Properties

Label 64.2.i.a.21.6
Level $64$
Weight $2$
Character 64.21
Analytic conductor $0.511$
Analytic rank $0$
Dimension $56$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [64,2,Mod(5,64)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(64, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("64.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 64.i (of order \(16\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.511042572936\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 21.6
Character \(\chi\) \(=\) 64.21
Dual form 64.2.i.a.61.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19357 + 0.758552i) q^{2} +(-0.599600 - 3.01439i) q^{3} +(0.849199 + 1.81076i) q^{4} +(-1.78465 + 1.19247i) q^{5} +(1.57091 - 4.05270i) q^{6} +(1.99271 + 0.825409i) q^{7} +(-0.359981 + 2.80543i) q^{8} +(-5.95540 + 2.46681i) q^{9} +O(q^{10})\) \(q+(1.19357 + 0.758552i) q^{2} +(-0.599600 - 3.01439i) q^{3} +(0.849199 + 1.81076i) q^{4} +(-1.78465 + 1.19247i) q^{5} +(1.57091 - 4.05270i) q^{6} +(1.99271 + 0.825409i) q^{7} +(-0.359981 + 2.80543i) q^{8} +(-5.95540 + 2.46681i) q^{9} +(-3.03465 + 0.0695368i) q^{10} +(-3.15038 - 0.626650i) q^{11} +(4.94917 - 3.64555i) q^{12} +(0.0943077 + 0.0630144i) q^{13} +(1.75232 + 2.49676i) q^{14} +(4.66465 + 4.66465i) q^{15} +(-2.55772 + 3.07540i) q^{16} +(2.42319 - 2.42319i) q^{17} +(-8.97937 - 1.57318i) q^{18} +(1.93596 - 2.89737i) q^{19} +(-3.67480 - 2.21894i) q^{20} +(1.29328 - 6.50174i) q^{21} +(-3.28485 - 3.13768i) q^{22} +(-1.33543 - 3.22402i) q^{23} +(8.67250 - 0.597008i) q^{24} +(-0.150405 + 0.363110i) q^{25} +(0.0647628 + 0.146749i) q^{26} +(5.88424 + 8.80639i) q^{27} +(0.197591 + 4.30927i) q^{28} +(2.01879 - 0.401561i) q^{29} +(2.02919 + 9.10594i) q^{30} -4.16617i q^{31} +(-5.38566 + 1.73052i) q^{32} +9.87224i q^{33} +(4.73035 - 1.05412i) q^{34} +(-4.54058 + 0.903177i) q^{35} +(-9.52413 - 8.68901i) q^{36} +(5.48499 + 8.20886i) q^{37} +(4.50850 - 1.98968i) q^{38} +(0.133403 - 0.322064i) q^{39} +(-2.70294 - 5.43598i) q^{40} +(0.347569 + 0.839106i) q^{41} +(6.47551 - 6.77923i) q^{42} +(0.925855 - 4.65459i) q^{43} +(-1.54059 - 6.23675i) q^{44} +(7.68675 - 11.5040i) q^{45} +(0.851658 - 4.86108i) q^{46} +(-8.31575 + 8.31575i) q^{47} +(10.8041 + 5.86597i) q^{48} +(-1.66014 - 1.66014i) q^{49} +(-0.454956 + 0.319306i) q^{50} +(-8.75739 - 5.85150i) q^{51} +(-0.0340181 + 0.224281i) q^{52} +(0.565279 + 0.112441i) q^{53} +(0.343130 + 14.9745i) q^{54} +(6.36961 - 2.63838i) q^{55} +(-3.03296 + 5.29328i) q^{56} +(-9.89462 - 4.09848i) q^{57} +(2.71416 + 1.05206i) q^{58} +(-0.649771 + 0.434163i) q^{59} +(-4.48535 + 12.4078i) q^{60} +(-0.528753 - 2.65822i) q^{61} +(3.16025 - 4.97260i) q^{62} -13.9035 q^{63} +(-7.74083 - 2.01980i) q^{64} -0.243449 q^{65} +(-7.48860 + 11.7832i) q^{66} +(0.971210 + 4.88260i) q^{67} +(6.44559 + 2.33005i) q^{68} +(-8.91774 + 5.95864i) q^{69} +(-6.10459 - 2.36626i) q^{70} +(9.38522 + 3.88748i) q^{71} +(-4.77662 - 17.5955i) q^{72} +(12.6303 - 5.23165i) q^{73} +(0.319848 + 13.9585i) q^{74} +(1.18474 + 0.235659i) q^{75} +(6.89047 + 1.04512i) q^{76} +(-5.76057 - 3.84909i) q^{77} +(0.403528 - 0.283211i) q^{78} +(-3.50532 - 3.50532i) q^{79} +(0.897337 - 8.53852i) q^{80} +(9.34353 - 9.34353i) q^{81} +(-0.221658 + 1.26518i) q^{82} +(-8.25513 + 12.3547i) q^{83} +(12.8713 - 3.17945i) q^{84} +(-1.43498 + 7.21413i) q^{85} +(4.63581 - 4.85325i) q^{86} +(-2.42093 - 5.84464i) q^{87} +(2.89210 - 8.61259i) q^{88} +(4.98881 - 12.0441i) q^{89} +(17.9010 - 7.90003i) q^{90} +(0.135916 + 0.203412i) q^{91} +(4.70389 - 5.15599i) q^{92} +(-12.5585 + 2.49803i) q^{93} +(-16.2333 + 3.61747i) q^{94} +7.47938i q^{95} +(8.44572 + 15.1969i) q^{96} -4.06140i q^{97} +(-0.722186 - 3.24079i) q^{98} +(20.3076 - 4.03944i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{2} - 8 q^{3} - 8 q^{4} - 8 q^{5} - 8 q^{6} - 8 q^{7} - 8 q^{8} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 56 q - 8 q^{2} - 8 q^{3} - 8 q^{4} - 8 q^{5} - 8 q^{6} - 8 q^{7} - 8 q^{8} - 8 q^{9} - 8 q^{10} - 8 q^{11} - 8 q^{12} - 8 q^{13} - 8 q^{14} - 8 q^{15} - 8 q^{16} - 8 q^{17} - 8 q^{18} - 8 q^{19} - 8 q^{20} - 8 q^{21} - 8 q^{23} + 32 q^{24} - 8 q^{25} + 32 q^{26} - 8 q^{27} + 32 q^{28} - 8 q^{29} + 72 q^{30} + 32 q^{32} + 32 q^{34} - 8 q^{35} + 72 q^{36} - 8 q^{37} + 32 q^{38} - 8 q^{39} + 32 q^{40} - 8 q^{41} + 32 q^{42} - 8 q^{43} - 8 q^{45} - 8 q^{46} - 8 q^{47} - 8 q^{48} - 8 q^{49} - 32 q^{50} + 24 q^{51} - 56 q^{52} - 8 q^{53} - 72 q^{54} + 56 q^{55} - 64 q^{56} - 8 q^{57} - 80 q^{58} + 56 q^{59} - 104 q^{60} - 8 q^{61} - 40 q^{62} + 64 q^{63} - 104 q^{64} - 16 q^{65} - 88 q^{66} + 72 q^{67} - 56 q^{68} - 8 q^{69} - 104 q^{70} + 56 q^{71} - 80 q^{72} - 8 q^{73} - 64 q^{74} + 56 q^{75} - 72 q^{76} - 8 q^{77} - 32 q^{78} + 24 q^{79} + 32 q^{80} - 8 q^{81} + 72 q^{82} - 8 q^{83} + 104 q^{84} - 8 q^{85} + 96 q^{86} - 8 q^{87} + 72 q^{88} - 8 q^{89} + 136 q^{90} - 8 q^{91} + 144 q^{92} + 16 q^{93} + 88 q^{94} + 128 q^{96} + 128 q^{98} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/64\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(63\)
\(\chi(n)\) \(e\left(\frac{13}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.19357 + 0.758552i 0.843979 + 0.536377i
\(3\) −0.599600 3.01439i −0.346179 1.74036i −0.625556 0.780179i \(-0.715128\pi\)
0.279377 0.960181i \(-0.409872\pi\)
\(4\) 0.849199 + 1.81076i 0.424600 + 0.905381i
\(5\) −1.78465 + 1.19247i −0.798122 + 0.533288i −0.886461 0.462802i \(-0.846844\pi\)
0.0883396 + 0.996090i \(0.471844\pi\)
\(6\) 1.57091 4.05270i 0.641321 1.65451i
\(7\) 1.99271 + 0.825409i 0.753175 + 0.311975i 0.726036 0.687656i \(-0.241360\pi\)
0.0271386 + 0.999632i \(0.491360\pi\)
\(8\) −0.359981 + 2.80543i −0.127273 + 0.991868i
\(9\) −5.95540 + 2.46681i −1.98513 + 0.822270i
\(10\) −3.03465 + 0.0695368i −0.959641 + 0.0219895i
\(11\) −3.15038 0.626650i −0.949877 0.188942i −0.304247 0.952593i \(-0.598405\pi\)
−0.645629 + 0.763651i \(0.723405\pi\)
\(12\) 4.94917 3.64555i 1.42870 1.05238i
\(13\) 0.0943077 + 0.0630144i 0.0261563 + 0.0174770i 0.568580 0.822628i \(-0.307493\pi\)
−0.542423 + 0.840105i \(0.682493\pi\)
\(14\) 1.75232 + 2.49676i 0.468327 + 0.667286i
\(15\) 4.66465 + 4.66465i 1.20441 + 1.20441i
\(16\) −2.55772 + 3.07540i −0.639430 + 0.768849i
\(17\) 2.42319 2.42319i 0.587710 0.587710i −0.349301 0.937011i \(-0.613581\pi\)
0.937011 + 0.349301i \(0.113581\pi\)
\(18\) −8.97937 1.57318i −2.11646 0.370802i
\(19\) 1.93596 2.89737i 0.444140 0.664702i −0.540088 0.841609i \(-0.681609\pi\)
0.984228 + 0.176906i \(0.0566089\pi\)
\(20\) −3.67480 2.21894i −0.821711 0.496171i
\(21\) 1.29328 6.50174i 0.282216 1.41879i
\(22\) −3.28485 3.13768i −0.700331 0.668955i
\(23\) −1.33543 3.22402i −0.278457 0.672255i 0.721336 0.692585i \(-0.243528\pi\)
−0.999793 + 0.0203301i \(0.993528\pi\)
\(24\) 8.67250 0.597008i 1.77027 0.121864i
\(25\) −0.150405 + 0.363110i −0.0300810 + 0.0726220i
\(26\) 0.0647628 + 0.146749i 0.0127010 + 0.0287799i
\(27\) 5.88424 + 8.80639i 1.13242 + 1.69479i
\(28\) 0.197591 + 4.30927i 0.0373412 + 0.814375i
\(29\) 2.01879 0.401561i 0.374879 0.0745681i −0.00405495 0.999992i \(-0.501291\pi\)
0.378934 + 0.925424i \(0.376291\pi\)
\(30\) 2.02919 + 9.10594i 0.370477 + 1.66251i
\(31\) 4.16617i 0.748266i −0.927375 0.374133i \(-0.877940\pi\)
0.927375 0.374133i \(-0.122060\pi\)
\(32\) −5.38566 + 1.73052i −0.952058 + 0.305916i
\(33\) 9.87224i 1.71854i
\(34\) 4.73035 1.05412i 0.811248 0.180781i
\(35\) −4.54058 + 0.903177i −0.767498 + 0.152665i
\(36\) −9.52413 8.68901i −1.58736 1.44817i
\(37\) 5.48499 + 8.20886i 0.901726 + 1.34953i 0.936697 + 0.350140i \(0.113866\pi\)
−0.0349711 + 0.999388i \(0.511134\pi\)
\(38\) 4.50850 1.98968i 0.731376 0.322768i
\(39\) 0.133403 0.322064i 0.0213616 0.0515715i
\(40\) −2.70294 5.43598i −0.427372 0.859504i
\(41\) 0.347569 + 0.839106i 0.0542812 + 0.131046i 0.948694 0.316197i \(-0.102406\pi\)
−0.894413 + 0.447243i \(0.852406\pi\)
\(42\) 6.47551 6.77923i 0.999193 1.04606i
\(43\) 0.925855 4.65459i 0.141192 0.709818i −0.843723 0.536778i \(-0.819641\pi\)
0.984915 0.173039i \(-0.0553588\pi\)
\(44\) −1.54059 6.23675i −0.232253 0.940225i
