Defining parameters
Level: | \( N \) | \(=\) | \( 64 = 2^{6} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 64.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(64))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 30 | 7 | 23 |
Cusp forms | 18 | 5 | 13 |
Eisenstein series | 12 | 2 | 10 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(+\) | \(3\) |
\(-\) | \(2\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(64))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
64.4.a.a | $1$ | $3.776$ | \(\Q\) | None | \(0\) | \(-8\) | \(10\) | \(16\) | $+$ | \(q-8q^{3}+10q^{5}+2^{4}q^{7}+37q^{9}+40q^{11}+\cdots\) | |
64.4.a.b | $1$ | $3.776$ | \(\Q\) | None | \(0\) | \(-4\) | \(2\) | \(-24\) | $-$ | \(q-4q^{3}+2q^{5}-24q^{7}-11q^{9}-44q^{11}+\cdots\) | |
64.4.a.c | $1$ | $3.776$ | \(\Q\) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(-22\) | \(0\) | $-$ | \(q-22q^{5}-3^{3}q^{9}+18q^{13}-94q^{17}+\cdots\) | |
64.4.a.d | $1$ | $3.776$ | \(\Q\) | None | \(0\) | \(4\) | \(2\) | \(24\) | $+$ | \(q+4q^{3}+2q^{5}+24q^{7}-11q^{9}+44q^{11}+\cdots\) | |
64.4.a.e | $1$ | $3.776$ | \(\Q\) | None | \(0\) | \(8\) | \(10\) | \(-16\) | $+$ | \(q+8q^{3}+10q^{5}-2^{4}q^{7}+37q^{9}-40q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(64))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(64)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 2}\)