Properties

Label 64.14.a.m.1.3
Level $64$
Weight $14$
Character 64.1
Self dual yes
Analytic conductor $68.628$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [64,14,Mod(1,64)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(64, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("64.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 64.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.6277945292\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2195x - 37995 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 32)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(54.3044\) of defining polynomial
Character \(\chi\) \(=\) 64.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1553.74 q^{3} -4052.28 q^{5} -23239.8 q^{7} +819790. q^{9} +176072. q^{11} -2.27385e7 q^{13} -6.29619e6 q^{15} +1.40715e8 q^{17} -7.16239e7 q^{19} -3.61086e7 q^{21} -7.31400e8 q^{23} -1.20428e9 q^{25} -1.20342e9 q^{27} +2.69757e9 q^{29} -8.20983e9 q^{31} +2.73570e8 q^{33} +9.41740e7 q^{35} -1.53462e10 q^{37} -3.53298e10 q^{39} +2.07764e10 q^{41} +5.27322e10 q^{43} -3.32202e9 q^{45} -5.64800e10 q^{47} -9.63489e10 q^{49} +2.18635e11 q^{51} +9.36107e10 q^{53} -7.13491e8 q^{55} -1.11285e11 q^{57} +4.12378e11 q^{59} -4.02716e11 q^{61} -1.90517e10 q^{63} +9.21428e10 q^{65} -5.18649e11 q^{67} -1.13641e12 q^{69} +3.19747e11 q^{71} -1.07513e12 q^{73} -1.87114e12 q^{75} -4.09186e9 q^{77} -2.17970e11 q^{79} -3.17682e12 q^{81} -4.92681e12 q^{83} -5.70216e11 q^{85} +4.19132e12 q^{87} -4.56960e12 q^{89} +5.28438e11 q^{91} -1.27560e13 q^{93} +2.90240e11 q^{95} -3.61421e12 q^{97} +1.44342e11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 520 q^{3} - 11594 q^{5} - 96304 q^{7} - 196793 q^{9} + 1923816 q^{11} + 11211006 q^{13} + 10944368 q^{15} - 16892538 q^{17} + 74665048 q^{19} + 115146880 q^{21} - 486642576 q^{23} + 442696461 q^{25}+ \cdots + 2082116453576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1553.74 1.23053 0.615263 0.788322i \(-0.289050\pi\)
0.615263 + 0.788322i \(0.289050\pi\)
\(4\) 0 0
\(5\) −4052.28 −0.115983 −0.0579915 0.998317i \(-0.518470\pi\)
−0.0579915 + 0.998317i \(0.518470\pi\)
\(6\) 0 0
\(7\) −23239.8 −0.0746611 −0.0373306 0.999303i \(-0.511885\pi\)
−0.0373306 + 0.999303i \(0.511885\pi\)
\(8\) 0 0
\(9\) 819790. 0.514193
\(10\) 0 0
\(11\) 176072. 0.0299666 0.0149833 0.999888i \(-0.495230\pi\)
0.0149833 + 0.999888i \(0.495230\pi\)
\(12\) 0 0
\(13\) −2.27385e7 −1.30656 −0.653282 0.757115i \(-0.726608\pi\)
−0.653282 + 0.757115i \(0.726608\pi\)
\(14\) 0 0
\(15\) −6.29619e6 −0.142720
\(16\) 0 0
\(17\) 1.40715e8 1.41391 0.706955 0.707258i \(-0.250068\pi\)
0.706955 + 0.707258i \(0.250068\pi\)
\(18\) 0 0
\(19\) −7.16239e7 −0.349268 −0.174634 0.984633i \(-0.555874\pi\)
−0.174634 + 0.984633i \(0.555874\pi\)
\(20\) 0 0
\(21\) −3.61086e7 −0.0918724
\(22\) 0 0
\(23\) −7.31400e8 −1.03021 −0.515103 0.857128i \(-0.672246\pi\)
−0.515103 + 0.857128i \(0.672246\pi\)
\(24\) 0 0
\(25\) −1.20428e9 −0.986548
\(26\) 0 0
\(27\) −1.20342e9 −0.597797
\(28\) 0 0
\(29\) 2.69757e9 0.842142 0.421071 0.907028i \(-0.361654\pi\)
0.421071 + 0.907028i \(0.361654\pi\)
\(30\) 0 0
\(31\) −8.20983e9 −1.66143 −0.830717 0.556694i \(-0.812069\pi\)
−0.830717 + 0.556694i \(0.812069\pi\)
\(32\) 0 0
\(33\) 2.73570e8 0.0368746
\(34\) 0 0
\(35\) 9.41740e7 0.00865942
\(36\) 0 0
\(37\) −1.53462e10 −0.983310 −0.491655 0.870790i \(-0.663608\pi\)
−0.491655 + 0.870790i \(0.663608\pi\)
\(38\) 0 0
\(39\) −3.53298e10 −1.60776
\(40\) 0 0
\(41\) 2.07764e10 0.683085 0.341543 0.939866i \(-0.389051\pi\)
0.341543 + 0.939866i \(0.389051\pi\)
\(42\) 0 0
\(43\) 5.27322e10 1.27213 0.636064 0.771637i \(-0.280562\pi\)
0.636064 + 0.771637i \(0.280562\pi\)
\(44\) 0 0
\(45\) −3.32202e9 −0.0596377
\(46\) 0 0
\(47\) −5.64800e10 −0.764290 −0.382145 0.924102i \(-0.624815\pi\)
−0.382145 + 0.924102i \(0.624815\pi\)
\(48\) 0 0
\(49\) −9.63489e10 −0.994426
\(50\) 0 0
\(51\) 2.18635e11 1.73985
\(52\) 0 0
\(53\) 9.36107e10 0.580140 0.290070 0.957005i \(-0.406321\pi\)
0.290070 + 0.957005i \(0.406321\pi\)
\(54\) 0 0
\(55\) −7.13491e8 −0.00347561
\(56\) 0 0
\(57\) −1.11285e11 −0.429784
\(58\) 0 0
\(59\) 4.12378e11 1.27279 0.636396 0.771363i \(-0.280424\pi\)
0.636396 + 0.771363i \(0.280424\pi\)
\(60\) 0 0
\(61\) −4.02716e11 −1.00082 −0.500408 0.865790i \(-0.666817\pi\)
−0.500408 + 0.865790i \(0.666817\pi\)
\(62\) 0 0
\(63\) −1.90517e10 −0.0383903
\(64\) 0 0