\(45\) 7.68675 11.5040i 1.14587 1.71492i
\(46\) 0.851658 4.86108i 0.125570 0.716727i
\(47\) −8.31575 + 8.31575i −1.21298 + 1.21298i −0.242935 + 0.970043i \(0.578110\pi\)
−0.970043 + 0.242935i \(0.921890\pi\)
\(48\) 10.8041 + 5.86597i 1.55943 + 0.846680i
\(49\) −1.66014 1.66014i −0.237163 0.237163i
\(50\) −0.454956 + 0.319306i −0.0643405 + 0.0451566i
\(51\) −8.75739 5.85150i −1.22628 0.819374i
\(52\) −0.0340181 + 0.224281i −0.00471746 + 0.0311021i
\(53\) 0.565279 + 0.112441i 0.0776470 + 0.0154450i 0.233761 0.972294i \(-0.424897\pi\)
−0.156114 + 0.987739i \(0.549897\pi\)
\(54\) 0.343130 + 14.9745i 0.0466941 + 2.03777i
\(55\) 6.36961 2.63838i 0.858878 0.355759i
\(56\) −3.03296 + 5.29328i −0.405297 + 0.707344i
\(57\) −9.89462 4.09848i −1.31057 0.542857i
\(58\) 2.71416 + 1.05206i 0.356386 + 0.138143i
\(59\) −0.649771 + 0.434163i −0.0845930 + 0.0565232i −0.597147 0.802132i \(-0.703699\pi\)
0.512554 + 0.858655i \(0.328699\pi\)
\(60\) −4.48535 + 12.4078i −0.579056 + 1.60184i
\(61\) −0.528753 2.65822i −0.0676999 0.340350i 0.932059 0.362306i \(-0.118011\pi\)
−0.999759 + 0.0219561i \(0.993011\pi\)
\(62\) 3.16025 4.97260i 0.401353 0.631520i
\(63\) −13.9035 −1.75168
\(64\) −7.74083 2.01980i −0.967603 0.252475i
\(65\) −0.243449 −0.0301962
\(66\) −7.48860 + 11.7832i −0.921783 + 1.45041i
\(67\) 0.971210 + 4.88260i 0.118652 + 0.596505i 0.993663 + 0.112401i \(0.0358542\pi\)
−0.875011 + 0.484104i \(0.839146\pi\)
\(68\) 6.44559 + 2.33005i 0.781643 + 0.282560i
\(69\) −8.91774 + 5.95864i −1.07357 + 0.717336i
\(70\) −6.10459 2.36626i −0.729638 0.282822i
\(71\) 9.38522 + 3.88748i 1.11382 + 0.461360i 0.862252 0.506480i \(-0.169054\pi\)
0.251569 + 0.967839i \(0.419054\pi\)
\(72\) −4.77662 17.5955i −0.562930 2.07364i
\(73\) 12.6303 5.23165i 1.47827 0.612318i 0.509539 0.860447i \(-0.329816\pi\)
0.968727 + 0.248129i \(0.0798158\pi\)
\(74\) 0.319848 + 13.9585i 0.0371816 + 1.62264i
\(75\) 1.18474 + 0.235659i 0.136802 + 0.0272116i
\(76\) 6.89047 + 1.04512i 0.790391 + 0.119884i
\(77\) −5.76057 3.84909i −0.656478 0.438645i
\(78\) 0.403528 0.283211i 0.0456905 0.0320674i
\(79\) −3.50532 3.50532i −0.394379 0.394379i 0.481866 0.876245i \(-0.339959\pi\)
−0.876245 + 0.481866i \(0.839959\pi\)
\(80\) 0.897337 8.53852i 0.100325 0.954636i
\(81\) 9.34353 9.34353i 1.03817 1.03817i
\(82\) −0.221658 + 1.26518i −0.0244781 + 0.139715i
\(83\) −8.25513 + 12.3547i −0.906118 + 1.35610i 0.0281778 + 0.999603i \(0.491030\pi\)
−0.934296 + 0.356499i \(0.883970\pi\)
\(84\) 12.8713 3.17945i 1.40438 0.346907i
\(85\) −1.43498 + 7.21413i −0.155645 + 0.782483i
\(86\) 4.63581 4.85325i 0.499892 0.523339i
\(87\) −2.42093 5.84464i −0.259551 0.626611i
\(88\) 2.89210 8.61259i 0.308299 0.918105i
\(89\) 4.98881 12.0441i 0.528813 1.27667i −0.403488 0.914985i \(-0.632202\pi\)
0.932301 0.361683i \(-0.117798\pi\)
\(90\) 17.9010 7.90003i 1.88694 0.832736i
\(91\) 0.135916 + 0.203412i 0.0142478 + 0.0213234i
\(92\) 4.70389 5.15599i 0.490414 0.537549i
\(93\) −12.5585 + 2.49803i −1.30225 + 0.259034i
\(94\) −16.2333 + 3.61747i −1.67434 + 0.373114i
\(95\) 7.47938i 0.767368i
\(96\) 8.44572 + 15.1969i 0.861988 + 1.55102i
\(97\) 4.06140i 0.412373i −0.978513 0.206187i \(-0.933895\pi\)
0.978513 0.206187i \(-0.0661054\pi\)
\(98\) −0.722186 3.24079i −0.0729518 0.327369i
\(99\) 20.3076 4.03944i 2.04099 0.405979i
\(100\) −0.785230 + 0.0360048i −0.0785230 + 0.00360048i
\(101\) 3.05636 + 4.57417i 0.304119 + 0.455147i 0.951780 0.306782i \(-0.0992524\pi\)
−0.647660 + 0.761929i \(0.724252\pi\)
\(102\) −6.01386 13.6271i −0.595461 1.34928i
\(103\) −5.12950 + 12.3837i −0.505425 + 1.22020i 0.441066 + 0.897475i \(0.354600\pi\)
−0.946491 + 0.322730i \(0.895400\pi\)
\(104\) −0.210731 + 0.241889i −0.0206639 + 0.0237192i
\(105\) 5.44506 + 13.1455i 0.531384 + 1.28287i
\(106\) 0.589405 + 0.562999i 0.0572481 + 0.0546833i
\(107\) 1.35370 6.80550i 0.130867 0.657913i −0.858540 0.512746i \(-0.828628\pi\)
0.989407 0.145167i \(-0.0463718\pi\)
\(108\) −10.9494 + 18.1334i −1.05361 + 1.74488i
\(109\) −11.0688 + 16.5656i −1.06020 + 1.58670i −0.281225 + 0.959642i \(0.590741\pi\)
−0.778973 + 0.627057i \(0.784259\pi\)
\(110\) 9.60390 + 1.68260i 0.915695 + 0.160429i
\(111\) 21.4559 21.4559i 2.03651 2.03651i
\(112\) −7.63526 + 4.01722i −0.721465 + 0.379591i
\(113\) 6.43123 + 6.43123i 0.605000 + 0.605000i 0.941635 0.336635i \(-0.109289\pi\)
−0.336635 + 0.941635i \(0.609289\pi\)
\(114\) −8.70097 12.3974i −0.814920 1.16112i
\(115\) 6.22783 + 4.16130i 0.580748 + 0.388044i
\(116\) 2.44148 + 3.31454i 0.226686 + 0.307747i
\(117\) −0.717085 0.142637i −0.0662945 0.0131868i
\(118\) −1.10488 + 0.0253175i −0.101712 + 0.00233067i
\(119\) 6.82884 2.82860i 0.625999 0.259297i
\(120\) −14.7655 + 11.4071i −1.34790 + 1.04132i
\(121\) −0.630442 0.261137i −0.0573129 0.0237398i
\(122\) 1.38530 3.57385i 0.125419 0.323561i
\(123\) 2.32099 1.55084i 0.209277 0.139834i
\(124\) 7.54394 3.53791i 0.677466 0.317713i
\(125\) −2.25827 11.3531i −0.201986 1.01545i
\(126\) −16.5948 10.5466i −1.47838 0.939561i
\(127\) −5.12090 −0.454406 −0.227203 0.973847i \(-0.572958\pi\)
−0.227203 + 0.973847i \(0.572958\pi\)
\(128\) −7.70706 8.28258i −0.681215 0.732084i
\(129\) −14.5859 −1.28422
\(130\) −0.290573 0.184669i −0.0254849 0.0161965i
\(131\) −2.39632 12.0471i −0.209368 1.05256i −0.932312 0.361656i \(-0.882211\pi\)
0.722944 0.690907i \(-0.242789\pi\)
\(132\) −17.8763 + 8.38350i −1.55593 + 0.729690i
\(133\) 6.24933 4.17567i 0.541886 0.362076i
\(134\) −2.54450 + 6.56442i −0.219812 + 0.567080i
\(135\) −21.0027 8.69960i −1.80762 0.748742i
\(136\) 5.92578 + 7.67038i 0.508131 + 0.657730i
\(137\) −1.03177 + 0.427371i −0.0881496 + 0.0365128i −0.426323 0.904571i \(-0.640191\pi\)
0.338173 + 0.941084i \(0.390191\pi\)
\(138\) −15.1638 + 0.347469i −1.29083 + 0.0295785i
\(139\) 3.00073 + 0.596882i 0.254518 + 0.0506269i 0.320700 0.947181i \(-0.396082\pi\)
−0.0661819 + 0.997808i \(0.521082\pi\)
\(140\) −5.49130 7.45493i −0.464099 0.630057i
\(141\) 30.0531 + 20.0808i 2.53093 + 1.69111i
\(142\) 8.25302 + 11.7591i 0.692578 + 0.986805i
\(143\) −0.257618 0.257618i −0.0215431 0.0215431i
\(144\) 7.64585 24.6246i 0.637154 2.05205i
\(145\) −3.12399 + 3.12399i −0.259433 + 0.259433i
\(146\) 19.0436 + 3.33643i 1.57606 + 0.276125i
\(147\) −4.00890 + 5.99974i −0.330648 + 0.494850i
\(148\) −10.2065 + 16.9030i −0.838965 + 1.38942i
\(149\) −0.649276 + 3.26413i −0.0531907 + 0.267408i −0.998224 0.0595651i \(-0.981029\pi\)
0.945034 + 0.326973i \(0.106029\pi\)
\(150\) 1.23530 + 1.17996i 0.100862 + 0.0963434i
\(151\) −1.38074 3.33339i −0.112363 0.271268i 0.857688 0.514171i \(-0.171900\pi\)
−0.970051 + 0.242903i \(0.921900\pi\)
\(152\) 7.43145 + 6.47420i 0.602770 + 0.525127i
\(153\) −8.45353 + 20.4086i −0.683427 + 1.64994i
\(154\) −3.95589 8.96383i −0.318774 0.722326i
\(155\) 4.96802 + 7.43517i 0.399041 + 0.597207i
\(156\) 0.696467 0.0319348i 0.0557620 0.00255683i
\(157\) −14.8431 + 2.95247i −1.18460 + 0.235633i −0.747800 0.663924i \(-0.768890\pi\)
−0.436805 + 0.899556i \(0.643890\pi\)
\(158\) −1.52487 6.84280i −0.121312 0.544384i
\(159\) 1.77139i 0.140481i
\(160\) 7.54794 9.51061i 0.596717 0.751880i
\(161\) 7.52683i 0.593197i
\(162\) 18.2397 4.06457i 1.43304 0.319343i
\(163\) 14.0586 2.79643i 1.10115 0.219033i 0.389126 0.921185i \(-0.372777\pi\)
0.712027 + 0.702152i \(0.247777\pi\)
\(164\) −1.22427 + 1.34193i −0.0955991 + 0.104787i
\(165\) −11.7723 17.6185i −0.916474 1.37160i
\(166\) −19.2247 + 8.48418i −1.49213 + 0.658500i
\(167\) 2.52271 6.09036i 0.195213 0.471286i −0.795716 0.605670i \(-0.792905\pi\)
0.990929 + 0.134383i \(0.0429053\pi\)
\(168\) 17.7746 + 5.96869i 1.37134 + 0.460495i
\(169\) −4.96996 11.9985i −0.382305 0.922965i
\(170\) −7.18504 + 7.52204i −0.551067 + 0.576914i
\(171\) −4.38217 + 22.0307i −0.335113 + 1.68473i
\(172\) 9.21458 2.27617i 0.702605 0.173556i
\(173\) 10.9283 16.3554i 0.830866 1.24348i −0.136637 0.990621i \(-0.543629\pi\)
0.967503 0.252858i \(-0.0813706\pi\)
\(174\) 1.54392 8.81236i 0.117044 0.668063i
\(175\) −0.599428 + 0.599428i −0.0453125 + 0.0453125i
\(176\) 9.98500 8.08588i 0.752648 0.609496i
\(177\) 1.69834 + 1.69834i 0.127655 + 0.127655i
