Properties

Label 64.14.a.m.1.2
Level $64$
Weight $14$
Character 64.1
Self dual yes
Analytic conductor $68.628$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [64,14,Mod(1,64)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(64, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("64.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 64.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.6277945292\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2195x - 37995 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 32)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-23.3851\) of defining polynomial
Character \(\chi\) \(=\) 64.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-932.324 q^{3} +41284.4 q^{5} +324537. q^{7} -725095. q^{9} -5.64388e6 q^{11} +2.79852e6 q^{13} -3.84904e7 q^{15} -1.76212e8 q^{17} +1.19940e8 q^{19} -3.02574e8 q^{21} +8.11512e8 q^{23} +4.83695e8 q^{25} +2.16245e9 q^{27} +2.33918e8 q^{29} -4.37444e9 q^{31} +5.26192e9 q^{33} +1.33983e10 q^{35} +1.01530e10 q^{37} -2.60913e9 q^{39} -3.06079e10 q^{41} +4.90073e10 q^{43} -2.99351e10 q^{45} -1.39240e11 q^{47} +8.43522e9 q^{49} +1.64286e11 q^{51} -2.02631e11 q^{53} -2.33004e11 q^{55} -1.11823e11 q^{57} -3.65225e11 q^{59} +4.13236e11 q^{61} -2.35320e11 q^{63} +1.15535e11 q^{65} +7.06874e11 q^{67} -7.56592e11 q^{69} +1.17586e12 q^{71} -2.21587e12 q^{73} -4.50961e11 q^{75} -1.83165e12 q^{77} +3.45937e12 q^{79} -8.60067e11 q^{81} -5.28507e12 q^{83} -7.27479e12 q^{85} -2.18087e11 q^{87} -4.65365e12 q^{89} +9.08223e11 q^{91} +4.07840e12 q^{93} +4.95164e12 q^{95} -4.76860e12 q^{97} +4.09235e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 520 q^{3} - 11594 q^{5} - 96304 q^{7} - 196793 q^{9} + 1923816 q^{11} + 11211006 q^{13} + 10944368 q^{15} - 16892538 q^{17} + 74665048 q^{19} + 115146880 q^{21} - 486642576 q^{23} + 442696461 q^{25}+ \cdots + 2082116453576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −932.324 −0.738378 −0.369189 0.929354i \(-0.620364\pi\)
−0.369189 + 0.929354i \(0.620364\pi\)
\(4\) 0 0
\(5\) 41284.4 1.18163 0.590814 0.806808i \(-0.298807\pi\)
0.590814 + 0.806808i \(0.298807\pi\)
\(6\) 0 0
\(7\) 324537. 1.04262 0.521311 0.853367i \(-0.325443\pi\)
0.521311 + 0.853367i \(0.325443\pi\)
\(8\) 0 0
\(9\) −725095. −0.454798
\(10\) 0 0
\(11\) −5.64388e6 −0.960561 −0.480281 0.877115i \(-0.659465\pi\)
−0.480281 + 0.877115i \(0.659465\pi\)
\(12\) 0 0
\(13\) 2.79852e6 0.160804 0.0804019 0.996763i \(-0.474380\pi\)
0.0804019 + 0.996763i \(0.474380\pi\)
\(14\) 0 0
\(15\) −3.84904e7 −0.872488
\(16\) 0 0
\(17\) −1.76212e8 −1.77059 −0.885293 0.465034i \(-0.846042\pi\)
−0.885293 + 0.465034i \(0.846042\pi\)
\(18\) 0 0
\(19\) 1.19940e8 0.584878 0.292439 0.956284i \(-0.405533\pi\)
0.292439 + 0.956284i \(0.405533\pi\)
\(20\) 0 0
\(21\) −3.02574e8 −0.769849
\(22\) 0 0
\(23\) 8.11512e8 1.14305 0.571524 0.820586i \(-0.306353\pi\)
0.571524 + 0.820586i \(0.306353\pi\)
\(24\) 0 0
\(25\) 4.83695e8 0.396243
\(26\) 0 0
\(27\) 2.16245e9 1.07419
\(28\) 0 0
\(29\) 2.33918e8 0.0730258 0.0365129 0.999333i \(-0.488375\pi\)
0.0365129 + 0.999333i \(0.488375\pi\)
\(30\) 0 0
\(31\) −4.37444e9 −0.885262 −0.442631 0.896704i \(-0.645955\pi\)
−0.442631 + 0.896704i \(0.645955\pi\)
\(32\) 0 0
\(33\) 5.26192e9 0.709257
\(34\) 0 0
\(35\) 1.33983e10 1.23199
\(36\) 0 0
\(37\) 1.01530e10 0.650556 0.325278 0.945618i \(-0.394542\pi\)
0.325278 + 0.945618i \(0.394542\pi\)
\(38\) 0 0
\(39\) −2.60913e9 −0.118734
\(40\) 0 0
\(41\) −3.06079e10 −1.00632 −0.503162 0.864192i \(-0.667830\pi\)
−0.503162 + 0.864192i \(0.667830\pi\)
\(42\) 0 0
\(43\) 4.90073e10 1.18227 0.591134 0.806573i \(-0.298680\pi\)
0.591134 + 0.806573i \(0.298680\pi\)
\(44\) 0 0
\(45\) −2.99351e10 −0.537402
\(46\) 0 0
\(47\) −1.39240e11 −1.88421 −0.942105 0.335318i \(-0.891156\pi\)
−0.942105 + 0.335318i \(0.891156\pi\)
\(48\) 0 0
\(49\) 8.43522e9 0.0870606
\(50\) 0 0
\(51\) 1.64286e11 1.30736
\(52\) 0 0
\(53\) −2.02631e11 −1.25578 −0.627890 0.778302i \(-0.716081\pi\)
−0.627890 + 0.778302i \(0.716081\pi\)
\(54\) 0 0
\(55\) −2.33004e11 −1.13503
\(56\) 0 0
\(57\) −1.11823e11 −0.431861
\(58\) 0 0
\(59\) −3.65225e11 −1.12725 −0.563627 0.826029i \(-0.690595\pi\)
−0.563627 + 0.826029i \(0.690595\pi\)
\(60\) 0 0
\(61\) 4.13236e11 1.02696 0.513481 0.858101i \(-0.328356\pi\)
0.513481 + 0.858101i \(0.328356\pi\)
\(62\) 0 0
\(63\) −2.35320e11 −0.474182
\(64\) 0 0
