Properties

Label 64.14.a.m.1.1
Level $64$
Weight $14$
Character 64.1
Self dual yes
Analytic conductor $68.628$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [64,14,Mod(1,64)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(64, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("64.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 64 = 2^{6} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 64.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.6277945292\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2195x - 37995 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 32)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-29.9193\) of defining polynomial
Character \(\chi\) \(=\) 64.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1141.42 q^{3} -48826.1 q^{5} -397601. q^{7} -291488. q^{9} +7.39162e6 q^{11} +3.11510e7 q^{13} +5.57310e7 q^{15} +1.86044e7 q^{17} +2.63490e7 q^{19} +4.53829e8 q^{21} -5.66755e8 q^{23} +1.16328e9 q^{25} +2.15250e9 q^{27} -4.67895e9 q^{29} +6.11292e9 q^{31} -8.43693e9 q^{33} +1.94133e10 q^{35} +6.38303e9 q^{37} -3.55563e10 q^{39} -2.34979e9 q^{41} +4.94124e10 q^{43} +1.42322e10 q^{45} -7.78323e10 q^{47} +6.11977e10 q^{49} -2.12354e10 q^{51} -4.23613e10 q^{53} -3.60904e11 q^{55} -3.00752e10 q^{57} +4.87180e11 q^{59} -6.08935e11 q^{61} +1.15896e11 q^{63} -1.52098e12 q^{65} -8.91737e11 q^{67} +6.46905e11 q^{69} +3.71573e11 q^{71} +1.15284e12 q^{73} -1.32779e12 q^{75} -2.93892e12 q^{77} +3.28048e12 q^{79} -1.99217e12 q^{81} +4.48598e12 q^{83} -9.08380e11 q^{85} +5.34064e12 q^{87} -2.70738e12 q^{89} -1.23857e13 q^{91} -6.97739e12 q^{93} -1.28652e12 q^{95} -1.46940e13 q^{97} -2.15457e12 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 520 q^{3} - 11594 q^{5} - 96304 q^{7} - 196793 q^{9} + 1923816 q^{11} + 11211006 q^{13} + 10944368 q^{15} - 16892538 q^{17} + 74665048 q^{19} + 115146880 q^{21} - 486642576 q^{23} + 442696461 q^{25}+ \cdots + 2082116453576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1141.42 −0.903975 −0.451988 0.892024i \(-0.649285\pi\)
−0.451988 + 0.892024i \(0.649285\pi\)
\(4\) 0 0
\(5\) −48826.1 −1.39748 −0.698742 0.715374i \(-0.746256\pi\)
−0.698742 + 0.715374i \(0.746256\pi\)
\(6\) 0 0
\(7\) −397601. −1.27735 −0.638676 0.769476i \(-0.720517\pi\)
−0.638676 + 0.769476i \(0.720517\pi\)
\(8\) 0 0
\(9\) −291488. −0.182829
\(10\) 0 0
\(11\) 7.39162e6 1.25802 0.629009 0.777398i \(-0.283461\pi\)
0.629009 + 0.777398i \(0.283461\pi\)
\(12\) 0 0
\(13\) 3.11510e7 1.78995 0.894974 0.446118i \(-0.147194\pi\)
0.894974 + 0.446118i \(0.147194\pi\)