\(65\) 9.21428e10 0.151539
\(66\) 0 0
\(67\) −5.18649e11 −0.700466 −0.350233 0.936663i \(-0.613898\pi\)
−0.350233 + 0.936663i \(0.613898\pi\)
\(68\) 0 0
\(69\) −1.13641e12 −1.26769
\(70\) 0 0
\(71\) 3.19747e11 0.296229 0.148114 0.988970i \(-0.452680\pi\)
0.148114 + 0.988970i \(0.452680\pi\)
\(72\) 0 0
\(73\) −1.07513e12 −0.831504 −0.415752 0.909478i \(-0.636481\pi\)
−0.415752 + 0.909478i \(0.636481\pi\)
\(74\) 0 0
\(75\) −1.87114e12 −1.21397
\(76\) 0 0
\(77\) −4.09186e9 −0.00223734
\(78\) 0 0
\(79\) −2.17970e11 −0.100884 −0.0504419 0.998727i \(-0.516063\pi\)
−0.0504419 + 0.998727i \(0.516063\pi\)
\(80\) 0 0
\(81\) −3.17682e12 −1.24980
\(82\) 0 0
\(83\) −4.92681e12 −1.65409 −0.827044 0.562138i \(-0.809979\pi\)
−0.827044 + 0.562138i \(0.809979\pi\)
\(84\) 0 0
\(85\) −5.70216e11 −0.163990
\(86\) 0 0
\(87\) 4.19132e12 1.03628
\(88\) 0 0
\(89\) −4.56960e12 −0.974638 −0.487319 0.873224i \(-0.662025\pi\)
−0.487319 + 0.873224i \(0.662025\pi\)
\(90\) 0 0
\(91\) 5.28438e11 0.0975495
\(92\) 0 0
\(93\) −1.27560e13 −2.04444
\(94\) 0 0
\(95\) 2.90240e11 0.0405092
\(96\) 0 0
\(97\) −3.61421e12 −0.440552 −0.220276 0.975438i \(-0.570696\pi\)
−0.220276 + 0.975438i \(0.570696\pi\)
\(98\) 0 0
\(99\) 1.44342e11 0.0154086
\(100\) 0 0
\(101\) −1.04974e13 −0.983996 −0.491998 0.870596i \(-0.663733\pi\)
−0.491998 + 0.870596i \(0.663733\pi\)
\(102\) 0 0
\(103\) 1.09103e13 0.900319 0.450159 0.892948i \(-0.351367\pi\)
0.450159 + 0.892948i \(0.351367\pi\)
\(104\) 0 0
\(105\) 1.46322e11 0.0106556
\(106\) 0 0
\(107\) 2.95074e13 1.90080 0.950399 0.311033i \(-0.100675\pi\)
0.950399 + 0.311033i \(0.100675\pi\)
\(108\) 0 0
\(109\) 4.32360e12 0.246930 0.123465 0.992349i \(-0.460599\pi\)
0.123465 + 0.992349i \(0.460599\pi\)
\(110\) 0 0
\(111\) −2.38441e13 −1.20999
\(112\) 0 0
\(113\) −3.50360e13 −1.58309 −0.791543 0.611113i \(-0.790722\pi\)
−0.791543 + 0.611113i \(0.790722\pi\)
\(114\) 0 0
\(115\) 2.96383e12 0.119486
\(116\) 0 0
\(117\) −1.86408e13 −0.671826
\(118\) 0 0
\(119\) −3.27018e12 −0.105564
\(120\) 0 0
\(121\) −3.44917e13 −0.999102
\(122\) 0 0
\(123\) 3.22811e13 0.840554
\(124\) 0 0
\(125\) 9.82671e12 0.230406
\(126\) 0 0
\(127\) −8.01799e13 −1.69567 −0.847835 0.530261i \(-0.822094\pi\)
−0.847835 + 0.530261i \(0.822094\pi\)
\(128\) 0 0
\(129\) 8.19322e13 1.56539
\(130\) 0 0
\(131\) −6.25517e13 −1.08137 −0.540686 0.841224i \(-0.681835\pi\)
−0.540686 + 0.841224i \(0.681835\pi\)
\(132\) 0 0
\(133\) 1.66452e12 0.0260768
\(134\) 0 0
\(135\) 4.87661e12 0.0693343
\(136\) 0 0
\(137\) 1.80014e13 0.232607 0.116303 0.993214i \(-0.462896\pi\)
0.116303 + 0.993214i \(0.462896\pi\)
\(138\) 0 0
\(139\) 1.14479e13 0.134626 0.0673129 0.997732i \(-0.478557\pi\)
0.0673129 + 0.997732i \(0.478557\pi\)
\(140\) 0 0
\(141\) −8.77553e13 −0.940479
\(142\) 0 0
\(143\) −4.00361e12 −0.0391532
\(144\) 0 0
\(145\) −1.09313e13 −0.0976741
\(146\) 0 0
\(147\) −1.49701e14 −1.22367
\(148\) 0 0
\(149\) 2.03204e14 1.52133 0.760663 0.649147i \(-0.224874\pi\)
0.760663 + 0.649147i \(0.224874\pi\)
\(150\) 0 0
\(151\) 2.28427e14 1.56818 0.784091 0.620646i \(-0.213129\pi\)
0.784091 + 0.620646i \(0.213129\pi\)
\(152\) 0 0
\(153\) 1.15357e14 0.727024
\(154\) 0 0
\(155\) 3.32685e13 0.192698
\(156\) 0 0
\(157\) 3.02124e14 1.61004 0.805022 0.593244i \(-0.202153\pi\)
0.805022 + 0.593244i \(0.202153\pi\)
\(158\) 0 0
\(159\) 1.45447e14 0.713877
\(160\) 0 0
\(161\) 1.69976e13 0.0769163
\(162\) 0 0
\(163\) 7.44730e12 0.0311013 0.0155507 0.999879i \(-0.495050\pi\)
0.0155507 + 0.999879i \(0.495050\pi\)
\(164\) 0 0
\(165\) −1.10858e12 −0.00427683
\(166\) 0 0
\(167\) 2.80750e14 1.00153 0.500764 0.865584i \(-0.333053\pi\)
0.500764 + 0.865584i \(0.333053\pi\)
\(168\) 0 0
\(169\) 2.14166e14 0.707108
\(170\) 0 0
\(171\) −5.87165e13 −0.179592
\(172\) 0 0
\(173\) 6.36564e13 0.180527 0.0902635 0.995918i \(-0.471229\pi\)
0.0902635 + 0.995918i \(0.471229\pi\)
\(174\) 0 0
\(175\) 2.79872e13 0.0736568
\(176\) 0 0
\(177\) 6.40729e14 1.56620
\(178\) 0 0
\(179\) 1.73421e14 0.394054 0.197027 0.980398i \(-0.436871\pi\)
0.197027 + 0.980398i \(0.436871\pi\)
\(180\) 0 0
\(181\) 6.07821e13 0.128489 0.0642443 0.997934i \(-0.479536\pi\)
0.0642443 + 0.997934i \(0.479536\pi\)
\(182\) 0 0
\(183\) −6.25716e14 −1.23153
\(184\) 0 0
\(185\) 6.21872e13 0.114047
\(186\) 0 0
\(187\) 2.47759e13 0.0423700
\(188\) 0 0
\(189\) 2.79673e13 0.0446322
\(190\) 0 0
\(191\) −3.14388e14 −0.468543 −0.234271 0.972171i \(-0.575270\pi\)