\(65\) 1.15535e11 0.190010
\(66\) 0 0
\(67\) 7.06874e11 0.954676 0.477338 0.878720i \(-0.341602\pi\)
0.477338 + 0.878720i \(0.341602\pi\)
\(68\) 0 0
\(69\) −7.56592e11 −0.844001
\(70\) 0 0
\(71\) 1.17586e12 1.08937 0.544686 0.838640i \(-0.316649\pi\)
0.544686 + 0.838640i \(0.316649\pi\)
\(72\) 0 0
\(73\) −2.21587e12 −1.71374 −0.856871 0.515530i \(-0.827595\pi\)
−0.856871 + 0.515530i \(0.827595\pi\)
\(74\) 0 0
\(75\) −4.50961e11 −0.292577
\(76\) 0 0
\(77\) −1.83165e12 −1.00150
\(78\) 0 0
\(79\) 3.45937e12 1.60111 0.800555 0.599259i \(-0.204538\pi\)
0.800555 + 0.599259i \(0.204538\pi\)
\(80\) 0 0
\(81\) −8.60067e11 −0.338361
\(82\) 0 0
\(83\) −5.28507e12 −1.77436 −0.887182 0.461419i \(-0.847341\pi\)
−0.887182 + 0.461419i \(0.847341\pi\)
\(84\) 0 0
\(85\) −7.27479e12 −2.09217
\(86\) 0 0
\(87\) −2.18087e11 −0.0539207
\(88\) 0 0
\(89\) −4.65365e12 −0.992563 −0.496282 0.868162i \(-0.665302\pi\)
−0.496282 + 0.868162i \(0.665302\pi\)
\(90\) 0 0
\(91\) 9.08223e11 0.167658
\(92\) 0 0
\(93\) 4.07840e12 0.653658
\(94\) 0 0
\(95\) 4.95164e12 0.691108
\(96\) 0 0
\(97\) −4.76860e12 −0.581266 −0.290633 0.956835i \(-0.593866\pi\)
−0.290633 + 0.956835i \(0.593866\pi\)
\(98\) 0 0
\(99\) 4.09235e12 0.436861
\(100\) 0 0
\(101\) −2.83778e12 −0.266005 −0.133002 0.991116i \(-0.542462\pi\)
−0.133002 + 0.991116i \(0.542462\pi\)
\(102\) 0 0
\(103\) −1.09776e13 −0.905871 −0.452935 0.891543i \(-0.649623\pi\)
−0.452935 + 0.891543i \(0.649623\pi\)
\(104\) 0 0
\(105\) −1.24916e13 −0.909675
\(106\) 0 0
\(107\) −1.51150e13 −0.973674 −0.486837 0.873493i \(-0.661850\pi\)
−0.486837 + 0.873493i \(0.661850\pi\)
\(108\) 0 0
\(109\) −3.31531e13 −1.89344 −0.946721 0.322054i \(-0.895627\pi\)
−0.946721 + 0.322054i \(0.895627\pi\)
\(110\) 0 0
\(111\) −9.46591e12 −0.480356
\(112\) 0 0
\(113\) −1.04483e13 −0.472101 −0.236050 0.971741i \(-0.575853\pi\)
−0.236050 + 0.971741i \(0.575853\pi\)
\(114\) 0 0
\(115\) 3.35028e13 1.35066
\(116\) 0 0
\(117\) −2.02919e12 −0.0731333
\(118\) 0 0
\(119\) −5.71872e13 −1.84605
\(120\) 0 0
\(121\) −2.66938e12 −0.0773224
\(122\) 0 0
\(123\) 2.85365e13 0.743048
\(124\) 0 0
\(125\) −3.04269e13 −0.713416
\(126\) 0 0
\(127\) 2.38379e13 0.504132 0.252066 0.967710i \(-0.418890\pi\)
0.252066 + 0.967710i \(0.418890\pi\)
\(128\) 0 0
\(129\) −4.56907e13 −0.872961
\(130\) 0 0
\(131\) 5.97675e13 1.03324 0.516621 0.856214i \(-0.327190\pi\)
0.516621 + 0.856214i \(0.327190\pi\)
\(132\) 0 0
\(133\) 3.89249e13 0.609807
\(134\) 0 0
\(135\) 8.92753e13 1.26929
\(136\) 0 0
\(137\) 1.01680e14 1.31387 0.656935 0.753947i \(-0.271853\pi\)
0.656935 + 0.753947i \(0.271853\pi\)
\(138\) 0 0
\(139\) −8.23992e13 −0.969006 −0.484503 0.874790i \(-0.661000\pi\)
−0.484503 + 0.874790i \(0.661000\pi\)
\(140\) 0 0
\(141\) 1.29817e14 1.39126
\(142\) 0 0
\(143\) −1.57945e13 −0.154462
\(144\) 0 0
\(145\) 9.65715e12 0.0862893
\(146\) 0 0
\(147\) −7.86436e12 −0.0642836
\(148\) 0 0
\(149\) 7.24250e13 0.542223 0.271111 0.962548i \(-0.412609\pi\)
0.271111 + 0.962548i \(0.412609\pi\)
\(150\) 0 0
\(151\) −1.47164e13 −0.101030 −0.0505150 0.998723i \(-0.516086\pi\)
−0.0505150 + 0.998723i \(0.516086\pi\)
\(152\) 0 0
\(153\) 1.27770e14 0.805259
\(154\) 0 0
\(155\) −1.80596e14 −1.04605
\(156\) 0 0
\(157\) −1.94720e14 −1.03768 −0.518840 0.854871i \(-0.673636\pi\)
−0.518840 + 0.854871i \(0.673636\pi\)
\(158\) 0 0
\(159\) 1.88918e14 0.927240
\(160\) 0 0
\(161\) 2.63366e14 1.19177
\(162\) 0 0
\(163\) −2.97079e14 −1.24066 −0.620329 0.784342i \(-0.713001\pi\)
−0.620329 + 0.784342i \(0.713001\pi\)
\(164\) 0 0
\(165\) 2.17235e14 0.838078
\(166\) 0 0
\(167\) −5.12321e11 −0.00182762 −0.000913808 1.00000i \(-0.500291\pi\)
−0.000913808 1.00000i \(0.500291\pi\)
\(168\) 0 0
\(169\) −2.95043e14 −0.974142
\(170\) 0 0
\(171\) −8.69679e13 −0.266001
\(172\) 0 0
\(173\) 4.77299e14 1.35360 0.676800 0.736167i \(-0.263366\pi\)
0.676800 + 0.736167i \(0.263366\pi\)
\(174\) 0 0
\(175\) 1.56977e14 0.413132
\(176\) 0 0
\(177\) 3.40508e14 0.832340
\(178\) 0 0
\(179\) 2.62846e14 0.597250 0.298625 0.954371i \(-0.403472\pi\)
0.298625 + 0.954371i \(0.403472\pi\)
\(180\) 0 0
\(181\) 1.81052e13 0.0382731 0.0191365 0.999817i \(-0.493908\pi\)
0.0191365 + 0.999817i \(0.493908\pi\)
\(182\) 0 0
\(183\) −3.85270e14 −0.758286
\(184\) 0 0
\(185\) 4.19161e14 0.768714
\(186\) 0 0
\(187\) 9.94517e14 1.70076
\(188\) 0 0
\(189\) 7.01795e14 1.11997
\(190\) 0 0
\(191\) −3.16940e14 −0.472345 −0.236173 0.971711i \(-0.575893\pi\)
