Defining parameters
Level: | \( N \) | = | \( 64 = 2^{6} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(1024\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(64))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 420 | 227 | 193 |
Cusp forms | 348 | 205 | 143 |
Eisenstein series | 72 | 22 | 50 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(64))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(64))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(64)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 1}\)