−0.234271 + 0.972171i \(0.575270\pi\)
\(192\) 0 0
\(193\) −3.24465e14 −0.451903 −0.225951 0.974139i \(-0.572549\pi\)
−0.225951 + 0.974139i \(0.572549\pi\)
\(194\) 0 0
\(195\) 1.43166e14 0.186473
\(196\) 0 0
\(197\) 4.61063e14 0.561992 0.280996 0.959709i \(-0.409335\pi\)
0.280996 + 0.959709i \(0.409335\pi\)
\(198\) 0 0
\(199\) −1.29671e15 −1.48013 −0.740063 0.672538i \(-0.765204\pi\)
−0.740063 + 0.672538i \(0.765204\pi\)
\(200\) 0 0
\(201\) −8.05846e14 −0.861941
\(202\) 0 0
\(203\) −6.26908e13 −0.0628753
\(204\) 0 0
\(205\) −8.41917e13 −0.0792262
\(206\) 0 0
\(207\) −5.99594e14 −0.529725
\(208\) 0 0
\(209\) −1.26109e13 −0.0104664
\(210\) 0 0
\(211\) 1.56891e15 1.22394 0.611972 0.790880i \(-0.290377\pi\)
0.611972 + 0.790880i \(0.290377\pi\)
\(212\) 0 0
\(213\) 4.96804e14 0.364517
\(214\) 0 0
\(215\) −2.13685e14 −0.147545
\(216\) 0 0
\(217\) 1.90795e14 0.124045
\(218\) 0 0
\(219\) −1.67048e15 −1.02319
\(220\) 0 0
\(221\) −3.19965e15 −1.84736
\(222\) 0 0
\(223\) 2.75415e15 1.49971 0.749853 0.661604i \(-0.230124\pi\)
0.749853 + 0.661604i \(0.230124\pi\)
\(224\) 0 0
\(225\) −9.87259e14 −0.507276
\(226\) 0 0
\(227\) 1.58251e15 0.767679 0.383839 0.923400i \(-0.374602\pi\)
0.383839 + 0.923400i \(0.374602\pi\)
\(228\) 0 0
\(229\) −2.47800e15 −1.13546 −0.567729 0.823215i \(-0.692178\pi\)
−0.567729 + 0.823215i \(0.692178\pi\)
\(230\) 0 0
\(231\) −6.35770e12 −0.00275310
\(232\) 0 0
\(233\) −1.56530e15 −0.640890 −0.320445 0.947267i \(-0.603832\pi\)
−0.320445 + 0.947267i \(0.603832\pi\)
\(234\) 0 0
\(235\) 2.28872e14 0.0886446
\(236\) 0 0
\(237\) −3.38670e14 −0.124140
\(238\) 0 0
\(239\) 4.54070e15 1.57593 0.787964 0.615721i \(-0.211135\pi\)
0.787964 + 0.615721i \(0.211135\pi\)
\(240\) 0 0
\(241\) 4.59058e14 0.150923 0.0754617 0.997149i \(-0.475957\pi\)
0.0754617 + 0.997149i \(0.475957\pi\)
\(242\) 0 0
\(243\) −3.01731e15 −0.940112
\(244\) 0 0
\(245\) 3.90433e14 0.115336
\(246\) 0 0
\(247\) 1.62862e15 0.456341
\(248\) 0 0
\(249\) −7.65499e15 −2.03540
\(250\) 0 0
\(251\) −2.50049e15 −0.631169 −0.315584 0.948898i \(-0.602201\pi\)
−0.315584 + 0.948898i \(0.602201\pi\)
\(252\) 0 0
\(253\) −1.28779e14 −0.0308717
\(254\) 0 0
\(255\) −8.85968e14 −0.201793
\(256\) 0 0
\(257\) 1.52977e15 0.331178 0.165589 0.986195i \(-0.447048\pi\)
0.165589 + 0.986195i \(0.447048\pi\)
\(258\) 0 0
\(259\) 3.56643e14 0.0734151
\(260\) 0 0
\(261\) 2.21144e15 0.433024
\(262\) 0 0
\(263\) 7.02008e14 0.130807 0.0654033 0.997859i \(-0.479167\pi\)
0.0654033 + 0.997859i \(0.479167\pi\)
\(264\) 0 0
\(265\) −3.79337e14 −0.0672863
\(266\) 0 0
\(267\) −7.09998e15 −1.19932
\(268\) 0 0
\(269\) −6.45337e15 −1.03848 −0.519239 0.854629i \(-0.673784\pi\)
−0.519239 + 0.854629i \(0.673784\pi\)
\(270\) 0 0
\(271\) −7.59564e15 −1.16483 −0.582417 0.812890i \(-0.697893\pi\)
−0.582417 + 0.812890i \(0.697893\pi\)
\(272\) 0 0
\(273\) 8.21057e14 0.120037
\(274\) 0 0
\(275\) −2.12040e14 −0.0295634
\(276\) 0 0
\(277\) −2.40405e15 −0.319760 −0.159880 0.987136i \(-0.551111\pi\)
−0.159880 + 0.987136i \(0.551111\pi\)
\(278\) 0 0
\(279\) −6.73034e15 −0.854299
\(280\) 0 0
\(281\) 7.15842e15 0.867413 0.433707 0.901054i \(-0.357205\pi\)
0.433707 + 0.901054i \(0.357205\pi\)
\(282\) 0 0
\(283\) 1.36939e16 1.58459 0.792294 0.610139i \(-0.208887\pi\)
0.792294 + 0.610139i \(0.208887\pi\)
\(284\) 0 0
\(285\) 4.50958e14 0.0498476
\(286\) 0 0
\(287\) −4.82838e14 −0.0509999
\(288\) 0 0
\(289\) 9.89609e15 0.999143
\(290\) 0 0
\(291\) −5.61556e15 −0.542111
\(292\) 0 0
\(293\) 1.96166e16 1.81127 0.905636 0.424057i \(-0.139394\pi\)
0.905636 + 0.424057i \(0.139394\pi\)
\(294\) 0 0
\(295\) −1.67107e15 −0.147622
\(296\) 0 0
\(297\) −2.11889e14 −0.0179139
\(298\) 0 0
\(299\) 1.66310e16 1.34603
\(300\) 0 0
\(301\) −1.22548e15 −0.0949785
\(302\) 0 0
\(303\) −1.63103e16 −1.21083
\(304\) 0 0
\(305\) 1.63192e15 0.116078
\(306\) 0 0
\(307\) 1.54129e16 1.05072 0.525359 0.850881i \(-0.323931\pi\)
0.525359 + 0.850881i \(0.323931\pi\)
\(308\) 0 0
\(309\) 1.69519e16 1.10787
\(310\) 0 0
\(311\) 2.56624e16 1.60826 0.804128 0.594457i \(-0.202633\pi\)
0.804128 + 0.594457i \(0.202633\pi\)
\(312\) 0 0
\(313\) −2.44135e16 −1.46754 −0.733772 0.679396i \(-0.762242\pi\)
−0.733772 + 0.679396i \(0.762242\pi\)
\(314\) 0 0
\(315\) 7.72030e13 0.00445262
\(316\) 0 0
\(317\) −4.41228e15 −0.244218 −0.122109 0.992517i \(-0.538966\pi\)
−0.122109 + 0.992517i \(0.538966\pi\)
\(318\) 0 0
\(319\) 4.74965e14 0.0252361