\(178\) 15.0905 10.5911i 1.13108 0.793837i
\(179\) 1.59347 + 1.06472i 0.119102 + 0.0795812i 0.613694 0.789544i \(-0.289683\pi\)
−0.494593 + 0.869125i \(0.664683\pi\)
\(180\) 27.3587 + 4.14966i 2.03919 + 0.309297i
\(181\) −19.2000 3.81912i −1.42713 0.283873i −0.579720 0.814816i \(-0.696838\pi\)
−0.847408 + 0.530943i \(0.821838\pi\)
\(182\) 0.00792570 + 0.345885i 0.000587492 + 0.0256387i
\(183\) −7.69588 + 3.18774i −0.568896 + 0.235644i
\(184\) 9.52548 2.58587i 0.702228 0.190633i
\(185\) −19.5776 8.10931i −1.43937 0.596209i
\(186\) −16.8842 6.54468i −1.23801 0.479879i
\(187\) −9.15247 + 6.11549i −0.669295 + 0.447209i
\(188\) −22.1196 7.99612i −1.61324 0.583177i
\(189\) 4.45674 + 22.4055i 0.324180 + 1.62976i
\(190\) −5.67349 + 8.92713i −0.411599 + 0.647642i
\(191\) 12.6604 0.916073 0.458037 0.888933i \(-0.348553\pi\)
0.458037 + 0.888933i \(0.348553\pi\)
\(192\) −1.44708 + 24.5450i −0.104434 + 1.77138i
\(193\) 6.31378 0.454476 0.227238 0.973839i \(-0.427030\pi\)
0.227238 + 0.973839i \(0.427030\pi\)
\(194\) 3.08078 4.84755i 0.221187 0.348034i
\(195\) 0.145972 + 0.733852i 0.0104533 + 0.0525522i
\(196\) 1.59633 4.41591i 0.114024 0.315422i
\(197\) 19.2658 12.8730i 1.37263 0.917163i 0.372690 0.927956i \(-0.378435\pi\)
0.999942 + 0.0107926i \(0.00343545\pi\)
\(198\) 27.3026 + 10.5831i 1.94031 + 0.752105i
\(199\) −13.5609 5.61712i −0.961309 0.398187i −0.153839 0.988096i \(-0.549164\pi\)
−0.807470 + 0.589909i \(0.799164\pi\)
\(200\) −0.964535 0.552663i −0.0682029 0.0390792i
\(201\) 14.1357 5.85522i 0.997059 0.412995i
\(202\) 0.178227 + 7.77798i 0.0125400 + 0.547257i
\(203\) 4.35431 + 0.866127i 0.305613 + 0.0607902i
\(204\) 3.15891 20.8266i 0.221168 1.45816i
\(205\) −1.62090 1.08305i −0.113208 0.0756434i
\(206\) −15.5161 + 10.8898i −1.08106 + 0.758728i
\(207\) 15.9061 + 15.9061i 1.10555 + 1.10555i
\(208\) −0.435007 + 0.128860i −0.0301623 + 0.00893485i
\(209\) −7.91466 + 7.91466i −0.547469 + 0.547469i
\(210\) −3.47253 + 19.8204i −0.239627 + 1.36774i
\(211\) 1.35601 2.02941i 0.0933516 0.139711i −0.781854 0.623461i \(-0.785726\pi\)
0.875206 + 0.483751i \(0.160726\pi\)
\(212\) 0.276430 + 1.11907i 0.0189853 + 0.0768581i
\(213\) 6.09103 30.6217i 0.417350 2.09816i
\(214\) 6.77805 7.09597i 0.463338 0.485070i
\(215\) 3.89811 + 9.41088i 0.265849 + 0.641817i
\(216\) −26.8239 + 13.3377i −1.82514 + 0.907514i
\(217\) 3.43879 8.30198i 0.233440 0.563575i
\(218\) −25.7772 + 11.3759i −1.74585 + 0.770474i
\(219\) −23.3434 34.9358i −1.57740 2.36074i
\(220\) 10.1865 + 9.29334i 0.686777 + 0.626557i
\(221\) 0.381221 0.0758296i 0.0256437 0.00510085i
\(222\) 41.8845 9.33364i 2.81110 0.626433i
\(223\) 7.01617i 0.469838i −0.972015 0.234919i \(-0.924518\pi\)
0.972015 0.234919i \(-0.0754824\pi\)
\(224\) −12.1605 0.996928i −0.812505 0.0666101i
\(225\) 2.53349i 0.168899i
\(226\) 2.79768 + 12.5545i 0.186099 + 0.835115i
\(227\) −16.9611 + 3.37378i −1.12575 + 0.223925i −0.722638 0.691226i \(-0.757071\pi\)
−0.403110 + 0.915151i \(0.632071\pi\)
\(228\) −0.981119 21.3972i −0.0649762 1.41707i
\(229\) 1.93254 + 2.89225i 0.127706 + 0.191126i 0.889813 0.456326i \(-0.150835\pi\)
−0.762107 + 0.647451i \(0.775835\pi\)
\(230\) 4.27676 + 9.69092i 0.282001 + 0.639000i
\(231\) −8.14863 + 19.6725i −0.536141 + 1.29436i
\(232\) 0.399826 + 5.80811i 0.0262498 + 0.381321i
\(233\) 10.0866 + 24.3511i 0.660794 + 1.59530i 0.796563 + 0.604556i \(0.206650\pi\)
−0.135769 + 0.990741i \(0.543350\pi\)
\(234\) −0.747691 0.714193i −0.0488781 0.0466882i
\(235\) 4.92448 24.7570i 0.321238 1.61497i
\(236\) −1.33795 0.807890i −0.0870932 0.0525891i
\(237\) −8.46462 + 12.6682i −0.549836 + 0.822888i
\(238\) 10.2963 + 1.80391i 0.667411 + 0.116930i
\(239\) −11.2250 + 11.2250i −0.726085 + 0.726085i −0.969838 0.243752i \(-0.921622\pi\)
0.243752 + 0.969838i \(0.421622\pi\)
\(240\) −26.2765 + 2.41477i −1.69614 + 0.155873i
\(241\) −15.1085 15.1085i −0.973222 0.973222i 0.0264284 0.999651i \(-0.491587\pi\)
−0.999651 + 0.0264284i \(0.991587\pi\)
\(242\) −0.554387 0.789907i −0.0356374 0.0507772i
\(243\) −7.34826 4.90995i −0.471391 0.314973i
\(244\) 4.36439 3.21480i 0.279401 0.205807i
\(245\) 4.94245 + 0.983113i 0.315761 + 0.0628088i
\(246\) 3.94665 0.0904345i 0.251629 0.00576590i
\(247\) 0.365152 0.151251i 0.0232341 0.00962387i
\(248\) 11.6879 + 1.49974i 0.742181 + 0.0952338i
\(249\) 42.1916 + 17.4763i 2.67378 + 1.10752i
\(250\) 5.91651 15.2637i 0.374193 0.965360i
\(251\) −0.246229 + 0.164525i −0.0155419 + 0.0103847i −0.563317 0.826241i \(-0.690475\pi\)
0.547775 + 0.836626i \(0.315475\pi\)
\(252\) −11.8069 25.1760i −0.743763 1.58594i
\(253\) 2.18679 + 10.9938i 0.137483 + 0.691172i
\(254\) −6.11213 3.88446i −0.383509 0.243733i
\(255\) 22.6066 1.41568
\(256\) −2.91612 15.7320i −0.182258 0.983251i
\(257\) 0.958734 0.0598042 0.0299021 0.999553i \(-0.490480\pi\)
0.0299021 + 0.999553i \(0.490480\pi\)
\(258\) −17.4092 11.0641i −1.08385 0.688824i
\(259\) 4.15434 + 20.8853i 0.258138 + 1.29775i
\(260\) −0.206737 0.440829i −0.0128213 0.0273391i
\(261\) −11.0321 + 7.37142i −0.682870 + 0.456279i
\(262\) 6.27820 16.1968i 0.387868 1.00064i
\(263\) 4.44089 + 1.83948i 0.273837 + 0.113427i 0.515376 0.856964i \(-0.327652\pi\)
−0.241539 + 0.970391i \(0.577652\pi\)
\(264\) −27.6958 3.55382i −1.70456 0.218723i
\(265\) −1.14291 + 0.473409i −0.0702084 + 0.0290813i
\(266\) 10.6264 0.243497i 0.651549 0.0149298i
\(267\) −39.2968 7.81663i −2.40493 0.478370i
\(268\) −8.01648 + 5.90493i −0.489685 + 0.360701i
\(269\) −3.61121 2.41293i −0.220179 0.147119i 0.440589 0.897709i \(-0.354770\pi\)
−0.660769 + 0.750590i \(0.729770\pi\)
\(270\) −18.4690 26.3152i −1.12399 1.60149i
\(271\) −10.6599 10.6599i −0.647540 0.647540i 0.304858 0.952398i \(-0.401391\pi\)
−0.952398 + 0.304858i \(0.901391\pi\)
\(272\) 1.25442 + 13.6501i 0.0760606 + 0.827660i
\(273\) 0.531669 0.531669i 0.0321781 0.0321781i
\(274\) −1.55566 0.272551i −0.0939810 0.0164654i
\(275\) 0.701377 1.04968i 0.0422946 0.0632984i
\(276\) −18.3626 11.0878i −1.10530 0.667409i
\(277\) 0.0750905 0.377506i 0.00451175 0.0226821i −0.978464 0.206418i \(-0.933819\pi\)
0.982976 + 0.183736i \(0.0588192\pi\)
\(278\) 3.12880 + 2.98862i 0.187653 + 0.179246i
\(279\) 10.2771 + 24.8112i 0.615276 + 1.48541i
\(280\) −0.899273 13.0634i −0.0537418 0.780686i
\(281\) −1.58445 + 3.82519i −0.0945201 + 0.228192i −0.964067 0.265658i \(-0.914411\pi\)
0.869547 + 0.493850i \(0.164411\pi\)
\(282\) 20.6380 + 46.7646i 1.22897 + 2.78479i
\(283\) 5.06218 + 7.57609i 0.300915 + 0.450352i 0.950856 0.309633i \(-0.100206\pi\)
−0.649941 + 0.759985i \(0.725206\pi\)
\(284\) 0.930609 + 20.2957i 0.0552215 + 1.20433i
\(285\) 22.5458 4.48464i 1.33550 0.265647i
\(286\) −0.112067 0.502900i −0.00662668 0.0297371i
\(287\) 1.95898i 0.115635i
\(288\) 27.8049 23.5914i 1.63842 1.39013i
\(289\) 5.25630i 0.309194i
\(290\) −6.09839 + 1.35898i −0.358110 + 0.0798020i
\(291\) −12.2427 + 2.43522i −0.717678 + 0.142755i
\(292\) 20.1989 + 18.4278i 1.18205 + 1.07840i
\(293\) 9.97915 + 14.9349i 0.582988 + 0.872504i 0.999326 0.0367064i \(-0.0116866\pi\)
−0.416338 + 0.909210i \(0.636687\pi\)
\(294\) −9.33600 + 4.12013i −0.544486 + 0.240291i
\(295\) 0.641891 1.54966i 0.0373723 0.0902248i
\(296\) −25.0038 + 12.4327i −1.45332 + 0.722635i
\(297\) −13.0191 31.4309i −0.755445 1.82381i
\(298\) −3.25096 + 3.40344i −0.188323 + 0.197156i
\(299\) 0.0772181 0.388202i 0.00446564 0.0224503i
\(300\) 0.579357 + 2.34540i 0.0334492 + 0.135412i
\(301\) 5.68690 8.51105i 0.327787 0.490568i
\(302\) 0.880550 5.02598i 0.0506699 0.289213i
\(303\) 11.9557 11.9557i 0.686840 0.686840i
\(304\) 3.95891 + 13.3645i 0.227059 + 0.766508i
\(305\) 4.11348 + 4.11348i 0.235537 + 0.235537i
\(306\) −25.5708 + 17.9466i −1.46179 + 1.02594i
\(307\) 19.6650 + 13.1398i 1.12234 + 0.749925i 0.971124 0.238575i \(-0.0766803\pi\)
0.151219 + 0.988500i \(0.451680\pi\)
\(308\) 2.07792 13.6997i 0.118400 0.780611i
\(309\) 40.4050 + 8.03706i 2.29856 + 0.457213i
\(310\) 0.289702 + 12.6429i 0.0164540 + 0.718067i
\(311\) −5.33022 + 2.20785i −0.302249 + 0.125196i −0.528654 0.848838i \(-0.677303\pi\)
0.226404 + 0.974033i \(0.427303\pi\)
\(312\) 0.855504 + 0.490190i 0.0484334 + 0.0277515i