\(14\) 0 0
\(15\) 5.57310e7 1.26329
\(16\) 0 0
\(17\) 1.86044e7 0.186938 0.0934690 0.995622i \(-0.470204\pi\)
0.0934690 + 0.995622i \(0.470204\pi\)
\(18\) 0 0
\(19\) 2.63490e7 0.128489 0.0642444 0.997934i \(-0.479536\pi\)
0.0642444 + 0.997934i \(0.479536\pi\)
\(20\) 0 0
\(21\) 4.53829e8 1.15469
\(22\) 0 0
\(23\) −5.66755e8 −0.798297 −0.399149 0.916886i \(-0.630694\pi\)
−0.399149 + 0.916886i \(0.630694\pi\)
\(24\) 0 0
\(25\) 1.16328e9 0.952962
\(26\) 0 0
\(27\) 2.15250e9 1.06925
\(28\) 0 0
\(29\) −4.67895e9 −1.46070 −0.730351 0.683072i \(-0.760644\pi\)
−0.730351 + 0.683072i \(0.760644\pi\)
\(30\) 0 0
\(31\) 6.11292e9 1.23708 0.618540 0.785753i \(-0.287725\pi\)
0.618540 + 0.785753i \(0.287725\pi\)
\(32\) 0 0
\(33\) −8.43693e9 −1.13722
\(34\) 0 0
\(35\) 1.94133e10 1.78508
\(36\) 0 0
\(37\) 6.38303e9 0.408993 0.204496 0.978867i \(-0.434444\pi\)
0.204496 + 0.978867i \(0.434444\pi\)
\(38\) 0 0
\(39\) −3.55563e10 −1.61807
\(40\) 0 0
\(41\) −2.34979e9 −0.0772562 −0.0386281 0.999254i \(-0.512299\pi\)
−0.0386281 + 0.999254i \(0.512299\pi\)
\(42\) 0 0
\(43\) 4.94124e10 1.19204 0.596020 0.802970i \(-0.296748\pi\)
0.596020 + 0.802970i \(0.296748\pi\)
\(44\) 0 0
\(45\) 1.42322e10 0.255501
\(46\) 0 0
\(47\) −7.78323e10 −1.05323 −0.526616 0.850104i \(-0.676539\pi\)
−0.526616 + 0.850104i \(0.676539\pi\)
\(48\) 0 0
\(49\) 6.11977e10 0.631627
\(50\) 0 0
\(51\) −2.12354e10 −0.168987
\(52\) 0 0
\(53\) −4.23613e10 −0.262528 −0.131264 0.991347i \(-0.541904\pi\)
−0.131264 + 0.991347i \(0.541904\pi\)
\(54\) 0 0
\(55\) −3.60904e11 −1.75806
\(56\) 0 0
\(57\) −3.00752e10 −0.116151
\(58\) 0 0
\(59\) 4.87180e11 1.50367 0.751833 0.659354i \(-0.229170\pi\)
0.751833 + 0.659354i \(0.229170\pi\)
\(60\) 0 0
\(61\) −6.08935e11 −1.51331 −0.756653 0.653816i \(-0.773167\pi\)
−0.756653 + 0.653816i \(0.773167\pi\)
\(62\) 0 0
\(63\) 1.15896e11 0.233537
\(64\) 0 0
\(65\) −1.52098e12 −2.50142
\(66\) 0 0
\(67\) −8.91737e11 −1.20434 −0.602172 0.798366i \(-0.705698\pi\)
−0.602172 + 0.798366i \(0.705698\pi\)
\(68\) 0 0
\(69\) 6.46905e11 0.721641
\(70\) 0 0
\(71\) 3.71573e11 0.344242 0.172121 0.985076i \(-0.444938\pi\)
0.172121 + 0.985076i \(0.444938\pi\)
\(72\) 0 0
\(73\) 1.15284e12 0.891602 0.445801 0.895132i \(-0.352919\pi\)
0.445801 + 0.895132i \(0.352919\pi\)
\(74\) 0 0
\(75\) −1.32779e12 −0.861454
\(76\) 0 0
\(77\) −2.93892e12 −1.60693
\(78\) 0 0
\(79\) 3.28048e12 1.51831 0.759156 0.650909i \(-0.225612\pi\)
0.759156 + 0.650909i \(0.225612\pi\)
\(80\) 0 0
\(81\) −1.99217e12 −0.783745
\(82\) 0 0
\(83\) 4.48598e12 1.50609 0.753043 0.657971i \(-0.228585\pi\)
