177701
\(610\) 0 0
\(611\) 17279.0 17279.0i 1.14408 1.14408i
\(612\) 0 0
\(613\) −500.502 500.502i −0.0329773 0.0329773i 0.690426 0.723403i \(-0.257423\pi\)
−0.723403 + 0.690426i \(0.757423\pi\)
\(614\) 0 0
\(615\) 1302.66i 0.0854121i
\(616\) 0 0
\(617\) 11575.9i 0.755316i −0.925945 0.377658i \(-0.876729\pi\)
0.925945 0.377658i \(-0.123271\pi\)
\(618\) 0 0
\(619\) −18356.1 18356.1i −1.19191 1.19191i −0.976530 0.215380i \(-0.930901\pi\)
−0.215380 0.976530i \(-0.569099\pi\)
\(620\) 0 0
\(621\) −5578.34 + 5578.34i −0.360469 + 0.360469i
\(622\) 0 0
\(623\) −2315.98 −0.148937
\(624\) 0 0
\(625\) 16809.5 1.07581
\(626\) 0 0
\(627\) 1330.75 1330.75i 0.0847607 0.0847607i
\(628\) 0 0
\(629\) 6094.66 + 6094.66i 0.386343 + 0.386343i
\(630\) 0 0
\(631\) 10224.8i 0.645079i −0.946556 0.322539i \(-0.895463\pi\)
0.946556 0.322539i \(-0.104537\pi\)
\(632\) 0 0
\(633\) 3370.88i 0.211660i
\(634\) 0 0
\(635\) −15658.7 15658.7i −0.978578 0.978578i
\(636\) 0 0
\(637\) 11888.4 11888.4i 0.739461 0.739461i
\(638\) 0 0
\(639\) 11729.0 0.726125
\(640\) 0 0
\(641\) 19804.4 1.22032 0.610162 0.792277i \(-0.291104\pi\)
0.610162 + 0.792277i \(0.291104\pi\)
\(642\) 0 0
\(643\) −15680.7 + 15680.7i −0.961723 + 0.961723i −0.999294 0.0375712i \(-0.988038\pi\)
0.0375712 + 0.999294i \(0.488038\pi\)
\(644\) 0 0
\(645\) −392.006 392.006i −0.0239306 0.0239306i
\(646\) 0 0
\(647\) 9232.26i 0.560985i −0.959856 0.280493i \(-0.909502\pi\)
0.959856 0.280493i \(-0.0904978\pi\)
\(648\) 0 0
\(649\) 25748.8i 1.55736i
\(650\) 0 0
\(651\) −381.492 381.492i −0.0229675 0.0229675i
\(652\) 0 0
\(653\) −19697.9 + 19697.9i −1.18046 + 1.18046i −0.200833 + 0.979626i \(0.564365\pi\)
−0.979626 + 0.200833i \(0.935635\pi\)
\(654\) 0 0
\(655\) −15109.8 −0.901355
\(656\) 0 0
\(657\) −6715.66 −0.398786
\(658\) 0 0
\(659\) −3888.06 + 3888.06i −0.229829 + 0.229829i −0.812621 0.582792i \(-0.801960\pi\)
0.582792 + 0.812621i \(0.301960\pi\)
\(660\) 0 0
\(661\) −8110.20 8110.20i −0.477232 0.477232i 0.427013 0.904245i \(-0.359566\pi\)
−0.904245 + 0.427013i \(0.859566\pi\)
\(662\) 0 0
\(663\) 3884.13i 0.227522i
\(664\) 0 0
\(665\) 854.587i 0.0498338i
\(666\) 0 0
\(667\) −9210.54 9210.54i −0.534683 0.534683i
\(668\) 0 0
\(669\) −270.966 + 270.966i −0.0156594 + 0.0156594i
\(670\) 0 0
\(671\) −20627.1 −1.18674
\(672\) 0 0
\(673\) −28428.2 −1.62827 −0.814135 0.580676i \(-0.802788\pi\)
−0.814135 + 0.580676i \(0.802788\pi\)
\(674\) 0 0
\(675\) 413.186 413.186i 0.0235608 0.0235608i
\(676\) 0 0
\(677\) −16967.4 16967.4i −0.963235 0.963235i 0.0361128 0.999348i \(-0.488502\pi\)
−0.999348 + 0.0361128i \(0.988502\pi\)
\(678\) 0 0
\(679\) 2500.92i 0.141350i
\(680\) 0 0
\(681\) 5229.92i 0.294289i
\(682\) 0 0
\(683\) 9550.16 + 9550.16i 0.535032 + 0.535032i 0.922066 0.387034i \(-0.126500\pi\)
−0.387034 + 0.922066i \(0.626500\pi\)
\(684\) 0 0
\(685\) 3925.66 3925.66i 0.218966 0.218966i
\(686\) 0 0
\(687\) 2164.42 0.120201
\(688\) 0 0
\(689\) 10587.9 0.585439
\(690\) 0 0
\(691\) 20859.7 20859.7i 1.14839 1.14839i 0.161527 0.986868i \(-0.448358\pi\)
0.986868 0.161527i \(-0.0516418\pi\)
\(692\) 0 0
\(693\) 3123.70 + 3123.70i 0.171226 + 0.171226i
\(694\) 0 0
\(695\) 24906.1i 1.35934i
\(696\) 0 0
\(697\) 7585.52i 0.412227i
\(698\) 0 0
\(699\) −701.137 701.137i −0.0379391 0.0379391i
\(700\) 0 0
\(701\) 23495.4 23495.4i 1.26592 1.26592i 0.317740 0.948178i \(-0.397076\pi\)