−0.236173 + 0.971711i \(0.575893\pi\)
\(192\) 0 0
\(193\) 6.15909e14 0.857816 0.428908 0.903348i \(-0.358898\pi\)
0.428908 + 0.903348i \(0.358898\pi\)
\(194\) 0 0
\(195\) −1.07716e14 −0.140299
\(196\) 0 0
\(197\) −2.07479e14 −0.252897 −0.126448 0.991973i \(-0.540358\pi\)
−0.126448 + 0.991973i \(0.540358\pi\)
\(198\) 0 0
\(199\) −3.96818e14 −0.452946 −0.226473 0.974017i \(-0.572720\pi\)
−0.226473 + 0.974017i \(0.572720\pi\)
\(200\) 0 0
\(201\) −6.59036e14 −0.704912
\(202\) 0 0
\(203\) 7.59150e13 0.0761383
\(204\) 0 0
\(205\) −1.26363e15 −1.18910
\(206\) 0 0
\(207\) −5.88424e14 −0.519856
\(208\) 0 0
\(209\) −6.76926e14 −0.561811
\(210\) 0 0
\(211\) 9.25973e14 0.722374 0.361187 0.932493i \(-0.382372\pi\)
0.361187 + 0.932493i \(0.382372\pi\)
\(212\) 0 0
\(213\) −1.09628e15 −0.804368
\(214\) 0 0
\(215\) 2.02324e15 1.39700
\(216\) 0 0
\(217\) −1.41967e15 −0.922993
\(218\) 0 0
\(219\) 2.06591e15 1.26539
\(220\) 0 0
\(221\) −4.93132e14 −0.284717
\(222\) 0 0
\(223\) −3.12454e15 −1.70139 −0.850696 0.525657i \(-0.823819\pi\)
−0.850696 + 0.525657i \(0.823819\pi\)
\(224\) 0 0
\(225\) −3.50725e14 −0.180211
\(226\) 0 0
\(227\) −2.31376e15 −1.12241 −0.561203 0.827679i \(-0.689661\pi\)
−0.561203 + 0.827679i \(0.689661\pi\)
\(228\) 0 0
\(229\) 1.48501e15 0.680455 0.340227 0.940343i \(-0.389496\pi\)
0.340227 + 0.940343i \(0.389496\pi\)
\(230\) 0 0
\(231\) 1.70769e15 0.739487
\(232\) 0 0
\(233\) −2.35057e15 −0.962407 −0.481204 0.876609i \(-0.659800\pi\)
−0.481204 + 0.876609i \(0.659800\pi\)
\(234\) 0 0
\(235\) −5.74845e15 −2.22643
\(236\) 0 0
\(237\) −3.22526e15 −1.18222
\(238\) 0 0
\(239\) 1.29200e15 0.448411 0.224205 0.974542i \(-0.428021\pi\)
0.224205 + 0.974542i \(0.428021\pi\)
\(240\) 0 0
\(241\) −1.79077e15 −0.588747 −0.294374 0.955690i \(-0.595111\pi\)
−0.294374 + 0.955690i \(0.595111\pi\)
\(242\) 0 0
\(243\) −2.64578e15 −0.824353
\(244\) 0 0
\(245\) 3.48243e14 0.102873
\(246\) 0 0
\(247\) 3.35654e14 0.0940507
\(248\) 0 0
\(249\) 4.92739e15 1.31015
\(250\) 0 0
\(251\) 8.75475e14 0.220986 0.110493 0.993877i \(-0.464757\pi\)
0.110493 + 0.993877i \(0.464757\pi\)
\(252\) 0 0
\(253\) −4.58008e15 −1.09797
\(254\) 0 0
\(255\) 6.78246e15 1.54481
\(256\) 0 0
\(257\) −1.22938e15 −0.266147 −0.133073 0.991106i \(-0.542485\pi\)
−0.133073 + 0.991106i \(0.542485\pi\)
\(258\) 0 0
\(259\) 3.29503e15 0.678284
\(260\) 0 0
\(261\) −1.69613e14 −0.0332120
\(262\) 0 0
\(263\) −2.40399e15 −0.447941 −0.223971 0.974596i \(-0.571902\pi\)
−0.223971 + 0.974596i \(0.571902\pi\)
\(264\) 0 0
\(265\) −8.36551e15 −1.48386
\(266\) 0 0
\(267\) 4.33871e15 0.732887
\(268\) 0 0
\(269\) −4.27020e15 −0.687161 −0.343581 0.939123i \(-0.611640\pi\)
−0.343581 + 0.939123i \(0.611640\pi\)
\(270\) 0 0
\(271\) 1.62300e14 0.0248896 0.0124448 0.999923i \(-0.496039\pi\)
0.0124448 + 0.999923i \(0.496039\pi\)
\(272\) 0 0
\(273\) −8.46758e14 −0.123795
\(274\) 0 0
\(275\) −2.72992e15 −0.380616
\(276\) 0 0
\(277\) 1.17855e16 1.56758 0.783792 0.621023i \(-0.213283\pi\)
0.783792 + 0.621023i \(0.213283\pi\)
\(278\) 0 0
\(279\) 3.17189e15 0.402615
\(280\) 0 0
\(281\) −1.73366e15 −0.210074 −0.105037 0.994468i \(-0.533496\pi\)
−0.105037 + 0.994468i \(0.533496\pi\)
\(282\) 0 0
\(283\) 3.84405e15 0.444813 0.222406 0.974954i \(-0.428609\pi\)
0.222406 + 0.974954i \(0.428609\pi\)
\(284\) 0 0
\(285\) −4.61654e15 −0.510299
\(286\) 0 0
\(287\) −9.93338e15 −1.04922
\(288\) 0 0
\(289\) 2.11460e16 2.13497
\(290\) 0 0
\(291\) 4.44588e15 0.429194
\(292\) 0 0
\(293\) 3.20731e15 0.296143 0.148071 0.988977i \(-0.452693\pi\)
0.148071 + 0.988977i \(0.452693\pi\)
\(294\) 0 0
\(295\) −1.50781e16 −1.33199
\(296\) 0 0
\(297\) −1.22046e16 −1.03183
\(298\) 0 0
\(299\) 2.27103e15 0.183806
\(300\) 0 0
\(301\) 1.59047e16 1.23266
\(302\) 0 0
\(303\) 2.64573e15 0.196412
\(304\) 0 0
\(305\) 1.70602e16 1.21349
\(306\) 0 0
\(307\) 1.90574e16 1.29916 0.649581 0.760292i \(-0.274944\pi\)
0.649581 + 0.760292i \(0.274944\pi\)
\(308\) 0 0
\(309\) 1.02347e16 0.668875
\(310\) 0 0
\(311\) −1.81260e16 −1.13595 −0.567976 0.823045i \(-0.692273\pi\)
−0.567976 + 0.823045i \(0.692273\pi\)
\(312\) 0 0
\(313\) 3.11747e16 1.87398 0.936990 0.349357i \(-0.113600\pi\)
0.936990 + 0.349357i \(0.113600\pi\)
\(314\) 0 0
\(315\) −9.71504e15 −0.560307
\(316\) 0 0
\(317\) 3.06718e15 0.169767 0.0848837 0.996391i \(-0.472948\pi\)
0.0848837 + 0.996391i \(0.472948\pi\)
\(318\) 0 0
