# Properties

 Label 64.4.b.a.33.1 Level $64$ Weight $4$ Character 64.33 Analytic conductor $3.776$ Analytic rank $0$ Dimension $2$ CM discriminant -8 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [64,4,Mod(33,64)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(64, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("64.33");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$64 = 2^{6}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 64.b (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$3.77612224037$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2$$ Twist minimal: yes Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## Embedding invariants

 Embedding label 33.1 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 64.33 Dual form 64.4.b.a.33.2

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-10.0000i q^{3} -73.0000 q^{9} +O(q^{10})$$ $$q-10.0000i q^{3} -73.0000 q^{9} -18.0000i q^{11} +90.0000 q^{17} -106.000i q^{19} +125.000 q^{25} +460.000i q^{27} -180.000 q^{33} +522.000 q^{41} -290.000i q^{43} -343.000 q^{49} -900.000i q^{51} -1060.00 q^{57} +846.000i q^{59} +70.0000i q^{67} -430.000 q^{73} -1250.00i q^{75} +2629.00 q^{81} +1350.00i q^{83} +1026.00 q^{89} -1910.00 q^{97} +1314.00i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 146 q^{9}+O(q^{10})$$ 2 * q - 146 * q^9 $$2 q - 146 q^{9} + 180 q^{17} + 250 q^{25} - 360 q^{33} + 1044 q^{41} - 686 q^{49} - 2120 q^{57} - 860 q^{73} + 5258 q^{81} + 2052 q^{89} - 3820 q^{97}+O(q^{100})$$ 2 * q - 146 * q^9 + 180 * q^17 + 250 * q^25 - 360 * q^33 + 1044 * q^41 - 686 * q^49 - 2120 * q^57 - 860 * q^73 + 5258 * q^81 + 2052 * q^89 - 3820 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/64\mathbb{Z}\right)^\times$$.

 $$n$$ $$5$$ $$63$$ $$\chi(n)$$ $$-1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ − 10.0000i − 1.92450i −0.272166 0.962250i $$-0.587740\pi$$
0.272166 0.962250i $$-0.412260\pi$$
$$4$$ 0 0
$$5$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$6$$ 0 0
$$7$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$8$$ 0 0
$$9$$ −73.0000 −2.70370
$$10$$ 0 0
$$11$$ − 18.0000i − 0.493382i −0.969094 0.246691i $$-0.920657\pi$$
0.969094 0.246691i $$-0.0793433\pi$$
$$12$$ 0 0
$$13$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 90.0000 1.28401 0.642006 0.766700i $$-0.278102\pi$$
0.642006 + 0.766700i $$0.278102\pi$$
$$18$$ 0 0
$$19$$ − 106.000i − 1.27990i −0.768417 0.639949i $$-0.778955\pi$$
0.768417 0.639949i $$-0.221045\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$24$$ 0 0
$$25$$ 125.000 1.00000
$$26$$ 0 0
$$27$$ 460.000i 3.27878i
$$28$$ 0 0
$$29$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$30$$ 0 0
$$31$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$32$$ 0 0
$$33$$ −180.000 −0.949514
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 522.000 1.98836 0.994179 0.107738i $$-0.0343608\pi$$
0.994179 + 0.107738i $$0.0343608\pi$$
$$42$$ 0 0
$$43$$ − 290.000i − 1.02848i −0.857647 0.514239i $$-0.828074\pi$$
0.857647 0.514239i $$-0.171926\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$48$$ 0 0
$$49$$ −343.000 −1.00000
$$50$$ 0 0
$$51$$ − 900.000i − 2.47108i
$$52$$ 0 0
$$53$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ −1060.00 −2.46317
$$58$$ 0 0
$$59$$ 846.000i 1.86678i 0.358868 + 0.933388i $$0.383163\pi$$
−0.358868 + 0.933388i $$0.616837\pi$$
$$60$$ 0 0
$$61$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 70.0000i 0.127640i 0.997961 + 0.0638199i $$0.0203283\pi$$