\(313\) 6.66540 + 2.76090i 0.376751 + 0.156055i 0.563020 0.826444i \(-0.309640\pi\)
−0.186269 + 0.982499i \(0.559640\pi\)
\(314\) −19.9558 7.73526i −1.12617 0.436526i
\(315\) 24.8130 16.5795i 1.39806 0.934151i
\(316\) 3.37059 9.32402i 0.189610 0.524517i
\(317\) −6.63635 33.3632i −0.372734 1.87386i −0.476366 0.879247i \(-0.658046\pi\)
0.103632 0.994616i \(-0.466954\pi\)
\(318\) 1.34369 2.11427i 0.0753505 0.118563i
\(319\) −6.61159 −0.370178
\(320\) 16.2233 5.62604i 0.906907 0.314505i
\(321\) −21.3261 −1.19031
\(322\) 5.70949 8.98377i 0.318177 0.500646i
\(323\) −2.32968 11.7121i −0.129627 0.651678i
\(324\) 24.8534 + 8.98439i 1.38075 + 0.499133i
\(325\) −0.0370655 + 0.0247664i −0.00205603 + 0.00137379i
\(326\) 18.9011 + 7.32644i 1.04683 + 0.405774i
\(327\) 56.5721 + 23.4330i 3.12845 + 1.29585i
\(328\) −2.47917 + 0.673017i −0.136889 + 0.0371611i
\(329\) −23.4348 + 9.70702i −1.29200 + 0.535165i
\(330\) −0.686484 29.9588i −0.0377897 1.64918i
\(331\) 14.2233 + 2.82918i 0.781781 + 0.155506i 0.569817 0.821772i \(-0.307014\pi\)
0.211964 + 0.977277i \(0.432014\pi\)
\(332\) −29.3816 4.45650i −1.61253 0.244582i
\(333\) −52.9150 35.3567i −2.89972 1.93753i
\(334\) 7.63087 5.35564i 0.417543 0.293048i
\(335\) −7.55562 7.55562i −0.412808 0.412808i
\(336\) 16.6876 + 20.6070i 0.910382 + 1.12420i
\(337\) −22.7689 + 22.7689i −1.24030 + 1.24030i −0.280423 + 0.959877i \(0.590475\pi\)
−0.959877 + 0.280423i \(0.909525\pi\)
\(338\) 3.16954 18.0910i 0.172400 0.984022i
\(339\) 15.5301 23.2424i 0.843479 1.26236i
\(340\) −14.2817 + 3.52783i −0.774532 + 0.191323i
\(341\) −2.61073 + 13.1250i −0.141379 + 0.710760i
\(342\) −21.9418 + 22.9709i −1.18648 + 1.24213i
\(343\) −7.71575 18.6275i −0.416611 1.00579i
\(344\) 12.7248 + 4.27298i 0.686075 + 0.230384i
\(345\) 8.80959 21.2682i 0.474293 1.14504i
\(346\) 25.4501 11.2316i 1.36821 0.603812i
\(347\) 5.44427 + 8.14793i 0.292264 + 0.437404i 0.948323 0.317305i \(-0.102778\pi\)
−0.656060 + 0.754709i \(0.727778\pi\)
\(348\) 8.52740 9.34699i 0.457117 0.501051i
\(349\) 33.0492 6.57390i 1.76909 0.351893i 0.800263 0.599649i \(-0.204693\pi\)
0.968822 + 0.247756i \(0.0796931\pi\)
\(350\) −1.17015 + 0.260760i −0.0625474 + 0.0139382i
\(351\) 1.20130i 0.0641208i
\(352\) 18.0513 2.07689i 0.962139 0.110699i
\(353\) 17.4677i 0.929711i 0.885387 + 0.464856i \(0.153894\pi\)
−0.885387 + 0.464856i \(0.846106\pi\)
\(354\) 0.738802 + 3.31536i 0.0392669 + 0.176209i
\(355\) −21.3851 + 4.25376i −1.13500 + 0.225766i
\(356\) 26.0454 1.19425i 1.38041 0.0632952i
\(357\) −12.6211 18.8888i −0.667979 0.999701i
\(358\) 1.09427 + 2.47955i 0.0578337 + 0.131048i
\(359\) 6.92204 16.7113i 0.365331 0.881987i −0.629171 0.777267i \(-0.716605\pi\)
0.994502 0.104720i \(-0.0333947\pi\)
\(360\) 29.5066 + 25.7058i 1.55514 + 1.35482i
\(361\) 2.62417 + 6.33532i 0.138114 + 0.333438i
\(362\) −20.0195 19.1226i −1.05220 1.00506i
\(363\) −0.409158 + 2.05698i −0.0214752 + 0.107963i
\(364\) −0.252911 + 0.418848i −0.0132562 + 0.0219536i
\(365\) −16.3022 + 24.3979i −0.853295 + 1.27705i
\(366\) −11.6036 2.03295i −0.606530 0.106264i
\(367\) −22.7264 + 22.7264i −1.18631 + 1.18631i −0.208226 + 0.978081i \(0.566769\pi\)
−0.978081 + 0.208226i \(0.933231\pi\)
\(368\) 13.3308 + 4.13916i 0.694916 + 0.215769i
\(369\) −4.13983 4.13983i −0.215511 0.215511i
\(370\) −17.2158 24.5296i −0.895009 1.27523i
\(371\) 1.03363 + 0.690649i 0.0536633 + 0.0358567i
\(372\) −15.1880 20.6191i −0.787460 1.06905i
\(373\) −4.36804 0.868856i −0.226168 0.0449877i 0.0807051 0.996738i \(-0.474283\pi\)
−0.306873 + 0.951750i \(0.599283\pi\)
\(374\) −15.5630 + 0.356615i −0.804743 + 0.0184401i
\(375\) −32.8686 + 13.6146i −1.69733 + 0.703057i
\(376\) −20.3357 26.3227i −1.04873 1.35749i
\(377\) 0.215691 + 0.0893422i 0.0111087 + 0.00460136i
\(378\) −11.6763 + 30.1231i −0.600566 + 1.54937i
\(379\) −19.0406 + 12.7225i −0.978052 + 0.653513i −0.938346 0.345698i \(-0.887642\pi\)
−0.0397061 + 0.999211i \(0.512642\pi\)
\(380\) −13.5434 + 6.35148i −0.694761 + 0.325824i
\(381\) 3.07049 + 15.4364i 0.157306 + 0.790830i
\(382\) 15.1110 + 9.60355i 0.773146 + 0.491360i
\(383\) −9.58576 −0.489809 −0.244905 0.969547i \(-0.578757\pi\)
−0.244905 + 0.969547i \(0.578757\pi\)
\(384\) −20.3458 + 28.1984i −1.03827 + 1.43899i
\(385\) 14.8705 0.757873
\(386\) 7.53592 + 4.78933i 0.383568 + 0.243770i
\(387\) 5.96814 + 30.0038i 0.303377 + 1.52518i
\(388\) 7.35424 3.44894i 0.373355 0.175093i
\(389\) −10.2676 + 6.86062i −0.520590 + 0.347847i −0.787940 0.615752i \(-0.788852\pi\)
0.267349 + 0.963600i \(0.413852\pi\)
\(390\) −0.382437 + 0.986628i −0.0193655 + 0.0499599i
\(391\) −11.0484 4.57641i −0.558743 0.231439i
\(392\) 5.25502 4.05978i 0.265419 0.205050i
\(393\) −34.8779 + 14.4469i −1.75936 + 0.728751i
\(394\) 32.7598 0.750668i 1.65042 0.0378181i
\(395\) 10.4358 + 2.07580i 0.525081 + 0.104445i
\(396\) 24.5597 + 33.3420i 1.23417 + 1.67550i
\(397\) 6.79289 + 4.53886i 0.340925 + 0.227799i 0.714232 0.699909i \(-0.246776\pi\)
−0.373307 + 0.927708i \(0.621776\pi\)
\(398\) −11.9250 16.9911i −0.597746 0.851685i
\(399\) −16.3342 16.3342i −0.817733 0.817733i
\(400\) −0.732013 1.39129i −0.0366006 0.0695645i
\(401\) 6.63465 6.63465i 0.331319 0.331319i −0.521769 0.853087i \(-0.674728\pi\)
0.853087 + 0.521769i \(0.174728\pi\)
\(402\) 21.3134 + 3.73410i 1.06302 + 0.186240i
\(403\) 0.262529 0.392902i 0.0130775 0.0195718i
\(404\) −5.68727 + 9.41873i −0.282952 + 0.468599i
\(405\) −5.53311 + 27.8168i −0.274943 + 1.38223i
\(406\) 4.54016 + 4.33675i 0.225324 + 0.215229i
\(407\) −12.1357 29.2982i −0.601546 1.45226i
\(408\) 19.5684 22.4618i 0.968782 1.11202i
\(409\) −3.09518 + 7.47242i −0.153047 + 0.369487i −0.981743 0.190211i \(-0.939083\pi\)
0.828697 + 0.559698i \(0.189083\pi\)
\(410\) −1.11310 2.52222i −0.0549721 0.124564i
\(411\) 1.90691 + 2.85389i 0.0940610 + 0.140772i
\(412\) −26.7799 + 1.22793i −1.31935 + 0.0604958i
\(413\) −1.65317 + 0.328836i −0.0813471 + 0.0161809i
\(414\) 6.91938 + 31.0506i 0.340069 + 1.52605i
\(415\) 31.8928i 1.56556i
\(416\) −0.616957 0.176172i −0.0302488 0.00863754i
\(417\) 9.40326i 0.460480i
\(418\) −15.4503 + 3.44299i −0.755701 + 0.168402i
\(419\) −2.86945 + 0.570769i −0.140182 + 0.0278839i −0.264682 0.964336i \(-0.585267\pi\)
0.124501 + 0.992220i \(0.460267\pi\)
\(420\) −19.1795 + 21.0229i −0.935864 + 1.02581i
\(421\) −11.9038 17.8153i −0.580157 0.868266i 0.419055 0.907961i \(-0.362361\pi\)
−0.999212 + 0.0396948i \(0.987361\pi\)
\(422\) 3.15790 1.39363i 0.153724 0.0678411i
\(423\) 29.0103 70.0371i 1.41053 3.40532i
\(424\) −0.518935 + 1.54537i −0.0252017 + 0.0750499i
\(425\) 0.515424 + 1.24434i 0.0250018 + 0.0603596i
\(426\) 30.4982 31.9286i 1.47764 1.54695i
\(427\) 1.14047 5.73351i 0.0551910 0.277464i
\(428\) 13.4727 3.32800i 0.651228 0.160865i
\(429\) −0.622093 + 0.931028i −0.0300349 + 0.0449505i
\(430\) −2.48598 + 14.1894i −0.119885 + 0.684275i
\(431\) 8.75609 8.75609i 0.421766 0.421766i −0.464045 0.885811i \(-0.653603\pi\)
0.885811 + 0.464045i \(0.153603\pi\)
\(432\) −42.1334 4.42792i −2.02714 0.213038i
\(433\) −13.9449 13.9449i −0.670149 0.670149i 0.287601 0.957750i \(-0.407142\pi\)
−0.957750 + 0.287601i \(0.907142\pi\)
\(434\) 10.4019 7.30046i 0.499307 0.350433i
\(435\) 11.2901 + 7.54378i 0.541317 + 0.361696i
\(436\) −39.3960 5.97545i −1.88673 0.286172i
\(437\) −11.9265 2.37233i −0.570523 0.113484i
\(438\) −1.36123 59.4054i −0.0650421 2.83850i
\(439\) −9.84033 + 4.07600i −0.469653 + 0.194537i −0.604942 0.796270i \(-0.706804\pi\)
0.135289 + 0.990806i \(0.456804\pi\)
\(440\) 5.10883 + 18.8192i 0.243554 + 0.897172i
\(441\) 13.9821 + 5.79156i 0.665813 + 0.275789i
\(442\) 0.512533 + 0.198668i 0.0243787 + 0.00944969i
\(443\) 16.3602 10.9315i 0.777294 0.519371i −0.102496 0.994733i \(-0.532683\pi\)
0.879790 + 0.475362i \(0.157683\pi\)
\(444\) 57.0720 + 20.6312i 2.70852 + 0.979115i
\(445\) 5.45885 + 27.4435i 0.258774 + 1.30095i
\(446\) 5.32213 8.37426i 0.252010 0.396533i
\(447\) 10.2287 0.483800
\(448\) −13.7581 10.4142i −0.650008 0.492026i
\(449\) 30.9457 1.46042 0.730209 0.683224i \(-0.239423\pi\)
0.730209 + 0.683224i \(0.239423\pi\)
