# Properties

 Label 64.20.a.k Level $64$ Weight $20$ Character orbit 64.a Self dual yes Analytic conductor $146.443$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$64 = 2^{6}$$ Weight: $$k$$ $$=$$ $$20$$ Character orbit: $$[\chi]$$ $$=$$ 64.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$146.442685796$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{1453})$$ Defining polynomial: $$x^{2} - x - 363$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2^{7}\cdot 3\cdot 5$$ Twist minimal: no (minimal twist has level 8) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 960\sqrt{1453}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 13956 - \beta ) q^{3} + ( -613310 + 44 \beta ) q^{5} + ( 44255256 - 3190 \beta ) q^{7} + ( 371593269 - 27912 \beta ) q^{9} +O(q^{10})$$ $$q + ( 13956 - \beta ) q^{3} + ( -613310 + 44 \beta ) q^{5} + ( 44255256 - 3190 \beta ) q^{7} + ( 371593269 - 27912 \beta ) q^{9} + ( 3581893804 - 223467 \beta ) q^{11} + ( 5063461802 + 71660 \beta ) q^{13} + ( -67479085560 + 1227374 \beta ) q^{15} + ( -36022539470 - 17338504 \beta ) q^{17} + ( 1560240236116 - 26137813 \beta ) q^{19} + ( 4889306864736 - 88774896 \beta ) q^{21} + ( -7379603545144 - 184291330 \beta ) q^{23} + ( -16104868999225 - 53971280 \beta ) q^{25} + ( 26341969566312 + 401128326 \beta ) q^{27} + ( 15124769622522 - 893092484 \beta ) q^{29} + ( -61694781388960 + 3864337064 \beta ) q^{31} + ( 349230172930224 - 6700599256 \beta ) q^{33} + ( -215096133585360 + 3903690164 \beta ) q^{35} + ( -1007696585087262 - 3072429508 \beta ) q^{37} + ( -25293143859288 - 4063374842 \beta ) q^{39} + ( 1270392479752122 + 47315480368 \beta ) q^{41} + ( 2816827546694732 + 16432445197 \beta ) q^{43} + ( -1872469405064790 + 33468812556 \beta ) q^{45} + ( -10974169793565168 - 13905445988 \beta ) q^{47} + ( 4186293331532393 - 282348533280 \beta ) q^{49} + ( 22714996600295880 - 205953622354 \beta ) q^{51} + ( 4709062533452338 - 810595524548 \beta ) q^{53} + ( -15363426861001640 + 294657873146 \beta ) q^{55} + ( 56775460828777296 - 1925019554344 \beta ) q^{57} + ( -49271224795203812 + 1148874921753 \beta ) q^{59} + ( -5146072688919910 - 3405518362868 \beta ) q^{61} + ( 135676101698415864 - 2420635233582 \beta ) q^{63} + ( 1116716180007380 + 178842524688 \beta ) q^{65} + ( -37876814001992252 - 6468769570097 \beta ) q^{67} + ( 143791971698754336 + 4807633743664 \beta ) q^{69} + ( 8703526283356888 + 4032598137882 \beta ) q^{71} + ( -428754127529916134 - 10723507910184 \beta ) q^{73} + ( -152487431068640100 + 15351645815545 \beta ) q^{75} + ( 1113097256235937824 - 21315830527312 \beta ) q^{77} + ( -113145960722427536 + 8826033368644 \beta ) q^{79} + ( -601404854883860151 + 11697219418248 \beta ) q^{81} + ( -383757850730492524 + 1875501918907 \beta ) q^{83} + ( -999487011407779100 + 9048886151560 \beta ) q^{85} + ( 1407007855170560232 - 27588768329226 \beta ) q^{87} + ( 3046272947217587274 - 7105196196264 \beta ) q^{89} + ( -82023827196188688 - 12981111503420 \beta ) q^{91} + ( -6035687393543352960 + 115625469454144 \beta ) q^{93} + ( -2496943855328169560 + 84681152480134 \beta ) q^{95} + ( 774074124761173538 + 186089076998104 \beta ) q^{97} + ( 9683429760739864476 - 183016652900871 \beta ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 27912q^{3} - 1226620q^{5} + 