\(320\) 0 0
\(321\) 4.58468e16 2.33898
\(322\) 0 0
\(323\) −1.00785e16 −0.493834
\(324\) 0 0
\(325\) 2.73836e16 1.28899
\(326\) 0 0
\(327\) 6.71775e15 0.303853
\(328\) 0 0
\(329\) 1.31258e15 0.0570628
\(330\) 0 0
\(331\) 1.97246e16 0.824377 0.412188 0.911099i \(-0.364765\pi\)
0.412188 + 0.911099i \(0.364765\pi\)
\(332\) 0 0
\(333\) −1.25807e16 −0.505612
\(334\) 0 0
\(335\) 2.10171e15 0.0812421
\(336\) 0 0
\(337\) 3.70654e16 1.37840 0.689199 0.724572i \(-0.257963\pi\)
0.689199 + 0.724572i \(0.257963\pi\)
\(338\) 0 0
\(339\) −5.44369e16 −1.94803
\(340\) 0 0
\(341\) −1.44552e15 −0.0497875
\(342\) 0 0
\(343\) 4.49081e15 0.148906
\(344\) 0 0
\(345\) 4.60503e15 0.147031
\(346\) 0 0
\(347\) −3.29535e16 −1.01335 −0.506676 0.862137i \(-0.669126\pi\)
−0.506676 + 0.862137i \(0.669126\pi\)
\(348\) 0 0
\(349\) −1.58132e16 −0.468442 −0.234221 0.972183i \(-0.575254\pi\)
−0.234221 + 0.972183i \(0.575254\pi\)
\(350\) 0 0
\(351\) 2.73641e16 0.781060
\(352\) 0 0
\(353\) −4.15488e16 −1.14294 −0.571469 0.820624i \(-0.693626\pi\)
−0.571469 + 0.820624i \(0.693626\pi\)
\(354\) 0 0
\(355\) −1.29570e15 −0.0343575
\(356\) 0 0
\(357\) −5.08102e15 −0.129899
\(358\) 0 0
\(359\) 4.48817e15 0.110651 0.0553255 0.998468i \(-0.482380\pi\)
0.0553255 + 0.998468i \(0.482380\pi\)
\(360\) 0 0
\(361\) −3.69230e16 −0.878012
\(362\) 0 0
\(363\) −5.35912e16 −1.22942
\(364\) 0 0
\(365\) 4.35674e15 0.0964402
\(366\) 0 0
\(367\) −6.55889e16 −1.40120 −0.700602 0.713553i \(-0.747085\pi\)
−0.700602 + 0.713553i \(0.747085\pi\)
\(368\) 0 0
\(369\) 1.70323e16 0.351238
\(370\) 0 0
\(371\) −2.17549e15 −0.0433139
\(372\) 0 0
\(373\) 8.28290e16 1.59248 0.796242 0.604978i \(-0.206818\pi\)
0.796242 + 0.604978i \(0.206818\pi\)
\(374\) 0 0
\(375\) 1.52682e16 0.283520
\(376\) 0 0
\(377\) −6.13387e16 −1.10031
\(378\) 0 0
\(379\) 5.12943e16 0.889025 0.444513 0.895773i \(-0.353377\pi\)
0.444513 + 0.895773i \(0.353377\pi\)
\(380\) 0 0
\(381\) −1.24579e17 −2.08656
\(382\) 0 0
\(383\) 8.13579e16 1.31707 0.658533 0.752552i \(-0.271177\pi\)
0.658533 + 0.752552i \(0.271177\pi\)
\(384\) 0 0
\(385\) 1.65814e13 0.000259493 0
\(386\) 0 0
\(387\) 4.32293e16 0.654120
\(388\) 0 0
\(389\) −1.97328e16 −0.288746 −0.144373 0.989523i \(-0.546116\pi\)
−0.144373 + 0.989523i \(0.546116\pi\)
\(390\) 0 0
\(391\) −1.02919e17 −1.45662
\(392\) 0 0
\(393\) −9.71891e16 −1.33066
\(394\) 0 0
\(395\) 8.83277e14 0.0117008
\(396\) 0 0
\(397\) −1.28139e17 −1.64264 −0.821318 0.570470i \(-0.806761\pi\)
−0.821318 + 0.570470i \(0.806761\pi\)
\(398\) 0 0
\(399\) 2.58624e15 0.0320881
\(400\) 0 0
\(401\) 1.26064e17 1.51409 0.757046 0.653362i \(-0.226642\pi\)
0.757046 + 0.653362i \(0.226642\pi\)
\(402\) 0 0
\(403\) 1.86680e17 2.17077
\(404\) 0 0
\(405\) 1.28734e16 0.144955
\(406\) 0 0
\(407\) −2.70204e15 −0.0294664
\(408\) 0 0
\(409\) −5.84658e16 −0.617590 −0.308795 0.951129i \(-0.599926\pi\)
−0.308795 + 0.951129i \(0.599926\pi\)
\(410\) 0 0
\(411\) 2.79695e16 0.286228
\(412\) 0 0
\(413\) −9.58357e15 −0.0950281
\(414\) 0 0
\(415\) 1.99648e16 0.191846
\(416\) 0 0
\(417\) 1.77870e16 0.165661
\(418\) 0 0
\(419\) 7.57809e15 0.0684177 0.0342089 0.999415i \(-0.489109\pi\)
0.0342089 + 0.999415i \(0.489109\pi\)
\(420\) 0 0
\(421\) −3.05150e16 −0.267104 −0.133552 0.991042i \(-0.542638\pi\)
−0.133552 + 0.991042i \(0.542638\pi\)
\(422\) 0 0
\(423\) −4.63017e16 −0.392993
\(424\) 0 0
\(425\) −1.69460e17 −1.39489
\(426\) 0 0
\(427\) 9.35902e15 0.0747221
\(428\) 0 0
\(429\) −6.22057e15 −0.0481790
\(430\) 0 0
\(431\) −6.41105e16 −0.481756 −0.240878 0.970555i \(-0.577435\pi\)
−0.240878 + 0.970555i \(0.577435\pi\)
\(432\) 0 0
\(433\) −6.27323e16 −0.457425 −0.228712 0.973494i \(-0.573452\pi\)
−0.228712 + 0.973494i \(0.573452\pi\)
\(434\) 0 0
\(435\) −1.69844e16 −0.120191
\(436\) 0 0
\(437\) 5.23857e16 0.359818
\(438\) 0 0
\(439\) −1.66208e17 −1.10823 −0.554117 0.832439i \(-0.686944\pi\)
−0.554117 + 0.832439i \(0.686944\pi\)
\(440\) 0 0
\(441\) −7.89859e16 −0.511327
\(442\) 0 0
\(443\) −2.50550e17 −1.57496 −0.787482 0.616338i \(-0.788615\pi\)
−0.787482 + 0.616338i \(0.788615\pi\)
\(444\) 0 0
\(445\) 1.85173e16 0.113041
\(446\) 0 0
\(447\) 3.15727e17 1.87203
\(448\) 0 0
\(449\) 1.58027e17 0.910187 0.455093 0.890444i \(-0.349606\pi\)
0.455093 + 0.890444i \(0.349606\pi\)
\(450\) 0 0
\(451\) 3.65813e15 0.0204697
\(452\) 0 0
\(453\) 3.54916e17 1.92969
\(454\) 0 0
\(455\) −2.14138e15 −0.0113141
\(456\) 0 0