\(450\) 1.92178 3.02388i 0.0905936 0.142547i
\(451\) −0.569150 2.86131i −0.0268002 0.134734i
\(452\) −6.18404 + 17.1068i −0.290873 + 0.804638i
\(453\) −9.22026 + 6.16078i −0.433206 + 0.289459i
\(454\) −22.8034 8.83905i −1.07022 0.414837i
\(455\) −0.485125 0.200945i −0.0227430 0.00942046i
\(456\) 15.0599 26.2832i 0.705243 1.23083i
\(457\) 36.3997 15.0773i 1.70271 0.705285i 0.702727 0.711459i \(-0.251965\pi\)
0.999981 + 0.00617459i \(0.00196544\pi\)
\(458\) 0.112693 + 4.91803i 0.00526580 + 0.229804i
\(459\) 35.5982 + 7.08092i 1.66158 + 0.330509i
\(460\) −2.24646 + 14.8109i −0.104742 + 0.690562i
\(461\) 7.22960 + 4.83066i 0.336716 + 0.224986i 0.712420 0.701753i \(-0.247599\pi\)
−0.375704 + 0.926740i \(0.622599\pi\)
\(462\) −24.6486 + 17.2993i −1.14675 + 0.804837i
\(463\) 25.2338 + 25.2338i 1.17271 + 1.17271i 0.981560 + 0.191154i \(0.0612228\pi\)
0.191154 + 0.981560i \(0.438777\pi\)
\(464\) −3.92853 + 7.23565i −0.182377 + 0.335906i
\(465\) 19.4337 19.4337i 0.901216 0.901216i
\(466\) −6.43261 + 36.7159i −0.297985 + 1.70083i
\(467\) 20.5128 30.6996i 0.949220 1.42061i 0.0423942 0.999101i \(-0.486501\pi\)
0.906825 0.421507i \(-0.138499\pi\)
\(468\) −0.350666 1.41960i −0.0162096 0.0656209i
\(469\) −2.09480 + 10.5313i −0.0967289 + 0.486289i
\(470\) 24.6572 25.8137i 1.13735 1.19070i
\(471\) 17.7998 + 42.9725i 0.820171 + 1.98007i
\(472\) −0.984107 1.97917i −0.0452972 0.0910989i
\(473\) −5.83360 + 14.0835i −0.268229 + 0.647562i
\(474\) −19.7126 + 8.69948i −0.905428 + 0.399581i
\(475\) 0.760886 + 1.13875i 0.0349118 + 0.0522493i
\(476\) 10.9210 + 9.96337i 0.500562 + 0.456670i
\(477\) −3.64383 + 0.724804i −0.166840 + 0.0331865i
\(478\) −21.9125 + 4.88304i −1.00226 + 0.223345i
\(479\) 22.3832i 1.02271i 0.859368 + 0.511357i \(0.170857\pi\)
−0.859368 + 0.511357i \(0.829143\pi\)
\(480\) −33.1945 17.0499i −1.51511 0.778218i
\(481\) 1.11979i 0.0510581i
\(482\) −6.57240 29.4935i −0.299365 1.34339i
\(483\) −22.6888 + 4.51309i −1.03238 + 0.205353i
\(484\) −0.0625126 1.36334i −0.00284148 0.0619699i
\(485\) 4.84310 + 7.24821i 0.219914 + 0.329124i
\(486\) −5.04618 11.4344i −0.228899 0.518674i
\(487\) −13.3025 + 32.1150i −0.602792 + 1.45527i 0.267902 + 0.963446i \(0.413670\pi\)
−0.870695 + 0.491824i \(0.836330\pi\)
\(488\) 7.64778 0.526467i 0.346199 0.0238321i
\(489\) −16.8591 40.7014i −0.762393 1.84058i
\(490\) 5.15339 + 4.92251i 0.232807 + 0.222376i
\(491\) −5.09965 + 25.6377i −0.230144 + 1.15701i 0.676933 + 0.736045i \(0.263309\pi\)
−0.907076 + 0.420966i \(0.861691\pi\)
\(492\) 4.77918 + 2.88580i 0.215462 + 0.130102i
\(493\) 3.91884 5.86496i 0.176496 0.264144i
\(494\) 0.550565 + 0.0964587i 0.0247711 + 0.00433988i
\(495\) −31.4252 + 31.4252i −1.41246 + 1.41246i
\(496\) 12.8126 + 10.6559i 0.575304 + 0.478464i
\(497\) 15.4933 + 15.4933i 0.694969 + 0.694969i
\(498\) 37.1018 + 52.8637i 1.66257 + 2.36888i
\(499\) −27.9332 18.6644i −1.25046 0.835532i −0.258994 0.965879i \(-0.583391\pi\)
−0.991468 + 0.130347i \(0.958391\pi\)
\(500\) 18.6400 13.7302i 0.833608 0.614035i
\(501\) −19.8714 3.95266i −0.887787 0.176592i
\(502\) −0.418692 + 0.00959402i −0.0186871 + 0.000428202i
\(503\) 20.0549 8.30702i 0.894205 0.370392i 0.112216 0.993684i \(-0.464205\pi\)
0.781989 + 0.623292i \(0.214205\pi\)
\(504\) 5.00501 39.0053i 0.222941 1.73744i
\(505\) −10.9091 4.51870i −0.485449 0.201079i
\(506\) −5.72925 + 14.7806i −0.254696 + 0.657077i
\(507\) −33.1883 + 22.1757i −1.47395 + 0.984859i
\(508\) −4.34866 9.27273i −0.192941 0.411411i
\(509\) −0.581805 2.92493i −0.0257881 0.129645i 0.965747 0.259486i \(-0.0835533\pi\)
−0.991535 + 0.129841i \(0.958553\pi\)
\(510\) 26.9825 + 17.1483i 1.19481 + 0.759340i
\(511\) 29.4868 1.30442
\(512\) 8.45296 20.9892i 0.373571 0.927601i
\(513\) 36.9071 1.62949
\(514\) 1.14431 + 0.727249i 0.0504734 + 0.0320776i
\(515\) −5.61280 28.2174i −0.247329 1.24341i
\(516\) −12.3863 26.4116i −0.545278 1.16271i
\(517\) 31.4089 20.9868i 1.38136 0.922996i
\(518\) −10.8841 + 28.0792i −0.478219 + 1.23373i
\(519\) −55.8543 23.1356i −2.45173 1.01554i
\(520\) 0.0876372 0.682979i 0.00384315 0.0299506i
\(521\) −18.7789 + 7.77848i −0.822719 + 0.340781i −0.754016 0.656856i \(-0.771886\pi\)
−0.0687028 + 0.997637i \(0.521886\pi\)
\(522\) −18.7592 + 0.429852i −0.821066 + 0.0188141i
\(523\) 13.4384 + 2.67306i 0.587620 + 0.116885i 0.479941 0.877301i \(-0.340658\pi\)
0.107679 + 0.994186i \(0.465658\pi\)
\(524\) 19.7795 14.5696i 0.864073 0.636475i
\(525\) 2.16633 + 1.44750i 0.0945464 + 0.0631739i
\(526\) 3.90516 + 5.56419i 0.170273 + 0.242610i
\(527\) −10.0954 10.0954i −0.439763 0.439763i
\(528\) −30.3610 25.2504i −1.32129 1.09888i
\(529\) 7.65252 7.65252i 0.332718 0.332718i
\(530\) −1.72324 0.301911i −0.0748529 0.0131142i
\(531\) 2.79865 4.18848i 0.121451 0.181764i
\(532\) 12.8681 + 7.77008i 0.557902 + 0.336876i
\(533\) −0.0200973 + 0.101036i −0.000870511 + 0.00437635i
\(534\) −40.9740 39.1383i −1.77312 1.69368i
\(535\) 5.69946 + 13.7597i 0.246409 + 0.594884i
\(536\) −14.0474 + 0.967012i −0.606755 + 0.0417686i
\(537\) 2.25405 5.44176i 0.0972694 0.234829i
\(538\) −2.47988 5.61928i −0.106915 0.242264i
\(539\) 4.18976 + 6.27041i 0.180466 + 0.270086i
\(540\) −2.08256 45.4186i −0.0896191 1.95450i
\(541\) 7.53938 1.49968i 0.324143 0.0644761i −0.0303365 0.999540i \(-0.509658\pi\)
0.354480 + 0.935064i \(0.384658\pi\)
\(542\) −4.63719 20.8093i −0.199184 0.893836i
\(543\) 60.1664i 2.58199i
\(544\) −8.85707 + 17.2439i −0.379744 + 0.739324i
\(545\) 42.7631i 1.83177i
\(546\) 1.03788 0.231284i 0.0444172 0.00989802i
\(547\) 23.2900 4.63267i 0.995809 0.198079i 0.329823 0.944043i \(-0.393011\pi\)
0.665986 + 0.745964i \(0.268011\pi\)
\(548\) −1.65004 1.50536i −0.0704863 0.0643057i
\(549\) 9.70626 + 14.5264i 0.414253 + 0.619974i
\(550\) 1.63338 0.720837i 0.0696475 0.0307366i
\(551\) 2.74482 6.62658i 0.116933 0.282302i
\(552\) −13.5063 27.1631i −0.574867 1.15614i
\(553\) −4.09178 9.87842i −0.174000 0.420073i
\(554\) 0.375983 0.393618i 0.0159740 0.0167232i
\(555\) −12.7059 + 63.8770i −0.539336 + 2.71143i
\(556\) 1.46740 + 5.94048i 0.0622318 + 0.251932i
\(557\) −7.86803 + 11.7753i −0.333379 + 0.498937i −0.959852 0.280506i \(-0.909498\pi\)
0.626473 + 0.779443i \(0.284498\pi\)
\(558\) −6.55414 + 37.4096i −0.277459 + 1.58367i
\(559\) 0.380621 0.380621i 0.0160986 0.0160986i
\(560\) 8.83591 16.2742i 0.373385 0.687708i
\(561\) 23.9223 + 23.9223i 1.01000 + 1.01000i
\(562\) −4.79275 + 3.36373i −0.202170 + 0.141891i
\(563\) −5.80935 3.88168i −0.244835 0.163593i 0.427098 0.904205i \(-0.359536\pi\)
−0.671933 + 0.740612i \(0.734536\pi\)
\(564\) −10.8406 + 71.4716i −0.456470 + 3.00950i
\(565\) −19.1466 3.80849i −0.805502 0.160224i
\(566\) 0.295193 + 12.8825i 0.0124079 + 0.541491i
\(567\) 26.3312 10.9067i 1.10581 0.458040i
\(568\) −14.2846 + 24.9301i −0.599367 + 1.04604i
\(569\) −17.1266 7.09406i −0.717983 0.297398i −0.00637952 0.999980i \(-0.502031\pi\)
−0.711603 + 0.702581i \(0.752031\pi\)
\(570\) 30.3117 + 11.7494i 1.26962 + 0.492130i
\(571\) 1.16513 0.778514i 0.0487591 0.0325798i −0.530952 0.847402i \(-0.678165\pi\)
0.579711 + 0.814822i \(0.303165\pi\)
\(572\) 0.247716 0.685253i 0.0103575 0.0286519i
\(573\) −7.59116 38.1634i −0.317125 1.59430i
\(574\) −1.48599 + 2.33818i −0.0620240 + 0.0975936i
\(575\) 1.37153 0.0571968
\(576\) 51.0822 7.06641i 2.12843 0.294434i
\(577\) 28.1108 1.17027 0.585135 0.810936i \(-0.301042\pi\)
0.585135 + 0.810936i \(0.301042\pi\)
\(578\) −3.98718 + 6.27375i −0.165845 + 0.260953i
\(579\) −3.78574 19.0322i −0.157330 0.790952i
\(580\) −8.30968 3.00391i −0.345041 0.124731i
\(581\) −26.6478 + 17.8055i −1.10554 + 0.738695i
\(582\) −16.4597 6.38010i −0.682275 0.264464i
\(583\) −1.71038 0.708464i −0.0708369 0.0293416i
\(584\) 10.1303 + 37.3167i 0.419196 + 1.54418i
\(585\) 1.44984 0.600543i 0.0599435 0.0248294i
\(586\) 0.581918 + 25.3954i 0.0240388 + 1.04908i
\(587\) 11.1359 + 2.21507i 0.459629 + 0.0914258i 0.419473 0.907768i \(-0.362215\pi\)
0.0401553 + 0.999193i \(0.487215\pi\)
\(588\) −14.2685 2.16419i −0.588421 0.0892496i
\(589\) −12.0709 8.06554i −0.497374 0.332335i
\(590\) 1.94164 1.36272i 0.0799360 0.0561021i
\(591\) −50.3561 50.3561i −2.07137 2.07137i