88510512q^{7} + 743186538q^{9} + O(q^{10})$$ $$2q + 27912q^{3} - 1226620q^{5} + 88510512q^{7} + 743186538q^{9} + 7163787608q^{11} + 10126923604q^{13} - 134958171120q^{15} - 72045078940q^{17} + 3120480472232q^{19} + 9778613729472q^{21} - 14759207090288q^{23} - 32209737998450q^{25} + 52683939132624q^{27} + 30249539245044q^{29} - 123389562777920q^{31} + 698460345860448q^{33} - 430192267170720q^{35} - 2015393170174524q^{37} - 50586287718576q^{39} + 2540784959504244q^{41} + 5633655093389464q^{43} - 3744938810129580q^{45} - 21948339587130336q^{47} + 8372586663064786q^{49} + 45429993200591760q^{51} + 9418125066904676q^{53} - 30726853722003280q^{55} + 113550921657554592q^{57} - 98542449590407624q^{59} - 10292145377839820q^{61} + 271352203396831728q^{63} + 2233432360014760q^{65} - 75753628003984504q^{67} + 287583943397508672q^{69} + 17407052566713776q^{71} - 857508255059832268q^{73} - 304974862137280200q^{75} + 2226194512471875648q^{77} - 226291921444855072q^{79} - 1202809709767720302q^{81} - 767515701460985048q^{83} - 1998974022815558200q^{85} + 2814015710341120464q^{87} + 6092545894435174548q^{89} - 164047654392377376q^{91} - 12071374787086705920q^{93} - 4993887710656339120q^{95} + 1548148249522347076q^{97} + 19366859521479728952q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 19.5591 −18.5591
0 −22637.5 0 996804. 0 −7.24780e7 0 −6.49805e8 0
1.2 0 50549.5 0 −2.22342e6 0 1.60989e8 0 1.39299e9 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 64.20.a.k 2
4.b odd 2 1 64.20.a.j 2
8.b even 2 1 8.20.a.a 2
8.d odd 2 1 16.20.a.e 2
24.h odd 2 1 72.20.a.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.20.a.a 2 8.b even 2 1
16.20.a.e 2 8.d odd 2 1
64.20.a.j 2 4.b odd 2 1
64.20.a.k 2 1.a even 1 1 trivial
72.20.a.a 2 24.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}^{2} - 27912 T_{3} - 1144314864$$ acting on $$S_{20}^{\mathrm{new}}(\Gamma_0(64))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$-1144314864 - 27912 T + T^{2}$$
$5$ $$-2216319016700 + 1226620 T + T^{2}$$
$7$ $$-11668133149654464 - 88510512 T + T^{2}$$
$11$ $$-54040584096044956784 - 7163787608 T + T^{2}$$
$13$ $$18762236610718207204 - 10126923604 T + T^{2}$$
$17$ $$-$$$$40\!\cdots\!00$$$$+ 72045078940 T + T^{2}$$
$19$ $$15\!\cdots\!56$$$$- 3120480472232 T + T^{2}$$
$23$ $$89\!\cdots\!36$$$$+ 14759207090288 T + T^{2}$$
$29$ $$-$$$$83\!\cdots\!16$$$$- 30249539245044 T + T^{2}$$
$31$ $$-$$$$16\!\cdots\!00$$$$+ 123389562777920 T + T^{2}$$
$37$ $$10\!\cdots\!44$$$$+ 2015393170174524 T + T^{2}$$
$41$ $$-$$$$13\!\cdots\!16$$$$- 2540784959504244 T + T^{2}$$
$43$ $$75\!\cdots\!24$$$$- 5633655093389464 T + T^{2}$$
$47$ $$12\!\cdots\!24$$$$+ 21948339587130336 T + T^{2}$$
$53$ $$-$$$$85\!\cdots\!56$$$$- 9418125066904676 T + T^{2}$$
$59$ $$66\!\cdots\!44$$$$+ 98542449590407624 T + T^{2}$$
$61$ $$-$$$$15\!\cdots\!00$$$$+ 10292145377839820 T + T^{2}$$
$67$ $$-$$$$54\!\cdots\!96$$$$+ 75753628003984504 T + T^{2}$$
$71$ $$-$$$$21\!\cdots\!56$$$$- 17407052566713776 T + T^{2}$$
$73$ $$29\!\cdots\!56$$$$+ 857508255059832268 T + T^{2}$$
$79$ $$-$$$$91\!\cdots\!04$$$$+ 226291921444855072 T + T^{2}$$
$83$ $$14\!\cdots\!76$$$$+ 767515701460985048 T + T^{2}$$
$89$ $$92\!\cdots\!76$$$$- 6092545894435174548 T + T^{2}$$
$97$ $$-$$$$45\!\cdots\!56$$$$- 1548148249522347076 T + T^{2}$$