\(457\) 2.52753e17 1.29790 0.648949 0.760832i \(-0.275209\pi\)
0.648949 + 0.760832i \(0.275209\pi\)
\(458\) 0 0
\(459\) −1.69340e17 −0.845232
\(460\) 0 0
\(461\) −3.34322e17 −1.62222 −0.811109 0.584896i \(-0.801136\pi\)
−0.811109 + 0.584896i \(0.801136\pi\)
\(462\) 0 0
\(463\) −3.56352e17 −1.68113 −0.840567 0.541708i \(-0.817778\pi\)
−0.840567 + 0.541708i \(0.817778\pi\)
\(464\) 0 0
\(465\) 5.16907e16 0.237120
\(466\) 0 0
\(467\) −3.24921e17 −1.44950 −0.724749 0.689013i \(-0.758044\pi\)
−0.724749 + 0.689013i \(0.758044\pi\)
\(468\) 0 0
\(469\) 1.20533e16 0.0522976
\(470\) 0 0
\(471\) 4.69423e17 1.98120
\(472\) 0 0
\(473\) 9.28464e15 0.0381213
\(474\) 0 0
\(475\) 8.62553e16 0.344570
\(476\) 0 0
\(477\) 7.67412e16 0.298304
\(478\) 0 0
\(479\) 3.51173e17 1.32843 0.664217 0.747540i \(-0.268765\pi\)
0.664217 + 0.747540i \(0.268765\pi\)
\(480\) 0 0
\(481\) 3.48951e17 1.28476
\(482\) 0 0
\(483\) 2.64098e16 0.0946475
\(484\) 0 0
\(485\) 1.46458e16 0.0510966
\(486\) 0 0
\(487\) −2.50106e17 −0.849545 −0.424773 0.905300i \(-0.639646\pi\)
−0.424773 + 0.905300i \(0.639646\pi\)
\(488\) 0 0
\(489\) 1.15712e16 0.0382710
\(490\) 0 0
\(491\) 1.32539e17 0.426889 0.213445 0.976955i \(-0.431532\pi\)
0.213445 + 0.976955i \(0.431532\pi\)
\(492\) 0 0
\(493\) 3.79588e17 1.19071
\(494\) 0 0
\(495\) −5.84913e14 −0.00178714
\(496\) 0 0
\(497\) −7.43085e15 −0.0221168
\(498\) 0 0
\(499\) 6.59853e16 0.191335 0.0956674 0.995413i \(-0.469501\pi\)
0.0956674 + 0.995413i \(0.469501\pi\)
\(500\) 0 0
\(501\) 4.36213e17 1.23241
\(502\) 0 0
\(503\) 3.29052e17 0.905883 0.452942 0.891540i \(-0.350375\pi\)
0.452942 + 0.891540i \(0.350375\pi\)
\(504\) 0 0
\(505\) 4.25384e16 0.114127
\(506\) 0 0
\(507\) 3.32758e17 0.870115
\(508\) 0 0
\(509\) 2.09762e17 0.534639 0.267320 0.963608i \(-0.413862\pi\)
0.267320 + 0.963608i \(0.413862\pi\)
\(510\) 0 0
\(511\) 2.49859e16 0.0620810
\(512\) 0 0
\(513\) 8.61938e16 0.208792
\(514\) 0 0
\(515\) −4.42117e16 −0.104422
\(516\) 0 0
\(517\) −9.94452e15 −0.0229031
\(518\) 0 0
\(519\) 9.89055e16 0.222143
\(520\) 0 0
\(521\) −1.65580e17 −0.362713 −0.181356 0.983417i \(-0.558049\pi\)
−0.181356 + 0.983417i \(0.558049\pi\)
\(522\) 0 0
\(523\) 5.53861e17 1.18342 0.591711 0.806150i \(-0.298453\pi\)
0.591711 + 0.806150i \(0.298453\pi\)
\(524\) 0 0
\(525\) 4.34849e16 0.0906366
\(526\) 0 0
\(527\) −1.15525e18 −2.34912
\(528\) 0 0
\(529\) 3.09091e16 0.0613232
\(530\) 0 0
\(531\) 3.38064e17 0.654461
\(532\) 0 0
\(533\) −4.72424e17 −0.892494
\(534\) 0 0
\(535\) −1.19572e17 −0.220460
\(536\) 0 0
\(537\) 2.69451e17 0.484894
\(538\) 0 0
\(539\) −1.69643e16 −0.0297995
\(540\) 0 0
\(541\) −4.16988e17 −0.715059 −0.357529 0.933902i \(-0.616381\pi\)
−0.357529 + 0.933902i \(0.616381\pi\)
\(542\) 0 0
\(543\) 9.44396e16 0.158109
\(544\) 0 0
\(545\) −1.75204e16 −0.0286396
\(546\) 0 0
\(547\) −4.24918e17 −0.678246 −0.339123 0.940742i \(-0.610130\pi\)
−0.339123 + 0.940742i \(0.610130\pi\)
\(548\) 0 0
\(549\) −3.30142e17 −0.514613
\(550\) 0 0
\(551\) −1.93210e17 −0.294134
\(552\) 0 0
\(553\) 5.06558e15 0.00753210
\(554\) 0 0
\(555\) 9.66229e16 0.140338
\(556\) 0 0
\(557\) 4.31083e16 0.0611648 0.0305824 0.999532i \(-0.490264\pi\)
0.0305824 + 0.999532i \(0.490264\pi\)
\(558\) 0 0
\(559\) −1.19905e18 −1.66212
\(560\) 0 0
\(561\) 3.84953e16 0.0521374
\(562\) 0 0
\(563\) −5.25558e17 −0.695531 −0.347765 0.937582i \(-0.613059\pi\)
−0.347765 + 0.937582i \(0.613059\pi\)
\(564\) 0 0
\(565\) 1.41976e17 0.183611
\(566\) 0 0
\(567\) 7.38286e16 0.0933114
\(568\) 0 0
\(569\) −2.47151e17 −0.305304 −0.152652 0.988280i \(-0.548781\pi\)
−0.152652 + 0.988280i \(0.548781\pi\)
\(570\) 0 0
\(571\) 1.41469e17 0.170815 0.0854076 0.996346i \(-0.472781\pi\)
0.0854076 + 0.996346i \(0.472781\pi\)
\(572\) 0 0
\(573\) −4.88478e17 −0.576554
\(574\) 0 0
\(575\) 8.80812e17 1.01635
\(576\) 0 0
\(577\) −1.61476e18 −1.82166 −0.910828 0.412787i \(-0.864555\pi\)
−0.910828 + 0.412787i \(0.864555\pi\)
\(578\) 0 0
\(579\) −5.04134e17 −0.556078
\(580\) 0 0
\(581\) 1.14498e17 0.123496
\(582\) 0 0
\(583\) 1.64822e16 0.0173848
\(584\) 0 0
\(585\) 7.55378e16 0.0779204
\(586\) 0 0
\(587\) −6.46274e17 −0.652033 −0.326016 0.945364i \(-0.605706\pi\)
−0.326016 + 0.945364i \(0.605706\pi\)
\(588\) 0 0
\(589\) 5.88020e17 0.580287
\(590\) 0 0
\(591\) 7.16373e17 0.691546
\(592\) 0 0
\(593\) −1.64843e18 −1.55674 −0.778368 0.627808i \(-0.783952\pi\)
−0.778368 + 0.627808i \(0.783952\pi\)