\(592\) −39.2746 4.12748i −1.61417 0.169638i
\(593\) 5.38627 5.38627i 0.221188 0.221188i −0.587811 0.808998i \(-0.700010\pi\)
0.808998 + 0.587811i \(0.200010\pi\)
\(594\) 8.30279 47.3905i 0.340668 1.94446i
\(595\) −8.81411 + 13.1913i −0.361343 + 0.540789i
\(596\) −6.46193 + 1.59621i −0.264691 + 0.0653834i
\(597\) −8.80108 + 44.2460i −0.360204 + 1.81087i
\(598\) 0.386636 0.404770i 0.0158107 0.0165523i
\(599\) −10.9367 26.4036i −0.446863 1.07882i −0.973491 0.228727i \(-0.926544\pi\)
0.526627 0.850096i \(-0.323456\pi\)
\(600\) −1.08761 + 3.23886i −0.0444014 + 0.132226i
\(601\) −8.76796 + 21.1677i −0.357653 + 0.863450i 0.637977 + 0.770056i \(0.279772\pi\)
−0.995629 + 0.0933942i \(0.970228\pi\)
\(602\) 13.2438 5.84469i 0.539775 0.238212i
\(603\) −17.8284 26.6821i −0.726029 1.08658i
\(604\) 4.86346 5.33090i 0.197891 0.216911i
\(605\) 1.43652 0.285741i 0.0584028 0.0116170i
\(606\) 23.3390 5.20092i 0.948083 0.211273i
\(607\) 27.1652i 1.10260i −0.834306 0.551301i \(-0.814132\pi\)
0.834306 0.551301i \(-0.185868\pi\)
\(608\) −5.41245 + 18.9545i −0.219504 + 0.768705i
\(609\) 13.6449i 0.552921i
\(610\) 1.78943 + 8.03000i 0.0724517 + 0.325125i
\(611\) −1.30825 + 0.260227i −0.0529262 + 0.0105277i
\(612\) −44.1339 + 2.02365i −1.78401 + 0.0818014i
\(613\) −4.77987 7.15358i −0.193057 0.288930i 0.722295 0.691585i \(-0.243087\pi\)
−0.915352 + 0.402655i \(0.868087\pi\)
\(614\) 13.5043 + 30.6001i 0.544990 + 1.23492i
\(615\) −2.29285 + 5.53542i −0.0924564 + 0.223210i
\(616\) 12.8720 14.7753i 0.518629 0.595312i
\(617\) −3.84308 9.27803i −0.154717 0.373519i 0.827448 0.561543i \(-0.189792\pi\)
−0.982165 + 0.188023i \(0.939792\pi\)
\(618\) 42.1296 + 40.2421i 1.69470 + 1.61877i
\(619\) −0.956021 + 4.80624i −0.0384257 + 0.193179i −0.995230 0.0975524i \(-0.968899\pi\)
0.956805 + 0.290732i \(0.0938987\pi\)
\(620\) −9.24449 + 15.3099i −0.371268 + 0.614858i
\(621\) 20.5340 30.7313i 0.824000 1.23320i
\(622\) −8.03674 1.40803i −0.322244 0.0564570i
\(623\) 19.8826 19.8826i 0.796578 0.796578i
\(624\) 0.649266 + 1.23402i 0.0259914 + 0.0494002i
\(625\) 16.1789 + 16.1789i 0.647155 + 0.647155i
\(626\) 5.86131 + 8.35137i 0.234265 + 0.333788i
\(627\) 28.6035 + 19.1123i 1.14231 + 0.763270i
\(628\) −17.9509 24.3700i −0.716320 0.972469i
\(629\) 33.1828 + 6.60047i 1.32308 + 0.263178i
\(630\) 42.1924 0.966808i 1.68099 0.0385186i
\(631\) 4.21091 1.74421i 0.167634 0.0694361i −0.297289 0.954788i \(-0.596082\pi\)
0.464922 + 0.885352i \(0.346082\pi\)
\(632\) 11.0958 8.57207i 0.441366 0.340979i
\(633\) −6.93051 2.87071i −0.275463 0.114101i
\(634\) 17.3868 44.8552i 0.690517 1.78143i
\(635\) 9.13903 6.10650i 0.362671 0.242329i
\(636\) 3.20757 1.50426i 0.127188 0.0596480i
\(637\) −0.0519513 0.261177i −0.00205839 0.0103482i
\(638\) −7.89137 5.01523i −0.312422 0.198555i
\(639\) −65.4825 −2.59045
\(640\) 23.6312 + 5.59112i 0.934104 + 0.221008i
\(641\) −18.0849 −0.714310 −0.357155 0.934045i \(-0.616253\pi\)
−0.357155 + 0.934045i \(0.616253\pi\)
\(642\) −25.4542 16.1770i −1.00460 0.638454i
\(643\) −1.42112 7.14443i −0.0560433 0.281749i 0.942594 0.333942i \(-0.108379\pi\)
−0.998637 + 0.0521929i \(0.983379\pi\)
\(644\) 13.6293 6.39178i 0.537070 0.251871i
\(645\) 26.0308 17.3932i 1.02496 0.684857i
\(646\) 6.10359 15.7463i 0.240143 0.619531i
\(647\) 3.05247 + 1.26437i 0.120005 + 0.0497076i 0.441878 0.897075i \(-0.354312\pi\)
−0.321873 + 0.946783i \(0.604312\pi\)
\(648\) 22.8491 + 29.5761i 0.897596 + 1.16186i
\(649\) 2.31910 0.960601i 0.0910325 0.0377069i
\(650\) −0.0630267 + 0.00144421i −0.00247211 + 5.66466e-5i
\(651\) −27.0873 5.38800i −1.06164 0.211172i
\(652\) 17.0022 + 23.0820i 0.665858 + 0.903962i
\(653\) 10.1827 + 6.80383i 0.398478 + 0.266254i 0.738623 0.674118i \(-0.235476\pi\)
−0.340145 + 0.940373i \(0.610476\pi\)
\(654\) 49.7475 + 70.8817i 1.94528 + 2.77169i
\(655\) 18.6424 + 18.6424i 0.728420 + 0.728420i
\(656\) −3.46957 1.07729i −0.135464 0.0420610i
\(657\) −62.3131 + 62.3131i −2.43107 + 2.43107i
\(658\) −35.3343 6.19055i −1.37747 0.241333i
\(659\) −14.7692 + 22.1037i −0.575328 + 0.861039i −0.998997 0.0447783i \(-0.985742\pi\)
0.423669 + 0.905817i \(0.360742\pi\)
\(660\) 21.9059 36.2785i 0.852687 1.41214i
\(661\) 2.82505 14.2025i 0.109882 0.552412i −0.886149 0.463400i \(-0.846629\pi\)
0.996031 0.0890116i \(-0.0283708\pi\)
\(662\) 14.8303 + 14.1659i 0.576397 + 0.550573i
\(663\) −0.457161 1.10368i −0.0177546 0.0428635i
\(664\) −31.6884 27.6066i −1.22975 1.07134i
\(665\) −6.17355 + 14.9043i −0.239400 + 0.577962i
\(666\) −36.3377 82.3393i −1.40806 3.19058i
\(667\) −3.99060 5.97235i −0.154516 0.231250i
\(668\) 13.1705 0.603901i 0.509581 0.0233656i
\(669\) −21.1495 + 4.20690i −0.817687 + 0.162648i
\(670\) −3.28681 14.7495i −0.126980 0.569822i
\(671\) 8.70576i 0.336082i
\(672\) 4.28628 + 37.2541i 0.165347 + 1.43711i
\(673\) 26.9629i 1.03934i −0.854366 0.519671i \(-0.826054\pi\)
0.854366 0.519671i \(-0.173946\pi\)
\(674\) −44.4475 + 9.90479i −1.71205 + 0.381518i
\(675\) −4.08271 + 0.812101i −0.157144 + 0.0312578i
\(676\) 17.5060 19.1886i 0.673309 0.738022i
\(677\) −9.17925 13.7377i −0.352787 0.527984i 0.612054 0.790816i \(-0.290343\pi\)
−0.964842 + 0.262832i \(0.915343\pi\)
\(678\) 36.1668 15.9610i 1.38898 0.612978i
\(679\) 3.35232 8.09321i 0.128650 0.310589i
\(680\) −19.7221 6.62268i −0.756310 0.253968i
\(681\) 20.3398 + 49.1045i 0.779422 + 1.88169i
\(682\) −13.0721 + 13.6852i −0.500556 + 0.524034i
\(683\) −3.67420 + 18.4714i −0.140589 + 0.706790i 0.844611 + 0.535381i \(0.179832\pi\)
−0.985200 + 0.171409i \(0.945168\pi\)
\(684\) −43.6136 + 10.7734i −1.66761 + 0.411929i
\(685\) 1.33172 1.99306i 0.0508823 0.0761508i
\(686\) 4.92064 28.0859i 0.187871 1.07233i
\(687\) 7.55964 7.55964i 0.288418 0.288418i
\(688\) 11.9466 + 14.7525i 0.455460 + 0.562434i
\(689\) 0.0462248 + 0.0462248i 0.00176102 + 0.00176102i
\(690\) 26.6479 18.7025i 1.01447 0.711993i
\(691\) −22.5013 15.0349i −0.855989 0.571953i 0.0483204 0.998832i \(-0.484613\pi\)
−0.904309 + 0.426879i \(0.859613\pi\)
\(692\) 38.8961 + 5.89962i 1.47861 + 0.224270i
\(693\) 43.8015 + 8.71266i 1.66388 + 0.330967i
\(694\) 0.317474 + 13.8548i 0.0120511 + 0.525923i
\(695\) −6.06703 + 2.51304i −0.230135 + 0.0953252i
\(696\) 17.2682 4.68777i 0.654549 0.177690i
\(697\) 2.87554 + 1.19109i 0.108919 + 0.0451156i
\(698\) 44.4331 + 17.2232i 1.68182 + 0.651907i
\(699\) 67.3560 45.0058i 2.54764 1.70228i
\(700\) −1.59446 0.576388i −0.0602648 0.0217854i
\(701\) −4.62224 23.2376i −0.174579 0.877670i −0.964423 0.264362i \(-0.914838\pi\)
0.789844 0.613308i \(-0.210162\pi\)
\(702\) −0.911250 + 1.43383i −0.0343929 + 0.0541166i
\(703\) 34.4028 1.29753
\(704\) 23.1209 + 11.2139i 0.871401 + 0.422641i
\(705\) −77.5801 −2.92184
\(706\) −13.2501 + 20.8488i −0.498676 + 0.784656i
\(707\) 2.31489 + 11.6378i 0.0870605 + 0.437683i
\(708\) −1.63306 + 4.51752i −0.0613742 + 0.169779i
\(709\) 16.3280 10.9100i 0.613211 0.409734i −0.209813 0.977742i \(-0.567285\pi\)
0.823024 + 0.568007i \(0.192285\pi\)
\(710\) −28.7512 11.1445i −1.07901 0.418247i
\(711\) 29.5226 + 12.2286i 1.10718 + 0.458610i
\(712\) 31.9928 + 18.3314i 1.19898 + 0.686998i
\(713\) −13.4318 + 5.56364i −0.503025 + 0.208360i
\(714\) −0.735978 32.1188i −0.0275433 1.20201i
\(715\) 0.766959 + 0.152558i 0.0286826 + 0.00570533i
\(716\) −0.574787 + 3.78956i −0.0214808 + 0.141623i
\(717\) 40.5671 + 27.1061i 1.51501 + 1.01229i
\(718\) 20.9383 14.6953i 0.781409 0.548423i
\(719\) 3.45757 + 3.45757i 0.128946 + 0.128946i 0.768634 0.639689i \(-0.220937\pi\)
−0.639689 + 0.768634i \(0.720937\pi\)
\(720\) 15.7189 + 53.0639i 0.585809 + 1.97758i
\(721\) −20.4433 + 20.4433i −0.761347 + 0.761347i
\(722\) −1.67354 + 9.55219i −0.0622827 + 0.355496i
\(723\) −36.4838 + 54.6019i −1.35685 + 2.03067i
\(724\) −9.38913 38.0099i −0.348944 1.41263i
\(725\) −0.157825 + 0.793438i −0.00586146 + 0.0294676i
\(726\) −2.04868 + 2.14477i −0.0760336 + 0.0795999i
\(727\) 14.0936 + 34.0251i 0.522704 + 1.26192i 0.936217 + 0.351421i \(0.114302\pi\)
−0.413513 + 0.910498i \(0.635698\pi\)
\(728\) −0.619584 + 0.308077i −0.0229633 + 0.0114181i
\(729\) 4.77554 11.5292i 0.176872 0.427007i