0.753043 + 0.657971i \(0.228585\pi\)
\(84\) 0 0
\(85\) −9.08380e11 −0.261243
\(86\) 0 0
\(87\) 5.34064e12 1.32044
\(88\) 0 0
\(89\) −2.70738e12 −0.577451 −0.288725 0.957412i \(-0.593231\pi\)
−0.288725 + 0.957412i \(0.593231\pi\)
\(90\) 0 0
\(91\) −1.23857e13 −2.28639
\(92\) 0 0
\(93\) −6.97739e12 −1.11829
\(94\) 0 0
\(95\) −1.28652e12 −0.179561
\(96\) 0 0
\(97\) −1.46940e13 −1.79112 −0.895559 0.444943i \(-0.853224\pi\)
−0.895559 + 0.444943i \(0.853224\pi\)
\(98\) 0 0
\(99\) −2.15457e12 −0.230002
\(100\) 0 0
\(101\) −1.25399e13 −1.17545 −0.587725 0.809061i \(-0.699976\pi\)
−0.587725 + 0.809061i \(0.699976\pi\)
\(102\) 0 0
\(103\) −2.01648e13 −1.66399 −0.831996 0.554781i \(-0.812802\pi\)
−0.831996 + 0.554781i \(0.812802\pi\)
\(104\) 0 0
\(105\) −2.21587e13 −1.61367
\(106\) 0 0
\(107\) 1.09182e13 0.703326 0.351663 0.936127i \(-0.385616\pi\)
0.351663 + 0.936127i \(0.385616\pi\)
\(108\) 0 0
\(109\) −5.40622e12 −0.308760 −0.154380 0.988012i \(-0.549338\pi\)
−0.154380 + 0.988012i \(0.549338\pi\)
\(110\) 0 0
\(111\) −7.28571e12 −0.369719
\(112\) 0 0
\(113\) 2.46345e13 1.11310 0.556549 0.830815i \(-0.312125\pi\)
0.556549 + 0.830815i \(0.312125\pi\)
\(114\) 0 0
\(115\) 2.76724e13 1.11561
\(116\) 0 0
\(117\) −9.08016e12 −0.327254
\(118\) 0 0
\(119\) −7.39713e12 −0.238786
\(120\) 0 0
\(121\) 2.01133e13 0.582612
\(122\) 0 0
\(123\) 2.68209e12 0.0698377
\(124\) 0 0
\(125\) 2.80359e12 0.0657353
\(126\) 0 0
\(127\) 1.21465e13 0.256877 0.128439 0.991717i \(-0.459003\pi\)
0.128439 + 0.991717i \(0.459003\pi\)
\(128\) 0 0
\(129\) −5.64002e13 −1.07757
\(130\) 0 0
\(131\) 5.48079e13 0.947501 0.473751 0.880659i \(-0.342900\pi\)
0.473751 + 0.880659i \(0.342900\pi\)
\(132\) 0 0
\(133\) −1.04764e13 −0.164125
\(134\) 0 0
\(135\) −1.05098e14 −1.49426
\(136\) 0 0
\(137\) −8.95353e13 −1.15694 −0.578470 0.815704i \(-0.696350\pi\)
−0.578470 + 0.815704i \(0.696350\pi\)
\(138\) 0 0
\(139\) 3.33958e11 0.00392731 0.00196366 0.999998i \(-0.499375\pi\)
0.00196366 + 0.999998i \(0.499375\pi\)
\(140\) 0 0
\(141\) 8.88392e13 0.952095
\(142\) 0 0
\(143\) 2.30256e14 2.25179
\(144\) 0 0
\(145\) 2.28455e14 2.04131
\(146\) 0 0
\(147\) −6.98521e13 −0.570975
\(148\) 0 0
\(149\) −9.98890e13 −0.747837 −0.373918 0.927462i \(-0.621986\pi\)
−0.373918 + 0.927462i \(0.621986\pi\)
\(150\) 0 0
\(151\) 4.97037e13 0.341223 0.170612 0.985338i \(-0.445426\pi\)
0.170612 + 0.985338i \(0.445426\pi\)
\(152\) 0 0
\(153\) −5.42297e12 −0.0341777
\(154\) 0 0
\(155\) −2.98470e14 −1.72880
\(156\) 0 0
\(157\) 2.17725e14 1.16027 0.580136 0.814520i \(-0.302999\pi\)