−0.997961 + 0.0638199i $$0.979672\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ −430.000 −0.689420 −0.344710 0.938709i $$-0.612023\pi$$
−0.344710 + 0.938709i $$0.612023\pi$$
$$74$$ 0 0
$$75$$ − 1250.00i − 1.92450i
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$80$$ 0 0
$$81$$ 2629.00 3.60631
$$82$$ 0 0
$$83$$ 1350.00i 1.78532i 0.450728 + 0.892661i $$0.351164\pi$$
−0.450728 + 0.892661i $$0.648836\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 1026.00 1.22198 0.610988 0.791640i $$-0.290773\pi$$
0.610988 + 0.791640i $$0.290773\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −1910.00 −1.99929 −0.999645 0.0266459i $$-0.991517\pi$$
−0.999645 + 0.0266459i $$0.991517\pi$$
$$98$$ 0 0
$$99$$ 1314.00i 1.33396i
$$100$$ 0 0
$$101$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$102$$ 0 0
$$103$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 1710.00i 1.54497i 0.635032 + 0.772486i $$0.280987\pi$$
−0.635032 + 0.772486i $$0.719013\pi$$
$$108$$ 0 0
$$109$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −270.000 −0.224774 −0.112387 0.993665i $$-0.535850\pi$$
−0.112387 + 0.993665i $$0.535850\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 1007.00 0.756574
$$122$$ 0 0
$$123$$ − 5220.00i − 3.82660i
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$128$$ 0 0
$$129$$ −2900.00 −1.97931
$$130$$ 0 0
$$131$$ − 1242.00i − 0.828351i −0.910197 0.414176i $$-0.864070\pi$$
0.910197 0.414176i $$-0.135930\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 2250.00 1.40314 0.701571 0.712599i $$-0.252482\pi$$
0.701571 + 0.712599i $$0.252482\pi$$
$$138$$ 0 0
$$139$$ − 1474.00i − 0.899446i −0.893168 0.449723i $$-0.851523\pi$$
0.893168 0.449723i $$-0.148477\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 3430.00i 1.92450i
$$148$$ 0 0
$$149$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$150$$ 0 0
$$151$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$152$$ 0 0
$$153$$ −6570.00 −3.47159
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ − 970.000i − 0.466112i −0.972463 0.233056i $$-0.925127\pi$$
0.972463 0.233056i $$-0.0748726\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$168$$ 0 0
$$169$$ 2197.00 1.00000
$$170$$ 0 0
$$171$$ 7738.00i 3.46047i
$$172$$ 0 0
$$173$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 8460.00 3.59261
$$178$$ 0 0
$$179$$ − 3834.00i − 1.60093i −0.599379 0.800465i $$-0.704586\pi$$
0.599379 0.800465i $$-0.295414\pi$$
$$180$$ 0 0
$$181$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ − 1620.00i − 0.633509i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$192$$ 0 0
$$193$$ 2090.00 0.779490 0.389745 0.920923i $$-0.372563\pi$$
0.389745 + 0.920923i $$0.372563\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$198$$ 0 0
$$199$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$200$$ 0 0
$$201$$ 700.000 0.245643
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −1908.00 −0.631479
$$210$$ 0 0
$$211$$ 6118.00i 1.99612i 0.0622910 + 0.998058i $$0.480159\pi$$
−0.0622910 + 0.998058i $$0.519841\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 4300.00i 1.32679i
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$224$$ 0 0
$$225$$ −9125.00 −2.70370
$$226$$ 0 0
$$227$$ − 6570.00i − 1.92100i −0.278286 0.960498i $$-0.589766\pi$$
0.278286 0.960498i $$-0.410234\pi$$
$$228$$ 0 0
$$229$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −6030.00 −1.69544 −0.847722 0.530441i $$-0.822026\pi$$
−0.847722 + 0.530441i $$0.822026\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ 0 0