\(319\) −1.32020e15 −0.0701458
\(320\) 0 0
\(321\) 1.40921e16 0.718940
\(322\) 0 0
\(323\) −2.11348e16 −1.03558
\(324\) 0 0
\(325\) 1.35363e15 0.0637174
\(326\) 0 0
\(327\) 3.09095e16 1.39808
\(328\) 0 0
\(329\) −4.51887e16 −1.96452
\(330\) 0 0
\(331\) −1.05739e16 −0.441930 −0.220965 0.975282i \(-0.570921\pi\)
−0.220965 + 0.975282i \(0.570921\pi\)
\(332\) 0 0
\(333\) −7.36191e15 −0.295871
\(334\) 0 0
\(335\) 2.91829e16 1.12807
\(336\) 0 0
\(337\) 5.91789e15 0.220076 0.110038 0.993927i \(-0.464903\pi\)
0.110038 + 0.993927i \(0.464903\pi\)
\(338\) 0 0
\(339\) 9.74118e15 0.348589
\(340\) 0 0
\(341\) 2.46888e16 0.850348
\(342\) 0 0
\(343\) −2.87065e16 −0.951851
\(344\) 0 0
\(345\) −3.12354e16 −0.997295
\(346\) 0 0
\(347\) −5.50660e16 −1.69333 −0.846666 0.532125i \(-0.821393\pi\)
−0.846666 + 0.532125i \(0.821393\pi\)
\(348\) 0 0
\(349\) −1.96517e16 −0.582151 −0.291075 0.956700i \(-0.594013\pi\)
−0.291075 + 0.956700i \(0.594013\pi\)
\(350\) 0 0
\(351\) 6.05166e15 0.172734
\(352\) 0 0
\(353\) 6.92289e16 1.90437 0.952186 0.305520i \(-0.0988302\pi\)
0.952186 + 0.305520i \(0.0988302\pi\)
\(354\) 0 0
\(355\) 4.85446e16 1.28723
\(356\) 0 0
\(357\) 5.33170e16 1.36308
\(358\) 0 0
\(359\) 7.65291e16 1.88674 0.943371 0.331740i \(-0.107636\pi\)
0.943371 + 0.331740i \(0.107636\pi\)
\(360\) 0 0
\(361\) −2.76674e16 −0.657918
\(362\) 0 0
\(363\) 2.48873e15 0.0570932
\(364\) 0 0
\(365\) −9.14808e16 −2.02501
\(366\) 0 0
\(367\) −8.08198e15 −0.172659 −0.0863293 0.996267i \(-0.527514\pi\)
−0.0863293 + 0.996267i \(0.527514\pi\)
\(368\) 0 0
\(369\) 2.21936e16 0.457674
\(370\) 0 0
\(371\) −6.57614e16 −1.30930
\(372\) 0 0
\(373\) 6.86553e15 0.131998 0.0659989 0.997820i \(-0.478977\pi\)
0.0659989 + 0.997820i \(0.478977\pi\)
\(374\) 0 0
\(375\) 2.83677e16 0.526770
\(376\) 0 0
\(377\) 6.54624e14 0.0117428
\(378\) 0 0
\(379\) 5.95589e16 1.03227 0.516133 0.856508i \(-0.327371\pi\)
0.516133 + 0.856508i \(0.327371\pi\)
\(380\) 0 0
\(381\) −2.22247e16 −0.372240
\(382\) 0 0
\(383\) 4.30499e15 0.0696915 0.0348457 0.999393i \(-0.488906\pi\)
0.0348457 + 0.999393i \(0.488906\pi\)
\(384\) 0 0
\(385\) −7.56183e16 −1.18340
\(386\) 0 0
\(387\) −3.55350e16 −0.537693
\(388\) 0 0
\(389\) 4.41199e16 0.645597 0.322799 0.946468i \(-0.395376\pi\)
0.322799 + 0.946468i \(0.395376\pi\)
\(390\) 0 0
\(391\) −1.42998e17 −2.02386
\(392\) 0 0
\(393\) −5.57227e16 −0.762922
\(394\) 0 0
\(395\) 1.42818e17 1.89192
\(396\) 0 0
\(397\) −1.24787e17 −1.59967 −0.799833 0.600222i \(-0.795079\pi\)
−0.799833 + 0.600222i \(0.795079\pi\)
\(398\) 0 0
\(399\) −3.62907e16 −0.450268
\(400\) 0 0
\(401\) −8.00680e16 −0.961658 −0.480829 0.876814i \(-0.659664\pi\)
−0.480829 + 0.876814i \(0.659664\pi\)
\(402\) 0 0
\(403\) −1.22420e16 −0.142354
\(404\) 0 0
\(405\) −3.55073e16 −0.399816
\(406\) 0 0
\(407\) −5.73024e16 −0.624898
\(408\) 0 0
\(409\) −1.05304e17 −1.11235 −0.556176 0.831064i \(-0.687732\pi\)
−0.556176 + 0.831064i \(0.687732\pi\)
\(410\) 0 0
\(411\) −9.47988e16 −0.970132
\(412\) 0 0
\(413\) −1.18529e17 −1.17530
\(414\) 0 0
\(415\) −2.18191e17 −2.09664
\(416\) 0 0
\(417\) 7.68227e16 0.715493
\(418\) 0 0
\(419\) 1.37042e16 0.123726 0.0618632 0.998085i \(-0.480296\pi\)
0.0618632 + 0.998085i \(0.480296\pi\)
\(420\) 0 0
\(421\) 8.00501e16 0.700694 0.350347 0.936620i \(-0.386064\pi\)
0.350347 + 0.936620i \(0.386064\pi\)
\(422\) 0 0
\(423\) 1.00963e17 0.856935
\(424\) 0 0
\(425\) −8.52328e16 −0.701583
\(426\) 0 0
\(427\) 1.34110e17 1.07073
\(428\) 0 0
\(429\) 1.47256e16 0.114051
\(430\) 0 0
\(431\) 2.25261e17 1.69272 0.846359 0.532613i \(-0.178790\pi\)
0.846359 + 0.532613i \(0.178790\pi\)
\(432\) 0 0
\(433\) 1.69110e17 1.23310 0.616550 0.787315i \(-0.288530\pi\)
0.616550 + 0.787315i \(0.288530\pi\)
\(434\) 0 0
\(435\) −9.00359e15 −0.0637141
\(436\) 0 0
\(437\) 9.73327e16 0.668543
\(438\) 0 0
\(439\) 1.03678e17 0.691299 0.345649 0.938364i \(-0.387659\pi\)
0.345649 + 0.938364i \(0.387659\pi\)
\(440\) 0 0
\(441\) −6.11634e15 −0.0395950
\(442\) 0 0
\(443\) 2.87099e16 0.180471 0.0902357 0.995920i \(-0.471238\pi\)
0.0902357 + 0.995920i \(0.471238\pi\)
\(444\) 0 0
\(445\) −1.92123e17 −1.17284
\(446\) 0 0
\(447\) −6.75236e16 −0.400365
\(448\) 0 0
\(449\) 1.52452e17 0.878074 0.439037 0.898469i \(-0.355320\pi\)
0.439037 + 0.898469i \(0.355320\pi\)
\(450\) 0 0
\(451\) 1.72747e17 0.966636
\(452\) 0 0
\(453\) 1.37204e16 0.0745983
\(454\) 0 0
\(455\) 3.74954e16 0.198109