\(594\) 0 0
\(595\) 1.32517e16 0.0122436
\(596\) 0 0
\(597\) −2.01476e18 −1.82133
\(598\) 0 0
\(599\) 9.40114e17 0.831584 0.415792 0.909460i \(-0.363504\pi\)
0.415792 + 0.909460i \(0.363504\pi\)
\(600\) 0 0
\(601\) −4.84299e16 −0.0419208 −0.0209604 0.999780i \(-0.506672\pi\)
−0.0209604 + 0.999780i \(0.506672\pi\)
\(602\) 0 0
\(603\) −4.25183e17 −0.360175
\(604\) 0 0
\(605\) 1.39770e17 0.115879
\(606\) 0 0
\(607\) 1.70396e18 1.38272 0.691358 0.722513i \(-0.257013\pi\)
0.691358 + 0.722513i \(0.257013\pi\)
\(608\) 0 0
\(609\) −9.74054e16 −0.0773696
\(610\) 0 0
\(611\) 1.28427e18 0.998594
\(612\) 0 0
\(613\) −1.25520e18 −0.955476 −0.477738 0.878502i \(-0.658543\pi\)
−0.477738 + 0.878502i \(0.658543\pi\)
\(614\) 0 0
\(615\) −1.30812e17 −0.0974899
\(616\) 0 0
\(617\) 1.76186e17 0.128563 0.0642816 0.997932i \(-0.479524\pi\)
0.0642816 + 0.997932i \(0.479524\pi\)
\(618\) 0 0
\(619\) −9.95121e17 −0.711028 −0.355514 0.934671i \(-0.615694\pi\)
−0.355514 + 0.934671i \(0.615694\pi\)
\(620\) 0 0
\(621\) 8.80184e17 0.615854
\(622\) 0 0
\(623\) 1.06196e17 0.0727675
\(624\) 0 0
\(625\) 1.43025e18 0.959825
\(626\) 0 0
\(627\) −1.95941e16 −0.0128791
\(628\) 0 0
\(629\) −2.15944e18 −1.39031
\(630\) 0 0
\(631\) 1.59895e18 1.00842 0.504212 0.863580i \(-0.331783\pi\)
0.504212 + 0.863580i \(0.331783\pi\)
\(632\) 0 0
\(633\) 2.43768e18 1.50609
\(634\) 0 0
\(635\) 3.24911e17 0.196669
\(636\) 0 0
\(637\) 2.19083e18 1.29928
\(638\) 0 0
\(639\) 2.62126e17 0.152319
\(640\) 0 0
\(641\) −3.09289e18 −1.76111 −0.880555 0.473943i \(-0.842830\pi\)
−0.880555 + 0.473943i \(0.842830\pi\)
\(642\) 0 0
\(643\) 4.98981e17 0.278428 0.139214 0.990262i \(-0.455542\pi\)
0.139214 + 0.990262i \(0.455542\pi\)
\(644\) 0 0
\(645\) −3.32012e17 −0.181558
\(646\) 0 0
\(647\) −2.65007e18 −1.42030 −0.710149 0.704052i \(-0.751372\pi\)
−0.710149 + 0.704052i \(0.751372\pi\)
\(648\) 0 0
\(649\) 7.26081e16 0.0381412
\(650\) 0 0
\(651\) 2.96446e17 0.152640
\(652\) 0 0
\(653\) −2.22020e18 −1.12062 −0.560308 0.828284i \(-0.689317\pi\)
−0.560308 + 0.828284i \(0.689317\pi\)
\(654\) 0 0
\(655\) 2.53477e17 0.125421
\(656\) 0 0
\(657\) −8.81385e17 −0.427554
\(658\) 0 0
\(659\) 7.37791e17 0.350896 0.175448 0.984489i \(-0.443863\pi\)
0.175448 + 0.984489i \(0.443863\pi\)
\(660\) 0 0
\(661\) 3.40095e18 1.58596 0.792978 0.609251i \(-0.208530\pi\)
0.792978 + 0.609251i \(0.208530\pi\)
\(662\) 0 0
\(663\) −4.97143e18 −2.27323
\(664\) 0 0
\(665\) −6.74511e15 −0.00302446
\(666\) 0 0
\(667\) −1.97300e18 −0.867579
\(668\) 0 0
\(669\) 4.27924e18 1.84543
\(670\) 0 0
\(671\) −7.09068e16 −0.0299910
\(672\) 0 0
\(673\) 2.57576e18 1.06858 0.534291 0.845301i \(-0.320579\pi\)
0.534291 + 0.845301i \(0.320579\pi\)
\(674\) 0 0
\(675\) 1.44926e18 0.589756
\(676\) 0 0
\(677\) 8.19888e17 0.327287 0.163643 0.986520i \(-0.447675\pi\)
0.163643 + 0.986520i \(0.447675\pi\)
\(678\) 0 0
\(679\) 8.39935e16 0.0328921
\(680\) 0 0
\(681\) 2.45882e18 0.944649
\(682\) 0 0
\(683\) 1.48474e18 0.559647 0.279824 0.960051i \(-0.409724\pi\)
0.279824 + 0.960051i \(0.409724\pi\)
\(684\) 0 0
\(685\) −7.29466e16 −0.0269784
\(686\) 0 0
\(687\) −3.85018e18 −1.39721
\(688\) 0 0
\(689\) −2.12857e18 −0.757989
\(690\) 0 0
\(691\) 1.65745e18 0.579207 0.289603 0.957147i \(-0.406477\pi\)
0.289603 + 0.957147i \(0.406477\pi\)
\(692\) 0 0
\(693\) −3.35447e15 −0.00115042
\(694\) 0 0
\(695\) −4.63899e16 −0.0156143
\(696\) 0 0
\(697\) 2.92355e18 0.965821
\(698\) 0 0
\(699\) −2.43207e18 −0.788632
\(700\) 0 0
\(701\) −1.71107e17 −0.0544628 −0.0272314 0.999629i \(-0.508669\pi\)
−0.0272314 + 0.999629i \(0.508669\pi\)
\(702\) 0 0
\(703\) 1.09916e18 0.343439
\(704\) 0 0
\(705\) 3.55609e17 0.109079
\(706\) 0 0
\(707\) 2.43957e17 0.0734663
\(708\) 0 0
\(709\) −4.40222e18 −1.30158 −0.650791 0.759257i \(-0.725563\pi\)
−0.650791 + 0.759257i \(0.725563\pi\)
\(710\) 0 0
\(711\) −1.78690e17 −0.0518738
\(712\) 0 0
\(713\) 6.00467e18 1.71162
\(714\) 0 0
\(715\) 1.62237e16 0.00454111
\(716\) 0 0
\(717\) 7.05508e18 1.93922
\(718\) 0 0
\(719\) 1.54992e18 0.418380 0.209190 0.977875i \(-0.432917\pi\)
0.209190 + 0.977875i \(0.432917\pi\)
\(720\) 0 0
\(721\) −2.53554e17 −0.0672188
\(722\) 0 0
\(723\) 7.13257e17 0.185715
\(724\) 0 0
\(725\) −3.24863e18 −0.830813
\(726\) 0 0
\(727\) 4.24477e18 1.06630 0.533152 0.846020i \(-0.321007\pi\)
0.533152 + 0.846020i \(0.321007\pi\)
\(728\) 0 0
\(729\) 3.76753e17 0.0929669
\(730\) 0 0
\(731\) 7.42020e18 1.79867
