[N,k,chi] = [64,22,Mod(1,64)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(64, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("64.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
\( p \) |
Sign
|
\(2\) |
\(-1\) |
This newform does not admit any (nontrivial) inner twists.
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3} - 59316 \)
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(64))\).
$p$ |
$F_p(T)$ |
$2$ |
\( T \)
|
$3$ |
\( T - 59316 \)
|
$5$ |
\( T + 4975350 \)
|
$7$ |
\( T + 1427425832 \)
|
$11$ |
\( T + 106767894948 \)
|
$13$ |
\( T - 150150565474 \)
|
$17$ |
\( T + 11203980739758 \)
|
$19$ |
\( T - 11024055955460 \)
|
$23$ |
\( T + 129502845739896 \)
|
$29$ |
\( T + 2382370826608110 \)
|
$31$ |
\( T - 878552957377888 \)
|
$37$ |
\( T + 31\!\cdots\!22 \)
|
$41$ |
\( T + 24\!\cdots\!38 \)
|
$43$ |
\( T + 13\!\cdots\!84 \)
|
$47$ |
\( T - 19\!\cdots\!08 \)
|
$53$ |
\( T - 59\!\cdots\!14 \)
|
$59$ |
\( T + 29\!\cdots\!80 \)
|
$61$ |
\( T + 79\!\cdots\!22 \)
|
$67$ |
\( T - 48\!\cdots\!52 \)
|
$71$ |
\( T + 88\!\cdots\!32 \)
|
$73$ |
\( T - 36\!\cdots\!66 \)
|
$79$ |
\( T + 33\!\cdots\!20 \)
|
$83$ |
\( T - 20\!\cdots\!16 \)
|
$89$ |
\( T + 41\!\cdots\!10 \)
|
$97$ |
\( T + 72\!\cdots\!98 \)
|
show more
|
show less
|