\(456\) 0 0
\(457\) −5.20481e16 −0.267270 −0.133635 0.991031i \(-0.542665\pi\)
−0.133635 + 0.991031i \(0.542665\pi\)
\(458\) 0 0
\(459\) −3.81049e17 −1.90195
\(460\) 0 0
\(461\) 2.88623e17 1.40047 0.700236 0.713911i \(-0.253078\pi\)
0.700236 + 0.713911i \(0.253078\pi\)
\(462\) 0 0
\(463\) 2.13822e16 0.100873 0.0504365 0.998727i \(-0.483939\pi\)
0.0504365 + 0.998727i \(0.483939\pi\)
\(464\) 0 0
\(465\) 1.68374e17 0.772380
\(466\) 0 0
\(467\) −2.29228e17 −1.02261 −0.511303 0.859400i \(-0.670837\pi\)
−0.511303 + 0.859400i \(0.670837\pi\)
\(468\) 0 0
\(469\) 2.29407e17 0.995366
\(470\) 0 0
\(471\) 1.81542e17 0.766200
\(472\) 0 0
\(473\) −2.76591e17 −1.13564
\(474\) 0 0
\(475\) 5.80144e16 0.231754
\(476\) 0 0
\(477\) 1.46927e17 0.571126
\(478\) 0 0
\(479\) 9.79968e16 0.370707 0.185354 0.982672i \(-0.440657\pi\)
0.185354 + 0.982672i \(0.440657\pi\)
\(480\) 0 0
\(481\) 2.84135e16 0.104612
\(482\) 0 0
\(483\) −2.45542e17 −0.879974
\(484\) 0 0
\(485\) −1.96869e17 −0.686840
\(486\) 0 0
\(487\) 2.19669e17 0.746158 0.373079 0.927800i \(-0.378302\pi\)
0.373079 + 0.927800i \(0.378302\pi\)
\(488\) 0 0
\(489\) 2.76974e17 0.916074
\(490\) 0 0
\(491\) −2.11096e17 −0.679908 −0.339954 0.940442i \(-0.610411\pi\)
−0.339954 + 0.940442i \(0.610411\pi\)
\(492\) 0 0
\(493\) −4.12191e16 −0.129298
\(494\) 0 0
\(495\) 1.68950e17 0.516207
\(496\) 0 0
\(497\) 3.81610e17 1.13580
\(498\) 0 0
\(499\) 5.29964e17 1.53671 0.768357 0.640021i \(-0.221075\pi\)
0.768357 + 0.640021i \(0.221075\pi\)
\(500\) 0 0
\(501\) 4.77649e14 0.00134947
\(502\) 0 0
\(503\) −4.29152e17 −1.18146 −0.590730 0.806870i \(-0.701160\pi\)
−0.590730 + 0.806870i \(0.701160\pi\)
\(504\) 0 0
\(505\) −1.17156e17 −0.314318
\(506\) 0 0
\(507\) 2.75076e17 0.719285
\(508\) 0 0
\(509\) 9.16821e16 0.233679 0.116839 0.993151i \(-0.462724\pi\)
0.116839 + 0.993151i \(0.462724\pi\)
\(510\) 0 0
\(511\) −7.19132e17 −1.78679
\(512\) 0 0
\(513\) 2.59364e17 0.628271
\(514\) 0 0
\(515\) −4.53204e17 −1.07040
\(516\) 0 0
\(517\) 7.85856e17 1.80990
\(518\) 0 0
\(519\) −4.44997e17 −0.999469
\(520\) 0 0
\(521\) 4.41292e17 0.966675 0.483338 0.875434i \(-0.339424\pi\)
0.483338 + 0.875434i \(0.339424\pi\)
\(522\) 0 0
\(523\) 2.67498e17 0.571556 0.285778 0.958296i \(-0.407748\pi\)
0.285778 + 0.958296i \(0.407748\pi\)
\(524\) 0 0
\(525\) −1.46353e17 −0.305047
\(526\) 0 0
\(527\) 7.70828e17 1.56743
\(528\) 0 0
\(529\) 1.54516e17 0.306557
\(530\) 0 0
\(531\) 2.64823e17 0.512673
\(532\) 0 0
\(533\) −8.56567e16 −0.161821
\(534\) 0 0
\(535\) −6.24013e17 −1.15052
\(536\) 0 0
\(537\) −2.45057e17 −0.440996
\(538\) 0 0
\(539\) −4.76073e16 −0.0836271
\(540\) 0 0
\(541\) 3.34334e17 0.573321 0.286660 0.958032i \(-0.407455\pi\)
0.286660 + 0.958032i \(0.407455\pi\)
\(542\) 0 0
\(543\) −1.68800e16 −0.0282600
\(544\) 0 0
\(545\) −1.36871e18 −2.23734
\(546\) 0 0
\(547\) 8.23548e17 1.31453 0.657266 0.753659i \(-0.271713\pi\)
0.657266 + 0.753659i \(0.271713\pi\)
\(548\) 0 0
\(549\) −2.99636e17 −0.467061
\(550\) 0 0
\(551\) 2.80561e16 0.0427112
\(552\) 0 0
\(553\) 1.12269e18 1.66935
\(554\) 0 0
\(555\) −3.90794e17 −0.567602
\(556\) 0 0
\(557\) −8.21693e17 −1.16587 −0.582936 0.812518i \(-0.698096\pi\)
−0.582936 + 0.812518i \(0.698096\pi\)
\(558\) 0 0
\(559\) 1.37148e17 0.190113
\(560\) 0 0
\(561\) −9.27212e17 −1.25580
\(562\) 0 0
\(563\) 8.88601e17 1.17599 0.587993 0.808866i \(-0.299918\pi\)
0.587993 + 0.808866i \(0.299918\pi\)
\(564\) 0 0
\(565\) −4.31351e17 −0.557847
\(566\) 0 0
\(567\) −2.79124e17 −0.352782
\(568\) 0 0
\(569\) −9.25189e17 −1.14288 −0.571440 0.820644i \(-0.693615\pi\)
−0.571440 + 0.820644i \(0.693615\pi\)
\(570\) 0 0
\(571\) 2.85287e17 0.344467 0.172233 0.985056i \(-0.444902\pi\)
0.172233 + 0.985056i \(0.444902\pi\)
\(572\) 0 0
\(573\) 2.95490e17 0.348769
\(574\) 0 0
\(575\) 3.92525e17 0.452925
\(576\) 0 0
\(577\) −3.62620e17 −0.409081 −0.204540 0.978858i \(-0.565570\pi\)
−0.204540 + 0.978858i \(0.565570\pi\)
\(578\) 0 0
\(579\) −5.74227e17 −0.633392
\(580\) 0 0
\(581\) −1.71520e18 −1.84999
\(582\) 0 0
\(583\) 1.14363e18 1.20625
\(584\) 0 0
\(585\) −8.37739e16 −0.0864163
\(586\) 0 0
\(587\) −4.88536e16 −0.0492889 −0.0246444 0.999696i \(-0.507845\pi\)
−0.0246444 + 0.999696i \(0.507845\pi\)
\(588\) 0 0
\(589\) −5.24670e17 −0.517770
\(590\) 0 0
\(591\) 1.93437e17 0.186733
\(592\) 0 0
\(593\) −1.15938e17 −0.109489 −0.0547446 0.998500i \(-0.517434\pi\)
−0.0547446 + 0.998500i \(0.517434\pi\)