\(732\) 0 0
\(733\) 3.17450e18 0.755962 0.377981 0.925813i \(-0.376619\pi\)
0.377981 + 0.925813i \(0.376619\pi\)
\(734\) 0 0
\(735\) 6.06631e17 0.141924
\(736\) 0 0
\(737\) −9.13193e16 −0.0209906
\(738\) 0 0
\(739\) −7.43070e18 −1.67819 −0.839094 0.543986i \(-0.816914\pi\)
−0.839094 + 0.543986i \(0.816914\pi\)
\(740\) 0 0
\(741\) 2.53046e18 0.561540
\(742\) 0 0
\(743\) 3.74540e18 0.816715 0.408358 0.912822i \(-0.366102\pi\)
0.408358 + 0.912822i \(0.366102\pi\)
\(744\) 0 0
\(745\) −8.23440e17 −0.176448
\(746\) 0 0
\(747\) −4.03895e18 −0.850521
\(748\) 0 0
\(749\) −6.85745e17 −0.141916
\(750\) 0 0
\(751\) 9.46402e18 1.92493 0.962467 0.271398i \(-0.0874858\pi\)
0.962467 + 0.271398i \(0.0874858\pi\)
\(752\) 0 0
\(753\) −3.88511e18 −0.776669
\(754\) 0 0
\(755\) −9.25648e17 −0.181882
\(756\) 0 0
\(757\) 6.04674e17 0.116788 0.0583940 0.998294i \(-0.481402\pi\)
0.0583940 + 0.998294i \(0.481402\pi\)
\(758\) 0 0
\(759\) −2.00089e17 −0.0379884
\(760\) 0 0
\(761\) −8.78731e18 −1.64005 −0.820023 0.572331i \(-0.806039\pi\)
−0.820023 + 0.572331i \(0.806039\pi\)
\(762\) 0 0
\(763\) −1.00479e17 −0.0184360
\(764\) 0 0
\(765\) −4.67457e17 −0.0843223
\(766\) 0 0
\(767\) −9.37687e18 −1.66298
\(768\) 0 0
\(769\) 2.70998e18 0.472546 0.236273 0.971687i \(-0.424074\pi\)
0.236273 + 0.971687i \(0.424074\pi\)
\(770\) 0 0
\(771\) 2.37687e18 0.407523
\(772\) 0 0
\(773\) −4.50254e18 −0.759086 −0.379543 0.925174i \(-0.623919\pi\)
−0.379543 + 0.925174i \(0.623919\pi\)
\(774\) 0 0
\(775\) 9.88696e18 1.63909
\(776\) 0 0
\(777\) 5.54131e17 0.0903391
\(778\) 0 0
\(779\) −1.48808e18 −0.238580
\(780\) 0 0
\(781\) 5.62984e16 0.00887696
\(782\) 0 0
\(783\) −3.24632e18 −0.503430
\(784\) 0 0
\(785\) −1.22429e18 −0.186738
\(786\) 0 0
\(787\) −1.10845e19 −1.66295 −0.831475 0.555562i \(-0.812503\pi\)
−0.831475 + 0.555562i \(0.812503\pi\)
\(788\) 0 0
\(789\) 1.09074e18 0.160961
\(790\) 0 0
\(791\) 8.14229e17 0.118195
\(792\) 0 0
\(793\) 9.15716e18 1.30763
\(794\) 0 0
\(795\) −5.89391e17 −0.0827975
\(796\) 0 0
\(797\) −1.23845e19 −1.71158 −0.855792 0.517320i \(-0.826930\pi\)
−0.855792 + 0.517320i \(0.826930\pi\)
\(798\) 0 0
\(799\) −7.94757e18 −1.08064
\(800\) 0 0
\(801\) −3.74611e18 −0.501152
\(802\) 0 0
\(803\) −1.89301e17 −0.0249173
\(804\) 0 0
\(805\) −6.88788e16 −0.00892098
\(806\) 0 0
\(807\) −1.00269e19 −1.27787
\(808\) 0 0
\(809\) −1.05373e19 −1.32149 −0.660747 0.750609i \(-0.729760\pi\)
−0.660747 + 0.750609i \(0.729760\pi\)
\(810\) 0 0
\(811\) 8.99512e18 1.11012 0.555062 0.831809i \(-0.312695\pi\)
0.555062 + 0.831809i \(0.312695\pi\)
\(812\) 0 0
\(813\) −1.18017e19 −1.43336
\(814\) 0 0
\(815\) −3.01785e16 −0.00360723
\(816\) 0 0
\(817\) −3.77688e18 −0.444314
\(818\) 0 0
\(819\) 4.33209e17 0.0501593
\(820\) 0 0
\(821\) −1.26415e19 −1.44068 −0.720339 0.693622i \(-0.756014\pi\)
−0.720339 + 0.693622i \(0.756014\pi\)
\(822\) 0 0
\(823\) −7.27293e18 −0.815850 −0.407925 0.913015i \(-0.633748\pi\)
−0.407925 + 0.913015i \(0.633748\pi\)
\(824\) 0 0
\(825\) −3.29455e17 −0.0363786
\(826\) 0 0
\(827\) 2.84826e18 0.309595 0.154798 0.987946i \(-0.450527\pi\)
0.154798 + 0.987946i \(0.450527\pi\)
\(828\) 0 0
\(829\) 9.55683e18 1.02261 0.511304 0.859400i \(-0.329162\pi\)
0.511304 + 0.859400i \(0.329162\pi\)
\(830\) 0 0
\(831\) −3.73527e18 −0.393473
\(832\) 0 0
\(833\) −1.35577e19 −1.40603
\(834\) 0 0
\(835\) −1.13768e18 −0.116160
\(836\) 0 0
\(837\) 9.87991e18 0.993201
\(838\) 0 0
\(839\) 4.47785e18 0.443218 0.221609 0.975136i \(-0.428869\pi\)
0.221609 + 0.975136i \(0.428869\pi\)
\(840\) 0 0
\(841\) −2.98376e18 −0.290797
\(842\) 0 0
\(843\) 1.11223e19 1.06737
\(844\) 0 0
\(845\) −8.67858e17 −0.0820125
\(846\) 0 0
\(847\) 8.01580e17 0.0745941
\(848\) 0 0
\(849\) 2.12768e19 1.94988
\(850\) 0 0
\(851\) 1.12242e19 1.01301
\(852\) 0 0
\(853\) 1.01502e19 0.902208 0.451104 0.892471i \(-0.351030\pi\)
0.451104 + 0.892471i \(0.351030\pi\)
\(854\) 0 0
\(855\) 2.37936e17 0.0208296
\(856\) 0 0
\(857\) −1.88859e19 −1.62841 −0.814203 0.580580i \(-0.802826\pi\)
−0.814203 + 0.580580i \(0.802826\pi\)
\(858\) 0 0
\(859\) −6.92193e18 −0.587857 −0.293929 0.955827i \(-0.594963\pi\)
−0.293929 + 0.955827i \(0.594963\pi\)
\(860\) 0 0
\(861\) −7.50206e17 −0.0627567
\(862\) 0 0
\(863\) −1.51401e19 −1.24755 −0.623776 0.781603i \(-0.714402\pi\)
−0.623776 + 0.781603i \(0.714402\pi\)
\(864\) 0 0
\(865\) −2.57953e17 −0.0209381
\(866\) 0 0
\(867\) 1.53760e19 1.22947
