Defining parameters
Level: | \( N \) | \(=\) | \( 64 = 2^{6} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 64.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(64, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 30 | 6 | 24 |
Cusp forms | 18 | 6 | 12 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(64, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
64.4.b.a | $2$ | $3.776$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-2}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+5\beta q^{3}-73 q^{9}+9\beta q^{11}+90 q^{17}+\cdots\) |
64.4.b.b | $4$ | $3.776$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_1 q^{3}-\beta_{2} q^{5}+\beta_{3} q^{7}+23 q^{9}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(64, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(64, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 2}\)