\(594\) 0 0
\(595\) −2.36094e18 −2.18135
\(596\) 0 0
\(597\) 3.69963e17 0.334445
\(598\) 0 0
\(599\) 4.75963e17 0.421016 0.210508 0.977592i \(-0.432488\pi\)
0.210508 + 0.977592i \(0.432488\pi\)
\(600\) 0 0
\(601\) 1.49802e18 1.29668 0.648341 0.761350i \(-0.275463\pi\)
0.648341 + 0.761350i \(0.275463\pi\)
\(602\) 0 0
\(603\) −5.12551e17 −0.434185
\(604\) 0 0
\(605\) −1.10204e17 −0.0913663
\(606\) 0 0
\(607\) −4.84664e17 −0.393292 −0.196646 0.980475i \(-0.563005\pi\)
−0.196646 + 0.980475i \(0.563005\pi\)
\(608\) 0 0
\(609\) −7.07774e16 −0.0562189
\(610\) 0 0
\(611\) −3.89667e17 −0.302988
\(612\) 0 0
\(613\) 5.15858e17 0.392678 0.196339 0.980536i \(-0.437095\pi\)
0.196339 + 0.980536i \(0.437095\pi\)
\(614\) 0 0
\(615\) 1.17811e18 0.878006
\(616\) 0 0
\(617\) −1.21887e18 −0.889415 −0.444707 0.895676i \(-0.646692\pi\)
−0.444707 + 0.895676i \(0.646692\pi\)
\(618\) 0 0
\(619\) −1.70605e18 −1.21900 −0.609499 0.792787i \(-0.708630\pi\)
−0.609499 + 0.792787i \(0.708630\pi\)
\(620\) 0 0
\(621\) 1.75485e18 1.22785
\(622\) 0 0
\(623\) −1.51028e18 −1.03487
\(624\) 0 0
\(625\) −1.84660e18 −1.23923
\(626\) 0 0
\(627\) 6.31114e17 0.414829
\(628\) 0 0
\(629\) −1.78908e18 −1.15186
\(630\) 0 0
\(631\) −1.04361e17 −0.0658186 −0.0329093 0.999458i \(-0.510477\pi\)
−0.0329093 + 0.999458i \(0.510477\pi\)
\(632\) 0 0
\(633\) −8.63307e17 −0.533385
\(634\) 0 0
\(635\) 9.84134e17 0.595697
\(636\) 0 0
\(637\) 2.36061e16 0.0139997
\(638\) 0 0
\(639\) −8.52609e17 −0.495444
\(640\) 0 0
\(641\) 9.82007e16 0.0559162 0.0279581 0.999609i \(-0.491100\pi\)
0.0279581 + 0.999609i \(0.491100\pi\)
\(642\) 0 0
\(643\) 8.77886e17 0.489854 0.244927 0.969542i \(-0.421236\pi\)
0.244927 + 0.969542i \(0.421236\pi\)
\(644\) 0 0
\(645\) −1.88631e18 −1.03151
\(646\) 0 0
\(647\) 3.75124e16 0.0201047 0.0100523 0.999949i \(-0.496800\pi\)
0.0100523 + 0.999949i \(0.496800\pi\)
\(648\) 0 0
\(649\) 2.06128e18 1.08280
\(650\) 0 0
\(651\) 1.32359e18 0.681518
\(652\) 0 0
\(653\) 2.37735e18 1.19993 0.599967 0.800025i \(-0.295180\pi\)
0.599967 + 0.800025i \(0.295180\pi\)
\(654\) 0 0
\(655\) 2.46746e18 1.22091
\(656\) 0 0
\(657\) 1.60672e18 0.779407
\(658\) 0 0
\(659\) 3.79077e17 0.180290 0.0901451 0.995929i \(-0.471267\pi\)
0.0901451 + 0.995929i \(0.471267\pi\)
\(660\) 0 0
\(661\) −2.24798e18 −1.04829 −0.524146 0.851629i \(-0.675615\pi\)
−0.524146 + 0.851629i \(0.675615\pi\)
\(662\) 0 0
\(663\) 4.59759e17 0.210229
\(664\) 0 0
\(665\) 1.60699e18 0.720564
\(666\) 0 0
\(667\) 1.89827e17 0.0834720
\(668\) 0 0
\(669\) 2.91308e18 1.25627
\(670\) 0 0
\(671\) −2.33225e18 −0.986460
\(672\) 0 0
\(673\) −2.83190e18 −1.17484 −0.587421 0.809282i \(-0.699857\pi\)
−0.587421 + 0.809282i \(0.699857\pi\)
\(674\) 0 0
\(675\) 1.04597e18 0.425641
\(676\) 0 0
\(677\) −2.10587e18 −0.840633 −0.420316 0.907378i \(-0.638081\pi\)
−0.420316 + 0.907378i \(0.638081\pi\)
\(678\) 0 0
\(679\) −1.54759e18 −0.606041
\(680\) 0 0
\(681\) 2.15717e18 0.828759
\(682\) 0 0
\(683\) 4.67469e18 1.76205 0.881026 0.473068i \(-0.156854\pi\)
0.881026 + 0.473068i \(0.156854\pi\)
\(684\) 0 0
\(685\) 4.19780e18 1.55250
\(686\) 0 0
\(687\) −1.38451e18 −0.502433
\(688\) 0 0
\(689\) −5.67068e17 −0.201934
\(690\) 0 0
\(691\) −2.38768e18 −0.834391 −0.417195 0.908817i \(-0.636987\pi\)
−0.417195 + 0.908817i \(0.636987\pi\)
\(692\) 0 0
\(693\) 1.32812e18 0.455481
\(694\) 0 0
\(695\) −3.40180e18 −1.14500
\(696\) 0 0
\(697\) 5.39347e18 1.78178
\(698\) 0 0
\(699\) 2.19149e18 0.710620
\(700\) 0 0
\(701\) 1.20101e18 0.382279 0.191140 0.981563i \(-0.438782\pi\)
0.191140 + 0.981563i \(0.438782\pi\)
\(702\) 0 0
\(703\) 1.21775e18 0.380496
\(704\) 0 0
\(705\) 5.35942e18 1.64395
\(706\) 0 0
\(707\) −9.20963e17 −0.277342
\(708\) 0 0
\(709\) 6.07854e18 1.79721 0.898605 0.438758i \(-0.144581\pi\)
0.898605 + 0.438758i \(0.144581\pi\)
\(710\) 0 0
\(711\) −2.50837e18 −0.728182
\(712\) 0 0
\(713\) −3.54991e18 −1.01190
\(714\) 0 0
\(715\) −6.52066e17 −0.182516
\(716\) 0 0
\(717\) −1.20456e18 −0.331096
\(718\) 0 0
\(719\) 3.60498e18 0.973118 0.486559 0.873648i \(-0.338252\pi\)
0.486559 + 0.873648i \(0.338252\pi\)
\(720\) 0 0
\(721\) −3.56264e18 −0.944481
\(722\) 0 0
\(723\) 1.66958e18 0.434718
\(724\) 0 0
\(725\) 1.13145e17 0.0289360
\(726\) 0 0
\(727\) 7.42892e18 1.86617 0.933086 0.359653i \(-0.117105\pi\)
0.933086 + 0.359653i \(0.117105\pi\)
\(728\) 0 0
\(729\) 3.83795e18 0.947044
\(730\) 0 0