0.580136 + 0.814520i \(0.302999\pi\)
\(158\) 0 0
\(159\) 4.83519e13 0.237319
\(160\) 0 0
\(161\) 2.25343e14 1.01971
\(162\) 0 0
\(163\) −4.19264e13 −0.175093 −0.0875463 0.996160i \(-0.527903\pi\)
−0.0875463 + 0.996160i \(0.527903\pi\)
\(164\) 0 0
\(165\) 4.11942e14 1.58924
\(166\) 0 0
\(167\) −3.24031e13 −0.115593 −0.0577963 0.998328i \(-0.518407\pi\)
−0.0577963 + 0.998328i \(0.518407\pi\)
\(168\) 0 0
\(169\) 6.67511e14 2.20391
\(170\) 0 0
\(171\) −7.68042e12 −0.0234915
\(172\) 0 0
\(173\) −1.22717e14 −0.348019 −0.174010 0.984744i \(-0.555672\pi\)
−0.174010 + 0.984744i \(0.555672\pi\)
\(174\) 0 0
\(175\) −4.62523e14 −1.21727
\(176\) 0 0
\(177\) −5.56076e14 −1.35928
\(178\) 0 0
\(179\) −2.25282e14 −0.511896 −0.255948 0.966691i \(-0.582388\pi\)
−0.255948 + 0.966691i \(0.582388\pi\)
\(180\) 0 0
\(181\) 7.59426e14 1.60537 0.802684 0.596405i \(-0.203405\pi\)
0.802684 + 0.596405i \(0.203405\pi\)
\(182\) 0 0
\(183\) 6.95049e14 1.36799
\(184\) 0 0
\(185\) −3.11658e14 −0.571561
\(186\) 0 0
\(187\) 1.37517e14 0.235172
\(188\) 0 0
\(189\) −8.55836e14 −1.36581
\(190\) 0 0
\(191\) −6.34686e14 −0.945894 −0.472947 0.881091i \(-0.656810\pi\)
−0.472947 + 0.881091i \(0.656810\pi\)
\(192\) 0 0
\(193\) 2.31525e14 0.322460 0.161230 0.986917i \(-0.448454\pi\)
0.161230 + 0.986917i \(0.448454\pi\)
\(194\) 0 0
\(195\) 1.73608e15 2.26122
\(196\) 0 0
\(197\) −1.16985e14 −0.142593 −0.0712967 0.997455i \(-0.522714\pi\)
−0.0712967 + 0.997455i \(0.522714\pi\)
\(198\) 0 0
\(199\) −5.38208e13 −0.0614335 −0.0307167 0.999528i \(-0.509779\pi\)
−0.0307167 + 0.999528i \(0.509779\pi\)
\(200\) 0 0
\(201\) 1.01784e15 1.08870
\(202\) 0 0
\(203\) 1.86036e15 1.86583
\(204\) 0 0
\(205\) 1.14731e14 0.107964
\(206\) 0 0
\(207\) 1.65203e14 0.145952
\(208\) 0 0
\(209\) 1.94762e14 0.161641
\(210\) 0 0
\(211\) −1.51952e15 −1.18542 −0.592708 0.805417i \(-0.701941\pi\)
−0.592708 + 0.805417i \(0.701941\pi\)
\(212\) 0 0
\(213\) −4.24119e14 −0.311187
\(214\) 0 0
\(215\) −2.41261e15 −1.66586
\(216\) 0 0
\(217\) −2.43050e15 −1.58019
\(218\) 0 0
\(219\) −1.31587e15 −0.805986
\(220\) 0 0
\(221\) 5.79546e14 0.334609
\(222\) 0 0
\(223\) 3.24769e14 0.176845 0.0884225 0.996083i \(-0.471817\pi\)
0.0884225 + 0.996083i \(0.471817\pi\)
\(224\) 0 0
\(225\) −3.39084e14 −0.174229
\(226\) 0 0
\(227\) −3.38576e15 −1.64243 −0.821217 0.570616i \(-0.806705\pi\)
−0.821217 + 0.570616i \(0.806705\pi\)
\(228\) 0 0
\(229\) −7.60944e14 −0.348676 −0.174338 0.984686i \(-0.555779\pi\)
−0.174338 + 0.984686i \(0.555779\pi\)
\(230\) 0 0
\(231\) 3.35453e15 1.45263
\(232\) 0 0