$$241$$ −1222.00 −0.326622 −0.163311 0.986575i $$-0.552217\pi$$
−0.163311 + 0.986575i $$0.552217\pi$$
$$242$$ 0 0
$$243$$ − 13870.0i − 3.66157i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 13500.0 3.43585
$$250$$ 0 0
$$251$$ 4302.00i 1.08183i 0.841077 + 0.540916i $$0.181922\pi$$
−0.841077 + 0.540916i $$0.818078\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ −3870.00 −0.939315 −0.469658 0.882849i $$-0.655623\pi$$
−0.469658 + 0.882849i $$0.655623\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ − 10260.0i − 2.35169i
$$268$$ 0 0
$$269$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$270$$ 0 0
$$271$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ − 2250.00i − 0.493382i
$$276$$ 0 0
$$277$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −9342.00 −1.98326 −0.991632 0.129099i $$-0.958791\pi$$
−0.991632 + 0.129099i $$0.958791\pi$$
$$282$$ 0 0
$$283$$ 8030.00i 1.68669i 0.537371 + 0.843346i $$0.319418\pi$$
−0.537371 + 0.843346i $$0.680582\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 3187.00 0.648687
$$290$$ 0 0
$$291$$ 19100.0i 3.84764i
$$292$$ 0 0
$$293$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 8280.00 1.61769
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 7990.00i 1.48539i 0.669632 + 0.742693i $$0.266452\pi$$
−0.669632 + 0.742693i $$0.733548\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$312$$ 0 0
$$313$$ −8390.00 −1.51511 −0.757557 0.652769i $$-0.773607\pi$$
−0.757557 + 0.652769i $$0.773607\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 17100.0 2.97330
$$322$$ 0 0
$$323$$ − 9540.00i − 1.64340i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ − 8242.00i − 1.36864i −0.729180 0.684322i $$-0.760098\pi$$
0.729180 0.684322i $$-0.239902\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ 11410.0 1.84434 0.922170 0.386786i $$-0.126415\pi$$
0.922170 + 0.386786i $$0.126415\pi$$
$$338$$ 0 0
$$339$$ 2700.00i 0.432578i
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 6030.00i 0.932874i 0.884554 + 0.466437i $$0.154463\pi$$
−0.884554 + 0.466437i $$0.845537\pi$$
$$348$$ 0 0
$$349$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 4770.00 0.719211 0.359605 0.933104i $$-0.382911\pi$$
0.359605 + 0.933104i $$0.382911\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$360$$ 0 0
$$361$$ −4377.00 −0.638140
$$362$$ 0 0
$$363$$ − 10070.0i − 1.45603i
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$368$$ 0 0
$$369$$ −38106.0 −5.37593
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ − 11666.0i − 1.58111i −0.612389 0.790557i $$-0.709791\pi$$
0.612389 0.790557i $$-0.290209\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 21170.0i 2.78070i
$$388$$ 0 0
$$389$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ −12420.0 −1.59416
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 7002.00 0.871978 0.435989 0.899952i $$-0.356399\pi$$
0.435989 + 0.899952i $$0.356399\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ 16346.0 1.97618 0.988090 0.153877i $$-0.0491758\pi$$
0.988090 + 0.153877i $$0.0491758\pi$$
$$410$$ 0 0
$$411$$ − 22500.0i − 2.70035i
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ −14740.0 −1.73099
$$418$$ 0 0
$$419$$ − 16794.0i − 1.95809i −0.203639 0.979046i $$-0.565277\pi$$
0.203639 0.979046i $$-0.434723\pi$$
$$420$$ 0 0
$$421$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 11250.0 1.28401
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$432$$ 0 0
$$433$$ −5510.00 −0.611533 −0.305766 0.952107i $$-0.598913\pi$$