\(731\) −8.63567e18 −2.09331
\(732\) 0 0
\(733\) −1.94485e17 −0.0463139 −0.0231569 0.999732i \(-0.507372\pi\)
−0.0231569 + 0.999732i \(0.507372\pi\)
\(734\) 0 0
\(735\) −3.24675e17 −0.0759593
\(736\) 0 0
\(737\) −3.98951e18 −0.917025
\(738\) 0 0
\(739\) −3.07766e18 −0.695074 −0.347537 0.937666i \(-0.612982\pi\)
−0.347537 + 0.937666i \(0.612982\pi\)
\(740\) 0 0
\(741\) −3.12938e17 −0.0694449
\(742\) 0 0
\(743\) −1.87603e17 −0.0409083 −0.0204542 0.999791i \(-0.506511\pi\)
−0.0204542 + 0.999791i \(0.506511\pi\)
\(744\) 0 0
\(745\) 2.99002e18 0.640705
\(746\) 0 0
\(747\) 3.83218e18 0.806978
\(748\) 0 0
\(749\) −4.90538e18 −1.01517
\(750\) 0 0
\(751\) −3.58767e18 −0.729713 −0.364857 0.931064i \(-0.618882\pi\)
−0.364857 + 0.931064i \(0.618882\pi\)
\(752\) 0 0
\(753\) −8.16226e17 −0.163171
\(754\) 0 0
\(755\) −6.07556e17 −0.119380
\(756\) 0 0
\(757\) −4.57646e18 −0.883906 −0.441953 0.897038i \(-0.645714\pi\)
−0.441953 + 0.897038i \(0.645714\pi\)
\(758\) 0 0
\(759\) 4.27011e18 0.810714
\(760\) 0 0
\(761\) 2.74253e18 0.511859 0.255930 0.966695i \(-0.417618\pi\)
0.255930 + 0.966695i \(0.417618\pi\)
\(762\) 0 0
\(763\) −1.07594e19 −1.97415
\(764\) 0 0
\(765\) 5.27491e18 0.951516
\(766\) 0 0
\(767\) −1.02209e18 −0.181267
\(768\) 0 0
\(769\) −2.95322e18 −0.514961 −0.257480 0.966284i \(-0.582892\pi\)
−0.257480 + 0.966284i \(0.582892\pi\)
\(770\) 0 0
\(771\) 1.14618e18 0.196517
\(772\) 0 0
\(773\) −5.92667e18 −0.999181 −0.499590 0.866262i \(-0.666516\pi\)
−0.499590 + 0.866262i \(0.666516\pi\)
\(774\) 0 0
\(775\) −2.11590e18 −0.350779
\(776\) 0 0
\(777\) −3.07204e18 −0.500830
\(778\) 0 0
\(779\) −3.67111e18 −0.588577
\(780\) 0 0
\(781\) −6.63640e18 −1.04641
\(782\) 0 0
\(783\) 5.05836e17 0.0784437
\(784\) 0 0
\(785\) −8.03890e18 −1.22615
\(786\) 0 0
\(787\) 2.47707e18 0.371623 0.185811 0.982585i \(-0.440509\pi\)
0.185811 + 0.982585i \(0.440509\pi\)
\(788\) 0 0
\(789\) 2.24130e18 0.330750
\(790\) 0 0
\(791\) −3.39085e18 −0.492223
\(792\) 0 0
\(793\) 1.15645e18 0.165140
\(794\) 0 0
\(795\) 7.79936e18 1.09565
\(796\) 0 0
\(797\) 3.50125e18 0.483886 0.241943 0.970290i \(-0.422215\pi\)
0.241943 + 0.970290i \(0.422215\pi\)
\(798\) 0 0
\(799\) 2.45358e19 3.33616
\(800\) 0 0
\(801\) 3.37434e18 0.451416
\(802\) 0 0
\(803\) 1.25061e19 1.64615
\(804\) 0 0
\(805\) 1.08729e19 1.40822
\(806\) 0 0
\(807\) 3.98121e18 0.507385
\(808\) 0 0
\(809\) −1.34541e19 −1.68728 −0.843641 0.536908i \(-0.819592\pi\)
−0.843641 + 0.536908i \(0.819592\pi\)
\(810\) 0 0
\(811\) −5.51711e18 −0.680889 −0.340445 0.940265i \(-0.610578\pi\)
−0.340445 + 0.940265i \(0.610578\pi\)
\(812\) 0 0
\(813\) −1.51316e17 −0.0183779
\(814\) 0 0
\(815\) −1.22647e19 −1.46600
\(816\) 0 0
\(817\) 5.87794e18 0.691483
\(818\) 0 0
\(819\) −6.58548e17 −0.0762504
\(820\) 0 0
\(821\) −1.22485e19 −1.39590 −0.697949 0.716147i \(-0.745904\pi\)
−0.697949 + 0.716147i \(0.745904\pi\)
\(822\) 0 0
\(823\) −1.47057e19 −1.64963 −0.824813 0.565406i \(-0.808720\pi\)
−0.824813 + 0.565406i \(0.808720\pi\)
\(824\) 0 0
\(825\) 2.54517e18 0.281038
\(826\) 0 0
\(827\) 1.17822e19 1.28068 0.640340 0.768092i \(-0.278794\pi\)
0.640340 + 0.768092i \(0.278794\pi\)
\(828\) 0 0
\(829\) −1.07291e19 −1.14805 −0.574023 0.818839i \(-0.694618\pi\)
−0.574023 + 0.818839i \(0.694618\pi\)
\(830\) 0 0
\(831\) −1.09879e19 −1.15747
\(832\) 0 0
\(833\) −1.48638e18 −0.154148
\(834\) 0 0
\(835\) −2.11508e16 −0.00215956
\(836\) 0 0
\(837\) −9.45951e18 −0.950940
\(838\) 0 0
\(839\) −3.64163e18 −0.360449 −0.180224 0.983626i \(-0.557682\pi\)
−0.180224 + 0.983626i \(0.557682\pi\)
\(840\) 0 0
\(841\) −1.02059e19 −0.994667
\(842\) 0 0
\(843\) 1.61633e18 0.155114
\(844\) 0 0
\(845\) −1.21807e19 −1.15107
\(846\) 0 0
\(847\) −8.66312e17 −0.0806181
\(848\) 0 0
\(849\) −3.58390e18 −0.328440
\(850\) 0 0
\(851\) 8.23931e18 0.743616
\(852\) 0 0
\(853\) 8.66074e18 0.769815 0.384907 0.922955i \(-0.374233\pi\)
0.384907 + 0.922955i \(0.374233\pi\)
\(854\) 0 0
\(855\) −3.59041e18 −0.314315
\(856\) 0 0
\(857\) −1.94010e19 −1.67282 −0.836408 0.548107i \(-0.815349\pi\)
−0.836408 + 0.548107i \(0.815349\pi\)
\(858\) 0 0
\(859\) 5.21902e18 0.443234 0.221617 0.975134i \(-0.428866\pi\)
0.221617 + 0.975134i \(0.428866\pi\)
\(860\) 0 0
\(861\) 9.26113e18 0.774718
\(862\) 0 0
\(863\) −3.14037e18 −0.258768 −0.129384 0.991595i \(-0.541300\pi\)
−0.129384 + 0.991595i \(0.541300\pi\)
\(864\) 0 0
\(865\) 1.97050e19 1.59945
\(866\) 0 0