0.948178 0.317740i \(-0.102924\pi\)
\(702\) 0 0
\(703\) 3268.91 0.175376
\(704\) 0 0
\(705\) −6077.62 −0.324676
\(706\) 0 0
\(707\) −4.24384 + 4.24384i −0.000225751 + 0.000225751i
\(708\) 0 0
\(709\) 4559.45 + 4559.45i 0.241515 + 0.241515i 0.817477 0.575962i \(-0.195372\pi\)
−0.575962 + 0.817477i \(0.695372\pi\)
\(710\) 0 0
\(711\) 8355.95i 0.440749i
\(712\) 0 0
\(713\) 26313.9i 1.38214i
\(714\) 0 0
\(715\) 26334.1 + 26334.1i 1.37740 + 1.37740i
\(716\) 0 0
\(717\) −599.724 + 599.724i −0.0312372 + 0.0312372i
\(718\) 0 0
\(719\) 6494.67 0.336871 0.168436 0.985713i \(-0.446128\pi\)
0.168436 + 0.985713i \(0.446128\pi\)
\(720\) 0 0
\(721\) −3709.08 −0.191586
\(722\) 0 0
\(723\) −1096.58 + 1096.58i −0.0564069 + 0.0564069i
\(724\) 0 0
\(725\) 682.221 + 682.221i 0.0349476 + 0.0349476i
\(726\) 0 0
\(727\) 24866.4i 1.26856i −0.773103 0.634280i \(-0.781296\pi\)
0.773103 0.634280i \(-0.218704\pi\)
\(728\) 0 0
\(729\) 14848.5i 0.754384i
\(730\) 0 0
\(731\) −2282.68 2282.68i −0.115497 0.115497i
\(732\) 0 0
\(733\) −14914.3 + 14914.3i −0.751533 + 0.751533i −0.974765 0.223232i \(-0.928339\pi\)
0.223232 + 0.974765i \(0.428339\pi\)
\(734\) 0 0
\(735\) −4181.58 −0.209850
\(736\) 0 0
\(737\) −12585.1 −0.629008
\(738\) 0 0
\(739\) −8451.86 + 8451.86i −0.420713 + 0.420713i −0.885449 0.464737i \(-0.846149\pi\)
0.464737 + 0.885449i \(0.346149\pi\)
\(740\) 0 0
\(741\) −1041.64 1041.64i −0.0516404 0.0516404i
\(742\) 0 0
\(743\) 5622.43i 0.277614i −0.990319 0.138807i \(-0.955673\pi\)
0.990319 0.138807i \(-0.0443267\pi\)
\(744\) 0 0
\(745\) 6175.21i 0.303681i
\(746\) 0 0
\(747\) 14579.3 + 14579.3i 0.714095 + 0.714095i
\(748\) 0 0
\(749\) 2194.88 2194.88i 0.107075 0.107075i
\(750\) 0 0
\(751\) 32314.9 1.57016 0.785079 0.619396i \(-0.212622\pi\)
0.785079 + 0.619396i \(0.212622\pi\)
\(752\) 0 0
\(753\) −5418.58 −0.262236
\(754\) 0 0
\(755\) −24657.2 + 24657.2i −1.18857 + 1.18857i
\(756\) 0 0
\(757\) 12692.8 + 12692.8i 0.609418 + 0.609418i 0.942794 0.333376i \(-0.108188\pi\)
−0.333376 + 0.942794i \(0.608188\pi\)
\(758\) 0 0
\(759\) 9545.42i 0.456491i
\(760\) 0 0
\(761\) 13108.2i 0.624404i 0.950016 + 0.312202i \(0.101067\pi\)
−0.950016 + 0.312202i \(0.898933\pi\)
\(762\) 0 0
\(763\) −1423.48 1423.48i −0.0675404 0.0675404i
\(764\) 0 0
\(765\) 15418.8 15418.8i 0.728718 0.728718i
\(766\) 0 0
\(767\) −20154.8 −0.948822
\(768\) 0 0
\(769\) 23661.2 1.10955 0.554776 0.832000i \(-0.312804\pi\)
0.554776 + 0.832000i \(0.312804\pi\)
\(770\) 0 0
\(771\) 3563.56 3563.56i 0.166457 0.166457i
\(772\) 0 0
\(773\) 21370.5 + 21370.5i 0.994362 + 0.994362i 0.999984 0.00562228i \(-0.00178964\pi\)
−0.00562228 + 0.999984i \(0.501790\pi\)
\(774\) 0 0
\(775\) 1949.06i 0.0903384i
\(776\) 0 0
\(777\) 339.940i 0.0156954i
\(778\) 0 0
\(779\) 2034.27 + 2034.27i 0.0935627 + 0.0935627i
\(780\) 0 0
\(781\) 20514.8 20514.8i 0.939921 0.939921i
\(782\) 0 0
\(783\) −5283.35 −0.241139
\(784\) 0 0
\(785\) −24825.8 −1.12875
\(786\) 0 0
\(787\) 20890.9 20890.9i 0.946226 0.946226i −0.0524002 0.998626i \(-0.516687\pi\)
0.998626 + 0.0524002i \(0.0166872\pi\)
\(788\) 0 0
\(789\) 2245.97 + 2245.97i 0.101342 + 0.101342i
\(790\) 0 0
\(791\) 179.720i 0.00807853i
\(792\) 0 0
\(793\) 16145.8i 0.723020i
\(794\) 0 0
\(795\) −1862.07 1862.07i −0.0830702 0.0830702i
\(796\) 0 0
\(797\) −6834.83 + 6834.83i −0.303767 +