\(730\) −37.9648 + 16.7545i −1.40514 + 0.620112i
\(731\) −9.03542 13.5225i −0.334187 0.500146i
\(732\) −12.3076 11.2284i −0.454901 0.415013i
\(733\) −9.93170 + 1.97554i −0.366836 + 0.0729681i −0.375066 0.926998i \(-0.622380\pi\)
0.00823071 + 0.999966i \(0.497380\pi\)
\(734\) −44.3645 + 9.88630i −1.63753 + 0.364910i
\(735\) 15.4879i 0.571281i
\(736\) 12.7714 + 15.0525i 0.470761 + 0.554841i
\(737\) 15.9907i 0.589025i
\(738\) −1.80088 8.08143i −0.0662915 0.297482i
\(739\) 47.0664 9.36209i 1.73137 0.344390i 0.773982 0.633207i \(-0.218262\pi\)
0.957384 + 0.288817i \(0.0932620\pi\)
\(740\) −1.94125 42.3368i −0.0713619 1.55633i
\(741\) −0.674875 1.01002i −0.0247922 0.0371041i
\(742\) 0.709811 + 1.60840i 0.0260580 + 0.0590461i
\(743\) −8.63374 + 20.8437i −0.316741 + 0.764681i 0.682682 + 0.730716i \(0.260814\pi\)
−0.999423 + 0.0339651i \(0.989186\pi\)
\(744\) −2.48724 36.1311i −0.0911865 1.32463i
\(745\) −2.73364 6.59958i −0.100153 0.241790i
\(746\) −4.55447 4.35042i −0.166751 0.159280i
\(747\) 18.6860 93.9409i 0.683685 3.43712i
\(748\) −18.8460 11.3797i −0.689077 0.416083i
\(749\) 8.31486 12.4441i 0.303818 0.454696i
\(750\) −49.5583 8.68259i −1.80961 0.317043i
\(751\) 6.86892 6.86892i 0.250650 0.250650i −0.570587 0.821237i \(-0.693284\pi\)
0.821237 + 0.570587i \(0.193284\pi\)
\(752\) −4.30486 46.8436i −0.156982 1.70821i
\(753\) 0.643583 + 0.643583i 0.0234535 + 0.0234535i
\(754\) 0.189671 + 0.270249i 0.00690741 + 0.00984188i
\(755\) 6.43910 + 4.30247i 0.234343 + 0.156583i
\(756\) −36.7864 + 27.0968i −1.33791 + 0.985503i
\(757\) −20.6195 4.10147i −0.749428 0.149070i −0.194423 0.980918i \(-0.562284\pi\)
−0.555005 + 0.831847i \(0.687284\pi\)
\(758\) −32.3770 + 0.741895i −1.17598 + 0.0269468i
\(759\) 31.8283 13.1837i 1.15529 0.478539i
\(760\) −20.9828 2.69244i −0.761128 0.0976649i
\(761\) −2.27046 0.940453i −0.0823039 0.0340914i 0.341152 0.940008i \(-0.389183\pi\)
−0.423456 + 0.905917i \(0.639183\pi\)
\(762\) −8.04447 + 20.7535i −0.291420 + 0.751819i
\(763\) −35.7303 + 23.8743i −1.29353 + 0.864306i
\(764\) 10.7512 + 22.9249i 0.388964 + 0.829395i
\(765\) −9.25000 46.5029i −0.334435 1.68132i
\(766\) −11.4412 7.27129i −0.413389 0.262722i
\(767\) −0.0886369 −0.00320049
\(768\) −45.6740 + 18.2233i −1.64812 + 0.657575i
\(769\) −3.66124 −0.132028 −0.0660139 0.997819i \(-0.521028\pi\)
−0.0660139 + 0.997819i \(0.521028\pi\)
\(770\) 17.7490 + 11.2801i 0.639629 + 0.406506i
\(771\) −0.574857 2.89000i −0.0207030 0.104081i
\(772\) 5.36166 + 11.4328i 0.192970 + 0.411474i
\(773\) −35.7598 + 23.8939i −1.28619 + 0.859404i −0.995251 0.0973381i \(-0.968967\pi\)
−0.290938 + 0.956742i \(0.593967\pi\)
\(774\) −15.6361 + 40.3387i −0.562028 + 1.44994i
\(775\) 1.51278 + 0.626613i 0.0543406 + 0.0225086i
\(776\) 11.3940 + 1.46203i 0.409020 + 0.0524838i
\(777\) 60.4654 25.0456i 2.16919 0.898506i
\(778\) −17.4592 + 0.400066i −0.625944 + 0.0143431i
\(779\) 3.10408 + 0.617440i 0.111215 + 0.0221221i
\(780\) −1.20487 + 0.887508i −0.0431413 + 0.0317779i
\(781\) −27.1310 18.1283i −0.970822 0.648682i
\(782\) −9.71558 13.8430i −0.347428 0.495026i
\(783\) 15.4153 + 15.4153i 0.550899 + 0.550899i
\(784\) 9.35177 0.859413i 0.333992 0.0306933i
\(785\) 22.9690 22.9690i 0.819799 0.819799i
\(786\) −52.5879 9.21337i −1.87575 0.328630i
\(787\) 17.0932 25.5818i 0.609308 0.911894i −0.390655 0.920537i \(-0.627751\pi\)
0.999963 + 0.00864361i \(0.00275138\pi\)
\(788\) 39.6705 + 23.9541i 1.41320 + 0.853328i
\(789\) 2.88215 14.4895i 0.102607 0.515842i
\(790\) 10.8812 + 10.3937i 0.387135 + 0.369790i
\(791\) 7.50721 + 18.1240i 0.266926 + 0.644415i
\(792\) 4.02198 + 58.4257i 0.142915 + 2.07607i
\(793\) 0.117641 0.284010i 0.00417754 0.0100855i
\(794\) 4.66480 + 10.5702i 0.165547 + 0.375122i
\(795\) 2.11233 + 3.16132i 0.0749166 + 0.112121i
\(796\) −1.34466 29.3257i −0.0476602 1.03942i
\(797\) −3.59248 + 0.714589i −0.127252 + 0.0253120i −0.258306 0.966063i \(-0.583164\pi\)
0.131053 + 0.991375i \(0.458164\pi\)
\(798\) −7.10562 31.8863i −0.251536 1.12876i
\(799\) 40.3013i 1.42576i
\(800\) 0.181659 2.21587i 0.00642262 0.0783427i
\(801\) 84.0337i 2.96919i
\(802\) 12.9516 2.88617i 0.457337 0.101914i
\(803\) −43.0688 + 8.56691i −1.51986 + 0.302320i
\(804\) 22.6065 + 20.6242i 0.797269 + 0.727361i
\(805\) 8.97550 + 13.4328i 0.316345 + 0.473444i
\(806\) 0.611381 0.269813i 0.0215350 0.00950375i
\(807\) −5.10825 + 12.3324i −0.179819 + 0.434121i
\(808\) −13.9327 + 6.92778i −0.490152 + 0.243719i
\(809\) −4.56231 11.0144i −0.160402 0.387245i 0.823161 0.567808i \(-0.192208\pi\)
−0.983564 + 0.180562i \(0.942208\pi\)
\(810\) −27.7046 + 29.0041i −0.973441 + 1.01910i
\(811\) 0.413214 2.07737i 0.0145099 0.0729462i −0.972852 0.231428i \(-0.925660\pi\)
0.987362 + 0.158482i \(0.0506601\pi\)
\(812\) 2.12933 + 8.62014i 0.0747248 + 0.302508i
\(813\) −25.7413 + 38.5246i −0.902788 + 1.35112i
\(814\) 7.73943 44.1750i 0.271267 1.54833i
\(815\) −21.7551 + 21.7551i −0.762047 + 0.762047i
\(816\) 40.3946 11.9659i 1.41410 0.418891i
\(817\) −11.6936 11.6936i −0.409109 0.409109i
\(818\) −9.36252 + 6.57098i −0.327353 + 0.229749i
\(819\) −1.31121 0.876123i −0.0458174 0.0306142i
\(820\) 0.584680 3.85478i 0.0204179 0.134615i
\(821\) −46.0479 9.15949i −1.60708 0.319668i −0.691678 0.722206i \(-0.743128\pi\)
−0.915403 + 0.402538i \(0.868128\pi\)
\(822\) 0.111198 + 4.85280i 0.00387849 + 0.169261i
\(823\) 43.8242 18.1526i 1.52761 0.632759i 0.548515 0.836141i \(-0.315193\pi\)
0.979099 + 0.203382i \(0.0651933\pi\)
\(824\) −32.8951 18.8484i −1.14595 0.656613i
\(825\) −3.58471 1.48483i −0.124804 0.0516953i
\(826\) −2.22260 0.861527i −0.0773343 0.0299763i
\(827\) −7.79161 + 5.20619i −0.270941 + 0.181037i −0.683617 0.729841i \(-0.739594\pi\)
0.412676 + 0.910878i \(0.364594\pi\)
\(828\) −15.2947 + 42.3096i −0.531528 + 1.47036i
\(829\) 10.9119 + 54.8578i 0.378986 + 1.90529i 0.422747 + 0.906248i \(0.361066\pi\)
−0.0437617 + 0.999042i \(0.513934\pi\)
\(830\) 24.1923 38.0662i 0.839728 1.32130i
\(831\) −1.18297 −0.0410369
\(832\) −0.602743 0.678266i −0.0208964 0.0235147i
\(833\) −8.04568 −0.278766
\(834\) 7.13286 11.2234i 0.246991 0.388635i
\(835\) 2.76040 + 13.8774i 0.0955274 + 0.480249i
\(836\) −21.0527 7.61045i −0.728123 0.263213i
\(837\) 36.6889 24.5147i 1.26815 0.847354i
\(838\) −3.85783 1.49537i −0.133267 0.0516568i
\(839\) 38.4928 + 15.9443i 1.32892 + 0.550457i 0.930347 0.366680i \(-0.119506\pi\)
0.398573 + 0.917137i \(0.369506\pi\)
\(840\) −38.8390 + 10.5436i −1.34007 + 0.363788i
\(841\) −22.8783 + 9.47649i −0.788906 + 0.326775i
\(842\) −0.694152 30.2934i −0.0239221 1.04398i
\(843\) 12.4807 + 2.48256i 0.429857 + 0.0855038i
\(844\) 4.82631 + 0.732037i 0.166128 + 0.0251978i
\(845\) 23.1776 + 15.4867i 0.797332 + 0.532760i
\(846\) 87.7524 61.5880i 3.01699 2.11744i
\(847\) −1.04074 1.04074i −0.0357604 0.0357604i
\(848\) −1.79163 + 1.45086i −0.0615247 + 0.0498229i
\(849\) 19.8020 19.8020i 0.679604 0.679604i
\(850\) −0.328706 + 1.87618i −0.0112745 + 0.0643525i
\(851\) 19.1407 28.6461i 0.656135 0.981976i
\(852\) 60.6211 14.9745i 2.07684 0.513018i
\(853\) −3.22130 + 16.1946i −0.110295 + 0.554491i 0.885636 + 0.464379i \(0.153723\pi\)
−0.995932 + 0.0901121i \(0.971277\pi\)
\(854\) 5.71038 5.97822i 0.195405 0.204570i
\(855\) −18.4502 44.5427i −0.630984 1.52333i
\(856\) 18.6050 + 6.24756i 0.635907 + 0.213537i
\(857\) −3.26603 + 7.88490i −0.111566 + 0.269343i −0.969794 0.243924i \(-0.921565\pi\)
0.858229 + 0.513267i \(0.171565\pi\)
\(858\) −1.44874 + 0.639354i −0.0494592 + 0.0218272i
\(859\) −3.93549 5.88988i −0.134277 0.200960i 0.758237 0.651979i \(-0.226061\pi\)
−0.892515 + 0.451019i \(0.851061\pi\)
\(860\) −13.7306 + 15.0503i −0.468209 + 0.513210i
\(861\) 5.90515 1.17461i 0.201247 0.0400305i
\(862\) 17.0929 3.80903i 0.582187 0.129736i
\(863\) 17.7071i 0.602756i 0.953505 + 0.301378i \(0.0974466\pi\)
−0.953505 + 0.301378i \(0.902553\pi\)
\(864\) −46.9302 37.2454i −1.59660 1.26711i
\(865\) 42.2205i 1.43554i
\(866\) −6.06623 27.2221i −0.206139 0.925044i
\(867\) 15.8446 3.15168i 0.538110 0.107037i
\(868\) 17.9531 0.823198i 0.609369 0.0279412i
\(869\) 8.84650 + 13.2397i 0.300097 + 0.449127i