\(233\) −2.28099e15 −0.933922 −0.466961 0.884278i \(-0.654651\pi\)
−0.466961 + 0.884278i \(0.654651\pi\)
\(234\) 0 0
\(235\) 3.80025e15 1.47187
\(236\) 0 0
\(237\) −3.74440e15 −1.37252
\(238\) 0 0
\(239\) −2.56633e14 −0.0890691 −0.0445345 0.999008i \(-0.514180\pi\)
−0.0445345 + 0.999008i \(0.514180\pi\)
\(240\) 0 0
\(241\) −6.60353e14 −0.217103 −0.108551 0.994091i \(-0.534621\pi\)
−0.108551 + 0.994091i \(0.534621\pi\)
\(242\) 0 0
\(243\) −1.15788e15 −0.360762
\(244\) 0 0
\(245\) −2.98804e15 −0.882688
\(246\) 0 0
\(247\) 8.20797e14 0.229988
\(248\) 0 0
\(249\) −5.12038e15 −1.36147
\(250\) 0 0
\(251\) −6.89089e15 −1.73939 −0.869693 0.493593i \(-0.835683\pi\)
−0.869693 + 0.493593i \(0.835683\pi\)
\(252\) 0 0
\(253\) −4.18924e15 −1.00427
\(254\) 0 0
\(255\) 1.03684e15 0.236157
\(256\) 0 0
\(257\) 1.27624e15 0.276292 0.138146 0.990412i \(-0.455886\pi\)
0.138146 + 0.990412i \(0.455886\pi\)
\(258\) 0 0
\(259\) −2.53790e15 −0.522428
\(260\) 0 0
\(261\) 1.36386e15 0.267059
\(262\) 0 0
\(263\) 6.94528e15 1.29413 0.647065 0.762435i \(-0.275996\pi\)
0.647065 + 0.762435i \(0.275996\pi\)
\(264\) 0 0
\(265\) 2.06834e15 0.366879
\(266\) 0 0
\(267\) 3.09026e15 0.522001
\(268\) 0 0
\(269\) 6.17240e15 0.993263 0.496631 0.867962i \(-0.334570\pi\)
0.496631 + 0.867962i \(0.334570\pi\)
\(270\) 0 0
\(271\) −4.69860e15 −0.720557 −0.360278 0.932845i \(-0.617318\pi\)
−0.360278 + 0.932845i \(0.617318\pi\)
\(272\) 0 0
\(273\) 1.41372e16 2.06684
\(274\) 0 0
\(275\) 8.59855e15 1.19884
\(276\) 0 0
\(277\) 6.48219e15 0.862190 0.431095 0.902306i \(-0.358127\pi\)
0.431095 + 0.902306i \(0.358127\pi\)
\(278\) 0 0
\(279\) −1.78185e15 −0.226174
\(280\) 0 0
\(281\) −1.49215e16 −1.80809 −0.904046 0.427434i \(-0.859417\pi\)
−0.904046 + 0.427434i \(0.859417\pi\)
\(282\) 0 0
\(283\) 7.36188e15 0.851877 0.425938 0.904752i \(-0.359944\pi\)
0.425938 + 0.904752i \(0.359944\pi\)
\(284\) 0 0
\(285\) 1.46845e15 0.162319
\(286\) 0 0
\(287\) 9.34278e14 0.0986833
\(288\) 0 0
\(289\) −9.55845e15 −0.965054
\(290\) 0 0
\(291\) 1.67720e16 1.61913
\(292\) 0 0
\(293\) 3.82149e15 0.352853 0.176426 0.984314i \(-0.443546\pi\)
0.176426 + 0.984314i \(0.443546\pi\)
\(294\) 0 0
\(295\) −2.37871e16 −2.10135
\(296\) 0 0
\(297\) 1.59105e16 1.34513
\(298\) 0 0
\(299\) −1.76550e16 −1.42891
\(300\) 0 0
\(301\) −1.96464e16 −1.52265
\(302\) 0 0
\(303\) 1.43132e16 1.06258
\(304\) 0 0
\(305\) 2.97319e16 2.11482
\(306\) 0 0
\(307\) −9.89899e14 −0.0674825 −0.0337413 0.999431i \(-0.510742\pi\)
−0.0337413 + 0.999431i \(0.510742\pi\)
\(308\) 0 0
\(309\) 2.30164e16 1.50421
\(310\) 0 0
