Properties

Label 64.20.a.j
Level $64$
Weight $20$
Character orbit 64.a
Self dual yes
Analytic conductor $146.443$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 20 \)
Character orbit: \([\chi]\) \(=\) 64.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(146.442685796\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1453}) \)
Defining polynomial: \(x^{2} - x - 363\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{7}\cdot 3\cdot 5 \)
Twist minimal: no (minimal twist has level 8)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 960\sqrt{1453}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -13956 - \beta ) q^{3} + ( -613310 - 44 \beta ) q^{5} + ( -44255256 - 3190 \beta ) q^{7} + ( 371593269 + 27912 \beta ) q^{9} +O(q^{10})\) \( q + ( -13956 - \beta ) q^{3} + ( -613310 - 44 \beta ) q^{5} + ( -44255256 - 3190 \beta ) q^{7} + ( 371593269 + 27912 \beta ) q^{9} + ( -3581893804 - 223467 \beta ) q^{11} + ( 5063461802 - 71660 \beta ) q^{13} + ( 67479085560 + 1227374 \beta ) q^{15} + ( -36022539470 + 17338504 \beta ) q^{17} + ( -1560240236116 - 26137813 \beta ) q^{19} + ( 4889306864736 + 88774896 \beta ) q^{21} + ( 7379603545144 - 184291330 \beta ) q^{23} + ( -16104868999225 + 53971280 \beta ) q^{25} + ( -26341969566312 + 401128326 \beta ) q^{27} + ( 15124769622522 + 893092484 \beta ) q^{29} + ( 61694781388960 + 3864337064 \beta ) q^{31} + ( 349230172930224 + 6700599256 \beta ) q^{33} + ( 215096133585360 + 3903690164 \beta ) q^{35} + ( -1007696585087262 + 3072429508 \beta ) q^{37} + ( 25293143859288 - 4063374842 \beta ) q^{39} + ( 1270392479752122 - 47315480368 \beta ) q^{41} + ( -2816827546694732 + 16432445197 \beta ) q^{43} + ( -1872469405064790 - 33468812556 \beta ) q^{45} + ( 10974169793565168 - 13905445988 \beta ) q^{47} + ( 4186293331532393 + 282348533280 \beta ) q^{49} + ( -22714996600295880 - 205953622354 \beta ) q^{51} + ( 4709062533452338 + 810595524548 \beta ) q^{53} + ( 15363426861001640 + 294657873146 \beta ) q^{55} + ( 56775460828777296 + 1925019554344 \beta ) q^{57} + ( 49271224795203812 + 1148874921753 \beta ) q^{59} + ( -5146072688919910 + 3405518362868 \beta ) q^{61} + ( -135676101698415864 - 2420635233582 \beta ) q^{63} + ( 1116716180007380 - 178842524688 \beta ) q^{65} + ( 37876814001992252 - 6468769570097 \beta ) q^{67} + ( 143791971698754336 - 4807633743664 \beta ) q^{69} + ( -8703526283356888 + 4032598137882 \beta ) q^{71} + ( -428754127529916134 + 10723507910184 \beta ) q^{73} + ( 152487431068640100 + 15351645815545 \beta ) q^{75} + ( 1113097256235937824 + 21315830527312 \beta ) q^{77} + ( 113145960722427536 + 8826033368644 \beta ) q^{79} + ( -601404854883860151 - 11697219418248 \beta ) q^{81} + ( 383757850730492524 + 1875501918907 \beta ) q^{83} + ( -999487011407779100 - 9048886151560 \beta ) q^{85} + ( -1407007855170560232 - 27588768329226 \beta ) q^{87} + ( 3046272947217587274 + 7105196196264 \beta ) q^{89} + ( 82023827196188688 - 12981111503420 \beta ) q^{91} + ( -6035687393543352960 - 115625469454144 \beta ) q^{93} + ( 2496943855328169560 + 84681152480134 \beta ) q^{95} + ( 774074124761173538 - 186089076998104 \beta ) q^{97} + ( -9683429760739864476 - 183016652900871 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 27912q^{3} - 1226620q^{5} - 88510512q^{7} + 743186538q^{9} + O(q^{10}) \) \( 2q - 27912q^{3} - 1226620q^{5} - 88510512q^{7} + 743186538q^{9} - 7163787608q^{11} + 10126923604q^{13} + 134958171120q^{15} - 72045078940q^{17} - 3120480472232q^{19} + 9778613729472q^{21} + 14759207090288q^{23} - 32209737998450q^{25} - 52683939132624q^{27} + 30249539245044q^{29} + 123389562777920q^{31} + 698460345860448q^{33} + 430192267170720q^{35} - 2015393170174524q^{37} + 50586287718576q^{39} + 2540784959504244q^{41} - 5633655093389464q^{43} - 3744938810129580q^{45} + 21948339587130336q^{47} + 8372586663064786q^{49} - 45429993200591760q^{51} + 9418125066904676q^{53} + 30726853722003280q^{55} + 113550921657554592q^{57} + 98542449590407624q^{59} - 10292145377839820q^{61} - 271352203396831728q^{63} + 2233432360014760q^{65} + 75753628003984504q^{67} + 287583943397508672q^{69} - 17407052566713776q^{71} - 857508255059832268q^{73} + 304974862137280200q^{75} + 2226194512471875648q^{77} + 226291921444855072q^{79} - 1202809709767720302q^{81} + 767515701460985048q^{83} - 1998974022815558200q^{85} - 2814015710341120464q^{87} + 6092545894435174548q^{89} + 164047654392377376q^{91} - 12071374787086705920q^{93} + 4993887710656339120q^{95} + 1548148249522347076q^{97} - 19366859521479728952q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
19.5591
−18.5591
0 −50549.5 0 −2.22342e6 0 −1.60989e8 0 1.39299e9 0
1.2 0 22637.5 0 996804. 0 7.24780e7 0 −6.49805e8 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 64.20.a.j 2
4.b odd 2 1 64.20.a.k 2
8.b even 2 1 16.20.a.e 2
8.d odd 2 1 8.20.a.a 2
24.f even 2 1 72.20.a.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.20.a.a 2 8.d odd 2 1
16.20.a.e 2 8.b even 2 1
64.20.a.j 2 1.a even 1 1 trivial
64.20.a.k 2 4.b odd 2 1
72.20.a.a 2 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 27912 T_{3} - 1144314864 \) acting on \(S_{20}^{\mathrm{new}}(\Gamma_0(64))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + 27912 T + 1180208070 T^{2} + 32441042066904 T^{3} + 1350851717672992089 T^{4} \)
$5$ \( 1 + 1226620 T + 35930653639550 T^{2} + 23395919799804687500 T^{3} + \)\(36\!\cdots\!25\)\( T^{4} \)
$7$ \( 1 + 88510512 T + 11129657221091822 T^{2} + \)\(10\!\cdots\!16\)\( T^{3} + \)\(12\!\cdots\!49\)\( T^{4} \)