\(870\) 7.75309 + 17.5681i 0.262854 + 0.595614i
\(871\) −0.216082 + 0.521667i −0.00732165 + 0.0176760i
\(872\) −42.4891 37.0160i −1.43886 1.25352i
\(873\) 10.0187 + 24.1873i 0.339082 + 0.818616i
\(874\) −12.4356 11.8784i −0.420639 0.401794i
\(875\) 4.87086 24.4875i 0.164665 0.827827i
\(876\) 43.4373 71.9368i 1.46761 2.43052i
\(877\) 23.3455 34.9391i 0.788323 1.17981i −0.191804 0.981433i \(-0.561434\pi\)
0.980126 0.198375i \(-0.0635664\pi\)
\(878\) −14.8369 2.59942i −0.500722 0.0877263i
\(879\) 39.0360 39.0360i 1.31665 1.31665i
\(880\) −8.17763 + 26.3373i −0.275668 + 0.887831i
\(881\) −22.0191 22.0191i −0.741844 0.741844i 0.231089 0.972933i \(-0.425771\pi\)
−0.972933 + 0.231089i \(0.925771\pi\)
\(882\) 12.2953 + 17.5187i 0.414005 + 0.589886i
\(883\) −37.7422 25.2185i −1.27012 0.848670i −0.276457 0.961026i \(-0.589160\pi\)
−0.993668 + 0.112356i \(0.964160\pi\)
\(884\) 0.461042 + 0.625907i 0.0155065 + 0.0210515i
\(885\) −5.05617 1.00573i −0.169961 0.0338074i
\(886\) 27.8190 0.637453i 0.934599 0.0214156i
\(887\) −44.8061 + 18.5593i −1.50444 + 0.623160i −0.974402 0.224812i \(-0.927823\pi\)
−0.530040 + 0.847973i \(0.677823\pi\)
\(888\) 52.4693 + 67.9168i 1.76075 + 2.27914i
\(889\) −10.2045 4.22683i −0.342247 0.141763i
\(890\) −14.3018 + 36.8964i −0.479398 + 1.23677i
\(891\) −35.2908 + 23.5806i −1.18229 + 0.789979i
\(892\) 12.7046 5.95813i 0.425382 0.199493i
\(893\) 7.99485 + 40.1928i 0.267537 + 1.34500i
\(894\) 12.2086 + 7.75897i 0.408316 + 0.259499i
\(895\) −4.11345 −0.137497
\(896\) −8.52145 22.8663i −0.284682 0.763909i
\(897\) −1.21649 −0.0406175
\(898\) 36.9358 + 23.4739i 1.23256 + 0.783335i
\(899\) −1.67297 8.41060i −0.0557968 0.280509i
\(900\) 4.58754 2.15144i 0.152918 0.0717145i
\(901\) 1.64224 1.09731i 0.0547111 0.0365568i
\(902\) 1.49113 3.84689i 0.0496493 0.128087i
\(903\) −29.0655 12.0393i −0.967239 0.400644i
\(904\) −20.3575 + 15.7272i −0.677080 + 0.523080i
\(905\) 38.8196 16.0796i 1.29041 0.534504i
\(906\) −15.6783 + 0.359256i −0.520875 + 0.0119355i
\(907\) −47.1400 9.37673i −1.56526 0.311349i −0.665047 0.746802i \(-0.731588\pi\)
−0.900212 + 0.435453i \(0.856588\pi\)
\(908\) −20.5125 27.8475i −0.680730 0.924153i
\(909\) −29.4855 19.7016i −0.977972 0.653460i
\(910\) −0.426601 0.607834i −0.0141417 0.0201495i
\(911\) 36.2741 + 36.2741i 1.20182 + 1.20182i 0.973614 + 0.228202i \(0.0732847\pi\)
0.228202 + 0.973614i \(0.426715\pi\)
\(912\) 37.9121 19.9471i 1.25540 0.660514i
\(913\) 33.7489 33.7489i 1.11693 1.11693i
\(914\) 54.8824 + 9.61537i 1.81535 + 0.318048i
\(915\) 9.93321 14.8661i 0.328382 0.491458i
\(916\) −3.59607 + 5.95548i −0.118818 + 0.196774i
\(917\) 5.16862 25.9844i 0.170683 0.858081i
\(918\) 37.1176 + 35.4546i 1.22506 + 1.17018i
\(919\) 11.2124 + 27.0692i 0.369864 + 0.892932i 0.993772 + 0.111433i \(0.0355442\pi\)
−0.623907 + 0.781498i \(0.714456\pi\)
\(920\) −13.9161 + 15.9737i −0.458801 + 0.526638i
\(921\) 27.8172 67.1567i 0.916609 2.21289i
\(922\) 4.96470 + 11.2497i 0.163504 + 0.370490i
\(923\) 0.640131 + 0.958024i 0.0210702 + 0.0315337i
\(924\) −42.5421 + 1.95067i −1.39953 + 0.0641722i
\(925\) −3.80569 + 0.756999i −0.125130 + 0.0248900i
\(926\) 10.9771 + 49.2593i 0.360729 + 1.61876i
\(927\) 86.4036i 2.83787i
\(928\) −10.1776 + 5.65623i −0.334095 + 0.185675i
\(929\) 42.1312i 1.38228i 0.722722 + 0.691139i \(0.242891\pi\)
−0.722722 + 0.691139i \(0.757109\pi\)
\(930\) 37.9369 8.45394i 1.24400 0.277216i
\(931\) −8.02402 + 1.59608i −0.262976 + 0.0523093i
\(932\) −35.5286 + 38.9434i −1.16378 + 1.27563i
\(933\) 9.85133 + 14.7436i 0.322518 + 0.482682i
\(934\) 47.7706 21.0820i 1.56310 0.689823i
\(935\) 9.04148 21.8281i 0.295688 0.713854i
\(936\) 0.658295 1.96038i 0.0215170 0.0640771i
\(937\) 11.2961 + 27.2713i 0.369028 + 0.890913i 0.993910 + 0.110194i \(0.0351472\pi\)
−0.624882 + 0.780719i \(0.714853\pi\)
\(938\) −10.4888 + 10.9808i −0.342471 + 0.358534i
\(939\) 4.32586 21.7476i 0.141169 0.709705i
\(940\) 49.0109 12.1066i 1.59856 0.394873i
\(941\) −6.97461 + 10.4382i −0.227366 + 0.340277i −0.927559 0.373676i \(-0.878097\pi\)
0.700193 + 0.713953i \(0.253097\pi\)
\(942\) −11.3516 + 64.7926i −0.369856 + 2.11106i
\(943\) 2.24114 2.24114i 0.0729815 0.0729815i
\(944\) 0.326710 3.10877i 0.0106335 0.101182i
\(945\) −34.6716 34.6716i −1.12787 1.12787i
\(946\) −17.6459 + 12.3846i −0.573717 + 0.402657i
\(947\) −12.5016 8.35333i −0.406249 0.271447i 0.335612 0.942000i \(-0.391057\pi\)
−0.741861 + 0.670553i \(0.766057\pi\)
\(948\) −30.1273 4.56959i −0.978488 0.148413i
\(949\) 1.52080 + 0.302507i 0.0493674 + 0.00981979i
\(950\) 0.0443698 + 1.93634i 0.00143955 + 0.0628232i
\(951\) −96.5906 + 40.0091i −3.13216 + 1.29738i
\(952\) 5.47717 + 20.1761i 0.177516 + 0.653910i
\(953\) 42.7086 + 17.6905i 1.38347 + 0.573051i 0.945407 0.325893i \(-0.105665\pi\)
0.438062 + 0.898945i \(0.355665\pi\)
\(954\) −4.89896 1.89894i −0.158610 0.0614803i
\(955\) −22.5944 + 15.0971i −0.731138 + 0.488531i
\(956\) −29.8581 10.7936i −0.965680 0.349089i
\(957\) 3.96431 + 19.9299i 0.128148 + 0.644243i
\(958\) −16.9788 + 26.7158i −0.548560 + 0.863149i
\(959\) −2.40877 −0.0777832
\(960\) −26.6866 45.5299i −0.861305 1.46947i
\(961\) 13.6430 0.440098
\(962\) −0.849420 + 1.33655i −0.0273864 + 0.0430920i
\(963\) 8.72606 + 43.8688i 0.281193 + 1.41365i
\(964\) 14.5278 40.1880i 0.467907 1.29437i
\(965\) −11.2679 + 7.52898i −0.362727 + 0.242367i
\(966\) −30.5040 11.8240i −0.981450 0.380430i
\(967\) −35.3386 14.6377i −1.13641 0.470718i −0.266457 0.963847i \(-0.585853\pi\)
−0.869956 + 0.493129i \(0.835853\pi\)
\(968\) 0.959549 1.67465i 0.0308411 0.0538254i
\(969\) −33.9079 + 14.0451i −1.08928 + 0.451194i
\(970\) 0.282417 + 12.3249i 0.00906787 + 0.395730i
\(971\) 0.620988 + 0.123522i 0.0199285 + 0.00396402i 0.205044 0.978753i \(-0.434266\pi\)
−0.185116 + 0.982717i \(0.559266\pi\)
\(972\) 2.65062 17.4755i 0.0850186 0.560526i
\(973\) 5.48692 + 3.66624i 0.175903 + 0.117534i
\(974\) −40.2383 + 28.2408i −1.28932 + 0.904893i
\(975\) 0.0968801 + 0.0968801i 0.00310265 + 0.00310265i
\(976\) 9.52748 + 5.17286i 0.304967 + 0.165579i
\(977\) 14.4692 14.4692i 0.462911 0.462911i −0.436697 0.899608i \(-0.643852\pi\)
0.899608 + 0.436697i \(0.143852\pi\)
\(978\) 10.7517 61.3682i 0.343801 1.96234i
\(979\) −23.2641 + 34.8172i −0.743524 + 1.11276i
\(980\) 2.41694 + 9.78445i 0.0772062 + 0.312553i
\(981\) 25.0549 125.960i 0.799942 4.02158i
\(982\) −25.5342 + 26.7319i −0.814831 + 0.853049i
\(983\) −6.41367 15.4840i −0.204564 0.493862i 0.787987 0.615692i \(-0.211124\pi\)
−0.992551 + 0.121831i \(0.961124\pi\)
\(984\) 3.51524 + 7.06964i 0.112062 + 0.225372i
\(985\) −19.0322 + 45.9477i −0.606415 + 1.46402i
\(986\) 9.12627 4.02757i 0.290640 0.128264i
\(987\) 43.3123 + 64.8214i 1.37864 + 2.06329i
\(988\) 0.583967 + 0.532762i 0.0185785 + 0.0169494i
\(989\) −16.2429 + 3.23091i −0.516494 + 0.102737i
\(990\) −61.3457 + 13.6704i −1.94970 + 0.434475i
\(991\) 53.4671i 1.69844i −0.528041 0.849219i \(-0.677073\pi\)
0.528041 0.849219i \(-0.322927\pi\)
\(992\) 7.20966 + 22.4375i 0.228907 + 0.712393i
\(993\) 44.5709i 1.41441i
\(994\) 6.73980 + 30.2447i 0.213774 + 0.959304i
\(995\) 30.8998 6.14636i 0.979590 0.194853i
\(996\) 4.18359 + 91.2399i 0.132562 + 2.89105i
\(997\) −17.9595 26.8783i −0.568783 0.851244i 0.429883 0.902885i \(-0.358555\pi\)
−0.998666 + 0.0516411i \(0.983555\pi\)
\(998\) −19.1822 43.4659i −0.607203 1.37589i
\(999\) −40.0155 + 96.6059i −1.26603 + 3.05648i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 64.2.i.a.21.6 56
3.2 odd 2 576.2.bd.a.469.2 56
4.3 odd 2 256.2.i.a.177.7 56
8.3 odd 2 512.2.i.a.97.1 56
8.5 even 2 512.2.i.b.97.7 56
64.3 odd 16 256.2.i.a.81.7 56
64.29 even 16 512.2.i.b.417.7 56
64.35 odd 16 512.2.i.a.417.1 56
64.61 even 16 inner 64.2.i.a.61.6 yes 56
192.125 odd 16 576.2.bd.a.253.2 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.i.a.21.6 56 1.1 even 1 trivial
64.2.i.a.61.6 yes 56 64.61 even 16 inner
256.2.i.a.81.7 56 64.3 odd 16
256.2.i.a.177.7 56 4.3 odd 2
512.2.i.a.97.1 56 8.3 odd 2
512.2.i.a.417.1 56 64.35 odd 16
512.2.i.b.97.7 56 8.5 even 2
512.2.i.b.417.7 56 64.29 even 16
576.2.bd.a.253.2 56 192.125 odd 16
576.2.bd.a.469.2 56 3.2 odd 2