\(311\) −7.48376e15 −0.469005 −0.234502 0.972116i \(-0.575346\pi\)
−0.234502 + 0.972116i \(0.575346\pi\)
\(312\) 0 0
\(313\) −7.09529e15 −0.426512 −0.213256 0.976996i \(-0.568407\pi\)
−0.213256 + 0.976996i \(0.568407\pi\)
\(314\) 0 0
\(315\) −5.65875e15 −0.326364
\(316\) 0 0
\(317\) −6.34435e15 −0.351158 −0.175579 0.984465i \(-0.556180\pi\)
−0.175579 + 0.984465i \(0.556180\pi\)
\(318\) 0 0
\(319\) −3.45851e16 −1.83759
\(320\) 0 0
\(321\) −1.24622e16 −0.635789
\(322\) 0 0
\(323\) 4.90207e14 0.0240194
\(324\) 0 0
\(325\) 3.62375e16 1.70575
\(326\) 0 0
\(327\) 6.17076e15 0.279112
\(328\) 0 0
\(329\) 3.09462e16 1.34535
\(330\) 0 0
\(331\) 3.85743e15 0.161219 0.0806095 0.996746i \(-0.474313\pi\)
0.0806095 + 0.996746i \(0.474313\pi\)
\(332\) 0 0
\(333\) −1.86058e15 −0.0747758
\(334\) 0 0
\(335\) 4.35400e16 1.68305
\(336\) 0 0
\(337\) 1.94508e16 0.723341 0.361670 0.932306i \(-0.382207\pi\)
0.361670 + 0.932306i \(0.382207\pi\)
\(338\) 0 0
\(339\) −2.81182e16 −1.00621
\(340\) 0 0
\(341\) 4.51844e16 1.55627
\(342\) 0 0
\(343\) 1.41909e16 0.470542
\(344\) 0 0
\(345\) −3.15858e16 −1.00848
\(346\) 0 0
\(347\) 9.93018e15 0.305363 0.152681 0.988275i \(-0.451209\pi\)
0.152681 + 0.988275i \(0.451209\pi\)
\(348\) 0 0
\(349\) −3.03149e16 −0.898031 −0.449015 0.893524i \(-0.648225\pi\)
−0.449015 + 0.893524i \(0.648225\pi\)
\(350\) 0 0
\(351\) 6.70525e16 1.91390
\(352\) 0 0
\(353\) 3.61841e16 0.995364 0.497682 0.867360i \(-0.334185\pi\)
0.497682 + 0.867360i \(0.334185\pi\)
\(354\) 0 0
\(355\) −1.81424e16 −0.481073
\(356\) 0 0
\(357\) 8.44322e15 0.215856
\(358\) 0 0
\(359\) 6.56753e15 0.161915 0.0809577 0.996718i \(-0.474202\pi\)
0.0809577 + 0.996718i \(0.474202\pi\)
\(360\) 0 0
\(361\) −4.13587e16 −0.983491
\(362\) 0 0
\(363\) −2.29577e16 −0.526666
\(364\) 0 0
\(365\) −5.62888e16 −1.24600
\(366\) 0 0
\(367\) −8.23736e15 −0.175978 −0.0879891 0.996121i \(-0.528044\pi\)
−0.0879891 + 0.996121i \(0.528044\pi\)
\(368\) 0 0
\(369\) 6.84936e14 0.0141247
\(370\) 0 0
\(371\) 1.68429e16 0.335341
\(372\) 0 0
\(373\) −8.50635e16 −1.63545 −0.817723 0.575612i \(-0.804764\pi\)
−0.817723 + 0.575612i \(0.804764\pi\)
\(374\) 0 0
\(375\) −3.20006e15 −0.0594231
\(376\) 0 0
\(377\) −1.45754e17 −2.61458
\(378\) 0 0
\(379\) 6.89885e16 1.19570 0.597849 0.801609i \(-0.296022\pi\)
0.597849 + 0.801609i \(0.296022\pi\)
\(380\) 0 0
\(381\) −1.38642e16 −0.232211
\(382\) 0 0
\(383\) −1.19107e17 −1.92816 −0.964081 0.265607i \(-0.914428\pi\)
−0.964081 + 0.265607i \(0.914428\pi\)
\(384\) 0 0
\(385\) 1.43496e17 2.24566
\(386\) 0 0
\(387\) −1.44031e16 −0.217939
\(388\) 0 0