\(868\) 0 0
\(869\) −3.83784e16 −0.00302314
\(870\) 0 0
\(871\) 1.17933e19 0.915203
\(872\) 0 0
\(873\) −2.96290e18 −0.226529
\(874\) 0 0
\(875\) −2.28371e17 −0.0172024
\(876\) 0 0
\(877\) −1.72930e19 −1.28343 −0.641715 0.766943i \(-0.721777\pi\)
−0.641715 + 0.766943i \(0.721777\pi\)
\(878\) 0 0
\(879\) 3.04791e19 2.22882
\(880\) 0 0
\(881\) 9.78427e18 0.704993 0.352497 0.935813i \(-0.385333\pi\)
0.352497 + 0.935813i \(0.385333\pi\)
\(882\) 0 0
\(883\) 5.79779e18 0.411640 0.205820 0.978590i \(-0.434014\pi\)
0.205820 + 0.978590i \(0.434014\pi\)
\(884\) 0 0
\(885\) −2.59641e18 −0.181653
\(886\) 0 0
\(887\) −1.09014e19 −0.751586 −0.375793 0.926704i \(-0.622630\pi\)
−0.375793 + 0.926704i \(0.622630\pi\)
\(888\) 0 0
\(889\) 1.86336e18 0.126601
\(890\) 0 0
\(891\) −5.59348e17 −0.0374522
\(892\) 0 0
\(893\) 4.04531e18 0.266942
\(894\) 0 0
\(895\) −7.02748e17 −0.0457036
\(896\) 0 0
\(897\) 2.58402e19 1.65632
\(898\) 0 0
\(899\) −2.21466e19 −1.39916
\(900\) 0 0
\(901\) 1.31724e19 0.820266
\(902\) 0 0
\(903\) −1.90408e18 −0.116873
\(904\) 0 0
\(905\) −2.46306e17 −0.0149025
\(906\) 0 0
\(907\) −2.19849e19 −1.31122 −0.655612 0.755098i \(-0.727589\pi\)
−0.655612 + 0.755098i \(0.727589\pi\)
\(908\) 0 0
\(909\) −8.60568e18 −0.505964
\(910\) 0 0
\(911\) 2.14120e19 1.24104 0.620522 0.784189i \(-0.286921\pi\)
0.620522 + 0.784189i \(0.286921\pi\)
\(912\) 0 0
\(913\) −8.67472e17 −0.0495673
\(914\) 0 0
\(915\) 2.53558e18 0.142837
\(916\) 0 0
\(917\) 1.45369e18 0.0807365
\(918\) 0 0
\(919\) −4.39133e18 −0.240461 −0.120231 0.992746i \(-0.538363\pi\)
−0.120231 + 0.992746i \(0.538363\pi\)
\(920\) 0 0
\(921\) 2.39477e19 1.29293
\(922\) 0 0
\(923\) −7.27058e18 −0.387042
\(924\) 0 0
\(925\) 1.84812e19 0.970083
\(926\) 0 0
\(927\) 8.94419e18 0.462938
\(928\) 0 0
\(929\) −5.87144e18 −0.299669 −0.149835 0.988711i \(-0.547874\pi\)
−0.149835 + 0.988711i \(0.547874\pi\)
\(930\) 0 0
\(931\) 6.90088e18 0.347321
\(932\) 0 0
\(933\) 3.98728e19 1.97900
\(934\) 0 0
\(935\) −1.00399e17 −0.00491420
\(936\) 0 0
\(937\) 2.52648e18 0.121958 0.0609788 0.998139i \(-0.480578\pi\)
0.0609788 + 0.998139i \(0.480578\pi\)
\(938\) 0 0
\(939\) −3.79322e19 −1.80585
\(940\) 0 0
\(941\) −1.11075e19 −0.521537 −0.260769 0.965401i \(-0.583976\pi\)
−0.260769 + 0.965401i \(0.583976\pi\)
\(942\) 0 0
\(943\) −1.51958e19 −0.703718
\(944\) 0 0
\(945\) −1.13331e17 −0.00517658
\(946\) 0 0
\(947\) −2.32105e19 −1.04570 −0.522852 0.852423i \(-0.675132\pi\)
−0.522852 + 0.852423i \(0.675132\pi\)
\(948\) 0 0
\(949\) 2.44470e19 1.08641
\(950\) 0 0
\(951\) −6.85554e18 −0.300517
\(952\) 0 0
\(953\) −2.94491e19 −1.27341 −0.636704 0.771108i \(-0.719703\pi\)
−0.636704 + 0.771108i \(0.719703\pi\)
\(954\) 0 0
\(955\) 1.27399e18 0.0543430
\(956\) 0 0
\(957\) 7.37973e17 0.0310537
\(958\) 0 0
\(959\) −4.18348e17 −0.0173667
\(960\) 0 0
\(961\) 4.29838e19 1.76037
\(962\) 0 0
\(963\) 2.41899e19 0.977378
\(964\) 0 0
\(965\) 1.31482e18 0.0524130
\(966\) 0 0
\(967\) −1.64375e19 −0.646493 −0.323247 0.946315i \(-0.604774\pi\)
−0.323247 + 0.946315i \(0.604774\pi\)
\(968\) 0 0
\(969\) −1.56594e19 −0.607676
\(970\) 0 0
\(971\) 1.43874e19 0.550880 0.275440 0.961318i \(-0.411176\pi\)
0.275440 + 0.961318i \(0.411176\pi\)
\(972\) 0 0
\(973\) −2.66046e17 −0.0100513
\(974\) 0 0
\(975\) 4.25470e19 1.58613
\(976\) 0 0
\(977\) 1.13141e19 0.416203 0.208102 0.978107i \(-0.433272\pi\)
0.208102 + 0.978107i \(0.433272\pi\)
\(978\) 0 0
\(979\) −8.04577e17 −0.0292065
\(980\) 0 0
\(981\) 3.54444e18 0.126970
\(982\) 0 0
\(983\) −1.38897e19 −0.491016 −0.245508 0.969395i \(-0.578955\pi\)
−0.245508 + 0.969395i \(0.578955\pi\)
\(984\) 0 0
\(985\) −1.86836e18 −0.0651815
\(986\) 0 0
\(987\) 2.03941e18 0.0702172
\(988\) 0 0
\(989\) −3.85683e19 −1.31055
\(990\) 0 0
\(991\) −4.80221e19 −1.61050 −0.805252 0.592932i \(-0.797970\pi\)
−0.805252 + 0.592932i \(0.797970\pi\)
\(992\) 0 0
\(993\) 3.06469e19 1.01442
\(994\) 0 0
\(995\) 5.25464e18 0.171669
\(996\) 0 0
\(997\) −8.83733e17 −0.0284972 −0.0142486 0.999898i \(-0.504536\pi\)
−0.0142486 + 0.999898i \(0.504536\pi\)
\(998\) 0 0
\(999\) 1.84680e19 0.587820
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 64.14.a.m.1.3 3
4.3 odd 2 64.14.a.n.1.1 3
8.3 odd 2 32.14.a.c.1.3 3
8.5 even 2 32.14.a.d.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.14.a.c.1.3 3 8.3 odd 2
32.14.a.d.1.1 yes 3 8.5 even 2
64.14.a.m.1.3 3 1.1 even 1 trivial
64.14.a.n.1.1 3 4.3 odd 2