−0.305766 + 0.952107i $$0.598913\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$440$$ 0 0
$$441$$ 25039.0 2.70370
$$442$$ 0 0
$$443$$ 18270.0i 1.95944i 0.200361 + 0.979722i $$0.435789\pi$$
−0.200361 + 0.979722i $$0.564211\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 17514.0 1.84084 0.920420 0.390932i $$-0.127847\pi$$
0.920420 + 0.390932i $$0.127847\pi$$
$$450$$ 0 0
$$451$$ − 9396.00i − 0.981021i
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −18070.0 −1.84963 −0.924813 0.380422i $$-0.875779\pi$$
−0.924813 + 0.380422i $$0.875779\pi$$
$$458$$ 0 0
$$459$$ 41400.0i 4.20999i
$$460$$ 0 0
$$461$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$462$$ 0 0
$$463$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 15030.0i 1.48931i 0.667452 + 0.744653i $$0.267385\pi$$
−0.667452 + 0.744653i $$0.732615\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −5220.00 −0.507433
$$474$$ 0 0
$$475$$ − 13250.0i − 1.27990i
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$488$$ 0 0
$$489$$ −9700.00 −0.897033
$$490$$ 0 0
$$491$$ 12222.0i 1.12336i 0.827354 + 0.561681i $$0.189845\pi$$
−0.827354 + 0.561681i $$0.810155\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 18214.0i 1.63401i 0.576631 + 0.817005i $$0.304367\pi$$
−0.576631 + 0.817005i $$0.695633\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ − 21970.0i − 1.92450i
$$508$$ 0 0
$$509$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 48760.0 4.19650
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 9162.00 0.770431 0.385215 0.922827i $$-0.374127\pi$$
0.385215 + 0.922827i $$0.374127\pi$$
$$522$$ 0 0
$$523$$ 4750.00i 0.397138i 0.980087 + 0.198569i $$0.0636293\pi$$
−0.980087 + 0.198569i $$0.936371\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ −12167.0 −1.00000
$$530$$ 0 0
$$531$$ − 61758.0i − 5.04721i
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ −38340.0 −3.08099
$$538$$ 0 0
$$539$$ 6174.00i 0.493382i
$$540$$ 0 0
$$541$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ − 21850.0i − 1.70793i −0.520329 0.853966i $$-0.674191\pi$$
0.520329 0.853966i $$-0.325809\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ −16200.0 −1.21919
$$562$$ 0 0
$$563$$ 23670.0i 1.77189i 0.463795 + 0.885943i $$0.346488\pi$$
−0.463795 + 0.885943i $$0.653512\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 2394.00 0.176383 0.0881913 0.996104i $$-0.471891\pi$$
0.0881913 + 0.996104i $$0.471891\pi$$
$$570$$ 0 0
$$571$$ 27038.0i 1.98162i 0.135261 + 0.990810i $$0.456813\pi$$
−0.135261 + 0.990810i $$0.543187\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ −19550.0 −1.41053 −0.705266 0.708943i $$-0.749173\pi$$
−0.705266 + 0.708943i $$0.749173\pi$$
$$578$$ 0 0
$$579$$ − 20900.0i − 1.50013i
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 10350.0i 0.727752i 0.931447 + 0.363876i $$0.118547\pi$$
−0.931447 + 0.363876i $$0.881453\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ −26190.0 −1.81365 −0.906825 0.421507i $$-0.861501\pi$$
−0.906825 + 0.421507i $$0.861501\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$600$$ 0 0
$$601$$ −14398.0 −0.977216 −0.488608 0.872503i $$-0.662495\pi$$
−0.488608 + 0.872503i $$0.662495\pi$$
$$602$$ 0 0
$$603$$ − 5110.00i − 0.345100i
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 28530.0 1.86155 0.930774 0.365596i $$-0.119135\pi$$
0.930774 + 0.365596i $$0.119135\pi$$
$$618$$ 0 0
$$619$$ − 30706.0i − 1.99383i −0.0785136 0.996913i $$-0.525017\pi$$
0.0785136 0.996913i $$-0.474983\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 15625.0 1.00000