\(867\) −1.97149e19 −1.57642
\(868\) 0 0
\(869\) −1.95243e19 −1.53796
\(870\) 0 0
\(871\) 1.97820e18 0.153516
\(872\) 0 0
\(873\) 3.45769e18 0.264359
\(874\) 0 0
\(875\) −9.87465e18 −0.743823
\(876\) 0 0
\(877\) 1.64678e19 1.22219 0.611093 0.791559i \(-0.290730\pi\)
0.611093 + 0.791559i \(0.290730\pi\)
\(878\) 0 0
\(879\) −2.99025e18 −0.218665
\(880\) 0 0
\(881\) 3.41428e18 0.246011 0.123006 0.992406i \(-0.460747\pi\)
0.123006 + 0.992406i \(0.460747\pi\)
\(882\) 0 0
\(883\) −7.98967e18 −0.567262 −0.283631 0.958933i \(-0.591539\pi\)
−0.283631 + 0.958933i \(0.591539\pi\)
\(884\) 0 0
\(885\) 1.40576e19 0.983515
\(886\) 0 0
\(887\) 1.42206e19 0.980422 0.490211 0.871604i \(-0.336920\pi\)
0.490211 + 0.871604i \(0.336920\pi\)
\(888\) 0 0
\(889\) 7.73629e18 0.525619
\(890\) 0 0
\(891\) 4.85411e18 0.325016
\(892\) 0 0
\(893\) −1.67005e19 −1.10203
\(894\) 0 0
\(895\) 1.08514e19 0.705727
\(896\) 0 0
\(897\) −2.11734e18 −0.135719
\(898\) 0 0
\(899\) −1.02326e18 −0.0646470
\(900\) 0 0
\(901\) 3.57060e19 2.22347
\(902\) 0 0
\(903\) −1.48283e19 −0.910168
\(904\) 0 0
\(905\) 7.47463e17 0.0452245
\(906\) 0 0
\(907\) 1.30557e19 0.778667 0.389334 0.921097i \(-0.372705\pi\)
0.389334 + 0.921097i \(0.372705\pi\)
\(908\) 0 0
\(909\) 2.05766e18 0.120978
\(910\) 0 0
\(911\) −8.09933e16 −0.00469439 −0.00234720 0.999997i \(-0.500747\pi\)
−0.00234720 + 0.999997i \(0.500747\pi\)
\(912\) 0 0
\(913\) 2.98283e19 1.70439
\(914\) 0 0
\(915\) −1.59056e19 −0.896012
\(916\) 0 0
\(917\) 1.93968e19 1.07728
\(918\) 0 0
\(919\) 2.64226e19 1.44685 0.723426 0.690401i \(-0.242566\pi\)
0.723426 + 0.690401i \(0.242566\pi\)
\(920\) 0 0
\(921\) −1.77676e19 −0.959273
\(922\) 0 0
\(923\) 3.29066e18 0.175175
\(924\) 0 0
\(925\) 4.91097e18 0.257778
\(926\) 0 0
\(927\) 7.95982e18 0.411988
\(928\) 0 0
\(929\) 6.73591e18 0.343791 0.171895 0.985115i \(-0.445011\pi\)
0.171895 + 0.985115i \(0.445011\pi\)
\(930\) 0 0
\(931\) 1.01172e18 0.0509199
\(932\) 0 0
\(933\) 1.68993e19 0.838761
\(934\) 0 0
\(935\) 4.10580e19 2.00966
\(936\) 0 0
\(937\) 2.28647e19 1.10372 0.551859 0.833937i \(-0.313919\pi\)
0.551859 + 0.833937i \(0.313919\pi\)
\(938\) 0 0
\(939\) −2.90650e19 −1.38370
\(940\) 0 0
\(941\) −4.10540e19 −1.92762 −0.963812 0.266581i \(-0.914106\pi\)
−0.963812 + 0.266581i \(0.914106\pi\)
\(942\) 0 0
\(943\) −2.48387e19 −1.15028
\(944\) 0 0
\(945\) 2.89731e19 1.32339
\(946\) 0 0
\(947\) 4.57566e18 0.206148 0.103074 0.994674i \(-0.467132\pi\)
0.103074 + 0.994674i \(0.467132\pi\)
\(948\) 0 0
\(949\) −6.20115e18 −0.275576
\(950\) 0 0
\(951\) −2.85961e18 −0.125353
\(952\) 0 0
\(953\) −2.21585e19 −0.958158 −0.479079 0.877772i \(-0.659029\pi\)
−0.479079 + 0.877772i \(0.659029\pi\)
\(954\) 0 0
\(955\) −1.30846e19 −0.558136
\(956\) 0 0
\(957\) 1.23086e18 0.0517941
\(958\) 0 0
\(959\) 3.29989e19 1.36987
\(960\) 0 0
\(961\) −5.28179e18 −0.216311
\(962\) 0 0
\(963\) 1.09598e19 0.442825
\(964\) 0 0
\(965\) 2.54274e19 1.01362
\(966\) 0 0
\(967\) −3.62724e19 −1.42661 −0.713304 0.700855i \(-0.752802\pi\)
−0.713304 + 0.700855i \(0.752802\pi\)
\(968\) 0 0
\(969\) 1.97045e19 0.764647
\(970\) 0 0
\(971\) −1.22360e19 −0.468504 −0.234252 0.972176i \(-0.575264\pi\)
−0.234252 + 0.972176i \(0.575264\pi\)
\(972\) 0 0
\(973\) −2.67416e19 −1.01031
\(974\) 0 0
\(975\) −1.26202e18 −0.0470476
\(976\) 0 0
\(977\) −1.82463e19 −0.671211 −0.335606 0.942003i \(-0.608941\pi\)
−0.335606 + 0.942003i \(0.608941\pi\)
\(978\) 0 0
\(979\) 2.62646e19 0.953418
\(980\) 0 0
\(981\) 2.40392e19 0.861134
\(982\) 0 0
\(983\) −9.19383e18 −0.325011 −0.162506 0.986708i \(-0.551958\pi\)
−0.162506 + 0.986708i \(0.551958\pi\)
\(984\) 0 0
\(985\) −8.56562e18 −0.298830
\(986\) 0 0
\(987\) 4.21305e19 1.45056
\(988\) 0 0
\(989\) 3.97701e19 1.35139
\(990\) 0 0
\(991\) −4.59757e19 −1.54188 −0.770938 0.636910i \(-0.780212\pi\)
−0.770938 + 0.636910i \(0.780212\pi\)
\(992\) 0 0
\(993\) 9.85830e18 0.326311
\(994\) 0 0
\(995\) −1.63824e19 −0.535214
\(996\) 0 0
\(997\) 1.09104e19 0.351820 0.175910 0.984406i \(-0.443713\pi\)
0.175910 + 0.984406i \(0.443713\pi\)
\(998\) 0 0
\(999\) 2.19554e19 0.698821
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 64.14.a.m.1.2 3
4.3 odd 2 64.14.a.n.1.2 3
8.3 odd 2 32.14.a.c.1.2 3
8.5 even 2 32.14.a.d.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.14.a.c.1.2 3 8.3 odd 2
32.14.a.d.1.2 yes 3 8.5 even 2
64.14.a.m.1.2 3 1.1 even 1 trivial
64.14.a.n.1.2 3 4.3 odd 2