$11$ \( 1 + 7163787608 T + 68277596800784135798 T^{2} + \)\(43\!\cdots\!28\)\( T^{3} + \)\(37\!\cdots\!81\)\( T^{4} \)
$13$ \( 1 - 10126923604 T + \)\(29\!\cdots\!58\)\( T^{2} - \)\(14\!\cdots\!08\)\( T^{3} + \)\(21\!\cdots\!29\)\( T^{4} \)
$17$ \( 1 + 72045078940 T + \)\(76\!\cdots\!06\)\( T^{2} + \)\(17\!\cdots\!20\)\( T^{3} + \)\(57\!\cdots\!09\)\( T^{4} \)
$19$ \( 1 + 3120480472232 T + \)\(54\!\cdots\!14\)\( T^{2} + \)\(61\!\cdots\!28\)\( T^{3} + \)\(39\!\cdots\!41\)\( T^{4} \)
$23$ \( 1 - 14759207090288 T + \)\(15\!\cdots\!10\)\( T^{2} - \)\(11\!\cdots\!56\)\( T^{3} + \)\(55\!\cdots\!69\)\( T^{4} \)
$29$ \( 1 - 30249539245044 T + \)\(11\!\cdots\!22\)\( T^{2} - \)\(18\!\cdots\!36\)\( T^{3} + \)\(37\!\cdots\!61\)\( T^{4} \)
$31$ \( 1 - 123389562777920 T + \)\(27\!\cdots\!42\)\( T^{2} - \)\(26\!\cdots\!20\)\( T^{3} + \)\(46\!\cdots\!41\)\( T^{4} \)
$37$ \( 1 + 2015393170174524 T + \)\(22\!\cdots\!90\)\( T^{2} + \)\(12\!\cdots\!52\)\( T^{3} + \)\(39\!\cdots\!29\)\( T^{4} \)
$41$ \( 1 - 2540784959504244 T + \)\(74\!\cdots\!06\)\( T^{2} - \)\(11\!\cdots\!84\)\( T^{3} + \)\(19\!\cdots\!21\)\( T^{4} \)
$43$ \( 1 + 5633655093389464 T + \)\(29\!\cdots\!38\)\( T^{2} + \)\(61\!\cdots\!48\)\( T^{3} + \)\(11\!\cdots\!49\)\( T^{4} \)
$47$ \( 1 - 21948339587130336 T + \)\(23\!\cdots\!90\)\( T^{2} - \)\(12\!\cdots\!88\)\( T^{3} + \)\(34\!\cdots\!89\)\( T^{4} \)
$53$ \( 1 - 9418125066904676 T + \)\(29\!\cdots\!78\)\( T^{2} - \)\(54\!\cdots\!92\)\( T^{3} + \)\(33\!\cdots\!89\)\( T^{4} \)
$59$ \( 1 - 98542449590407624 T + \)\(95\!\cdots\!22\)\( T^{2} - \)\(43\!\cdots\!36\)\( T^{3} + \)\(19\!\cdots\!21\)\( T^{4} \)
$61$ \( 1 + 10292145377839820 T + \)\(11\!\cdots\!82\)\( T^{2} + \)\(85\!\cdots\!20\)\( T^{3} + \)\(69\!\cdots\!81\)\( T^{4} \)
$67$ \( 1 - 75753628003984504 T + \)\(44\!\cdots\!10\)\( T^{2} - \)\(37\!\cdots\!12\)\( T^{3} + \)\(24\!\cdots\!09\)\( T^{4} \)
$71$ \( 1 + 17407052566713776 T + \)\(27\!\cdots\!06\)\( T^{2} + \)\(25\!\cdots\!56\)\( T^{3} + \)\(22\!\cdots\!61\)\( T^{4} \)
$73$ \( 1 + 857508255059832268 T + \)\(53\!\cdots\!30\)\( T^{2} + \)\(21\!\cdots\!16\)\( T^{3} + \)\(64\!\cdots\!69\)\( T^{4} \)
$79$ \( 1 - 226291921444855072 T + \)\(21\!\cdots\!34\)\( T^{2} - \)\(25\!\cdots\!68\)\( T^{3} + \)\(12\!\cdots\!61\)\( T^{4} \)
$83$ \( 1 - 767515701460985048 T + \)\(59\!\cdots\!70\)\( T^{2} - \)\(22\!\cdots\!56\)\( T^{3} + \)\(84\!\cdots\!09\)\( T^{4} \)
$89$ \( 1 - 6092545894435174548 T + \)\(31\!\cdots\!94\)\( T^{2} - \)\(66\!\cdots\!32\)\( T^{3} + \)\(11\!\cdots\!81\)\( T^{4} \)
$97$ \( 1 - 1548148249522347076 T + \)\(66\!\cdots\!10\)\( T^{2} - \)\(86\!\cdots\!08\)\( T^{3} + \)\(31\!\cdots\!89\)\( T^{4} \)
show more
show less