$$626$$ 0 0
$$627$$ 19080.0i 1.21528i
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$632$$ 0 0
$$633$$ 61180.0 3.84153
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −6678.00 −0.411490 −0.205745 0.978606i $$-0.565962\pi$$
−0.205745 + 0.978606i $$0.565962\pi$$
$$642$$ 0 0
$$643$$ 28550.0i 1.75101i 0.483205 + 0.875507i $$0.339472\pi$$
−0.483205 + 0.875507i $$0.660528\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$648$$ 0 0
$$649$$ 15228.0 0.921034
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 31390.0 1.86399
$$658$$ 0 0
$$659$$ − 29754.0i − 1.75880i −0.476081 0.879402i $$-0.657943\pi$$
0.476081 0.879402i $$-0.342057\pi$$
$$660$$ 0 0
$$661$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ −19190.0 −1.09914 −0.549569 0.835448i $$-0.685208\pi$$
−0.549569 + 0.835448i $$0.685208\pi$$
$$674$$ 0 0
$$675$$ 57500.0i 3.27878i
$$676$$ 0 0
$$677$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −65700.0 −3.69696
$$682$$ 0 0
$$683$$ − 11970.0i − 0.670599i −0.942112 0.335300i $$-0.891162\pi$$
0.942112 0.335300i $$-0.108838\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 0 0
$$690$$ 0 0
$$691$$ − 1978.00i − 0.108895i −0.998517 0.0544477i $$-0.982660\pi$$
0.998517 0.0544477i $$-0.0173398\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 46980.0 2.55308
$$698$$ 0 0
$$699$$ 60300.0i 3.26288i
$$700$$ 0 0
$$701$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 12220.0i 0.628585i
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$728$$ 0 0
$$729$$ −67717.0 −3.44038
$$730$$ 0 0
$$731$$ − 26100.0i − 1.32058i
$$732$$ 0 0
$$733$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 1260.00 0.0629752
$$738$$ 0 0
$$739$$ − 36074.0i − 1.79567i −0.440327 0.897837i $$-0.645138\pi$$
0.440327 0.897837i $$-0.354862\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ − 98550.0i − 4.82698i
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$752$$ 0 0
$$753$$ 43020.0 2.08199
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −34182.0 −1.62825 −0.814124 0.580691i $$-0.802782\pi$$
−0.814124 + 0.580691i $$0.802782\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ 40106.0 1.88070 0.940351 0.340207i $$-0.110497\pi$$
0.940351 + 0.340207i $$0.110497\pi$$
$$770$$ 0 0
$$771$$ 38700.0i 1.80771i
$$772$$ 0 0
$$773$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ − 55332.0i − 2.54490i
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 6950.00i 0.314791i 0.987536 + 0.157396i $$0.0503098\pi$$
−0.987536 + 0.157396i $$0.949690\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ −74898.0 −3.30386
$$802$$ 0 0
$$803$$ 7740.00i 0.340148i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 14346.0 0.623459 0.311730 0.950171i $$-0.399092\pi$$
0.311730 + 0.950171i $$0.399092\pi$$
$$810$$ 0 0
$$811$$ 37582.0i 1.62723i 0.581405 + 0.813614i $$0.302503\pi$$
−0.581405 + 0.813614i $$0.697497\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ −30740.0 −1.31635
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$822$$ 0 0
$$823$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$824$$ 0 0
$$825$$ −22500.0 −0.949514
$$826$$ 0 0
$$827$$ − 23490.0i − 0.987699i −0.869547 0.493850i $$-0.835589\pi$$
0.869547 0.493850i $$-0.164411\pi$$
$$828$$ 0 0
$$829$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ −30870.0 −1.28401
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$840$$ 0 0
$$841$$ 24389.0 1.00000
$$842$$ 0 0
$$843$$ 93420.0i 3.81679i
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 80300.0 3.24604
