Properties

Label 64.4
Level 64
Weight 4
Dimension 205
Nonzero newspaces 4
Newform subspaces 9
Sturm bound 1024
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 64 = 2^{6} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 9 \)
Sturm bound: \(1024\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(64))\).

Total New Old
Modular forms 420 227 193
Cusp forms 348 205 143
Eisenstein series 72 22 50

Trace form

\( 205 q - 8 q^{2} - 6 q^{3} - 8 q^{4} - 8 q^{5} - 8 q^{6} - 8 q^{7} - 8 q^{8} - 37 q^{9} - 8 q^{10} - 26 q^{11} - 8 q^{12} + 64 q^{13} - 8 q^{14} + 116 q^{15} - 8 q^{16} + 90 q^{17} - 8 q^{18} + 18 q^{19}+ \cdots - 4750 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(64))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
64.4.a \(\chi_{64}(1, \cdot)\) 64.4.a.a 1 1
64.4.a.b 1
64.4.a.c 1
64.4.a.d 1
64.4.a.e 1
64.4.b \(\chi_{64}(33, \cdot)\) 64.4.b.a 2 1
64.4.b.b 4
64.4.e \(\chi_{64}(17, \cdot)\) 64.4.e.a 10 2
64.4.g \(\chi_{64}(9, \cdot)\) None 0 4
64.4.i \(\chi_{64}(5, \cdot)\) 64.4.i.a 184 8

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(64))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(64)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 1}\)