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −18630.0 −0.742577 −0.371289 0.928518i $$-0.621084\pi$$
−0.371289 + 0.928518i $$0.621084\pi$$
$$858$$ 0 0
$$859$$ 45646.0i 1.81306i 0.422138 + 0.906532i $$0.361280\pi$$
−0.422138 + 0.906532i $$0.638720\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ − 31870.0i − 1.24840i
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 0 0
$$872$$ 0 0
$$873$$ 139430. 5.40549
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −41742.0 −1.59628 −0.798141 0.602471i $$-0.794183\pi$$
−0.798141 + 0.602471i $$0.794183\pi$$
$$882$$ 0 0
$$883$$ − 5290.00i − 0.201611i −0.994906 0.100806i $$-0.967858\pi$$
0.994906 0.100806i $$-0.0321420\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ − 47322.0i − 1.77929i
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ 0 0
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ − 26210.0i − 0.959525i −0.877399 0.479762i $$-0.840723\pi$$
0.877399 0.479762i $$-0.159277\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$912$$ 0 0
$$913$$ 24300.0 0.880846
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$920$$ 0 0
$$921$$ 79900.0 2.85863
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ −6966.00 −0.246014 −0.123007 0.992406i $$-0.539254\pi$$
−0.123007 + 0.992406i $$0.539254\pi$$
$$930$$ 0 0
$$931$$ 36358.0i 1.27990i
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ −56270.0 −1.96186 −0.980929 0.194367i $$-0.937735\pi$$
−0.980929 + 0.194367i $$0.937735\pi$$
$$938$$ 0 0
$$939$$ 83900.0i 2.91584i
$$940$$ 0 0
$$941$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 58230.0i 1.99812i 0.0433353 + 0.999061i $$0.486202\pi$$
−0.0433353 + 0.999061i $$0.513798\pi$$
$$948$$ 0 0
$$949$$ 0 0
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ −45990.0 −1.56323 −0.781617 0.623759i $$-0.785605\pi$$
−0.781617 + 0.623759i $$0.785605\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ −29791.0 −1.00000
$$962$$ 0 0
$$963$$ − 124830.i − 4.17714i
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$968$$ 0 0
$$969$$ −95400.0 −3.16273
$$970$$ 0 0
$$971$$ − 162.000i − 0.00535410i −0.999996 0.00267705i $$-0.999148\pi$$
0.999996 0.00267705i $$-0.000852132\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 17370.0 0.568798 0.284399 0.958706i $$-0.408206\pi$$
0.284399 + 0.958706i $$0.408206\pi$$
$$978$$ 0 0
$$979$$ − 18468.0i − 0.602901i
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$992$$ 0 0
$$993$$ −82420.0 −2.63396
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 64.4.b.a.33.1 2
3.2 odd 2 576.4.d.a.289.2 2
4.3 odd 2 inner 64.4.b.a.33.2 yes 2
8.3 odd 2 CM 64.4.b.a.33.1 2
8.5 even 2 inner 64.4.b.a.33.2 yes 2
12.11 even 2 576.4.d.a.289.1 2
16.3 odd 4 256.4.a.a.1.1 1
16.5 even 4 256.4.a.a.1.1 1
16.11 odd 4 256.4.a.h.1.1 1
16.13 even 4 256.4.a.h.1.1 1
24.5 odd 2 576.4.d.a.289.1 2
24.11 even 2 576.4.d.a.289.2 2
48.5 odd 4 2304.4.a.h.1.1 1
48.11 even 4 2304.4.a.i.1.1 1
48.29 odd 4 2304.4.a.i.1.1 1
48.35 even 4 2304.4.a.h.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
64.4.b.a.33.1 2 1.1 even 1 trivial
64.4.b.a.33.1 2 8.3 odd 2 CM
64.4.b.a.33.2 yes 2 4.3 odd 2 inner
64.4.b.a.33.2 yes 2 8.5 even 2 inner
256.4.a.a.1.1 1 16.3 odd 4
256.4.a.a.1.1 1 16.5 even 4
256.4.a.h.1.1 1 16.11 odd 4
256.4.a.h.1.1 1 16.13 even 4
576.4.d.a.289.1 2 12.11 even 2
576.4.d.a.289.1 2 24.5 odd 2
576.4.d.a.289.2 2 3.2 odd 2
576.4.d.a.289.2 2 24.11 even 2
2304.4.a.h.1.1 1 48.5 odd 4
2304.4.a.h.1.1 1 48.35 even 4
2304.4.a.i.1.1 1 48.11 even 4
2304.4.a.i.1.1 1 48.29 odd 4