\(389\) −1.67660e16 −0.245334 −0.122667 0.992448i \(-0.539145\pi\)
−0.122667 + 0.992448i \(0.539145\pi\)
\(390\) 0 0
\(391\) −1.05441e16 −0.149232
\(392\) 0 0
\(393\) −6.25587e16 −0.856517
\(394\) 0 0
\(395\) −1.60173e17 −2.12182
\(396\) 0 0
\(397\) 6.25740e16 0.802150 0.401075 0.916045i \(-0.368637\pi\)
0.401075 + 0.916045i \(0.368637\pi\)
\(398\) 0 0
\(399\) 1.19579e16 0.148365
\(400\) 0 0
\(401\) −7.19337e16 −0.863961 −0.431981 0.901883i \(-0.642185\pi\)
−0.431981 + 0.901883i \(0.642185\pi\)
\(402\) 0 0
\(403\) 1.90424e17 2.21431
\(404\) 0 0
\(405\) 9.72700e16 1.09527
\(406\) 0 0
\(407\) 4.71809e16 0.514521
\(408\) 0 0
\(409\) −8.31503e16 −0.878340 −0.439170 0.898404i \(-0.644727\pi\)
−0.439170 + 0.898404i \(0.644727\pi\)
\(410\) 0 0
\(411\) 1.02197e17 1.04584
\(412\) 0 0
\(413\) −1.93703e17 −1.92071
\(414\) 0 0
\(415\) −2.19033e17 −2.10473
\(416\) 0 0
\(417\) −3.81186e14 −0.00355019
\(418\) 0 0
\(419\) −9.60024e16 −0.866744 −0.433372 0.901215i \(-0.642676\pi\)
−0.433372 + 0.901215i \(0.642676\pi\)
\(420\) 0 0
\(421\) 9.89742e16 0.866340 0.433170 0.901312i \(-0.357395\pi\)
0.433170 + 0.901312i \(0.357395\pi\)
\(422\) 0 0
\(423\) 2.26872e16 0.192561
\(424\) 0 0
\(425\) 2.16422e16 0.178145
\(426\) 0 0
\(427\) 2.42113e17 1.93302
\(428\) 0 0
\(429\) −2.62819e17 −2.03556
\(430\) 0 0
\(431\) 1.11296e16 0.0836333 0.0418166 0.999125i \(-0.486685\pi\)
0.0418166 + 0.999125i \(0.486685\pi\)
\(432\) 0 0
\(433\) 1.35934e17 0.991192 0.495596 0.868553i \(-0.334950\pi\)
0.495596 + 0.868553i \(0.334950\pi\)
\(434\) 0 0
\(435\) −2.60763e17 −1.84529
\(436\) 0 0
\(437\) −1.49334e16 −0.102572
\(438\) 0 0
\(439\) −1.79614e17 −1.19762 −0.598812 0.800890i \(-0.704360\pi\)
−0.598812 + 0.800890i \(0.704360\pi\)
\(440\) 0 0
\(441\) −1.78384e16 −0.115480
\(442\) 0 0
\(443\) −7.21646e16 −0.453628 −0.226814 0.973938i \(-0.572831\pi\)
−0.226814 + 0.973938i \(0.572831\pi\)
\(444\) 0 0
\(445\) 1.32191e17 0.806978
\(446\) 0 0
\(447\) 1.14015e17 0.676026
\(448\) 0 0
\(449\) −1.39777e17 −0.805073 −0.402536 0.915404i \(-0.631871\pi\)
−0.402536 + 0.915404i \(0.631871\pi\)
\(450\) 0 0
\(451\) −1.73687e16 −0.0971898
\(452\) 0 0
\(453\) −5.67327e16 −0.308457
\(454\) 0 0
\(455\) 6.04744e17 3.19520
\(456\) 0 0
\(457\) −2.75884e17 −1.41668 −0.708340 0.705871i \(-0.750556\pi\)
−0.708340 + 0.705871i \(0.750556\pi\)
\(458\) 0 0
\(459\) 4.00459e16 0.199883
\(460\) 0 0
\(461\) 2.06356e16 0.100129 0.0500646 0.998746i \(-0.484057\pi\)
0.0500646 + 0.998746i \(0.484057\pi\)
\(462\) 0 0
\(463\) 3.21265e17 1.51561 0.757804 0.652483i \(-0.226272\pi\)
0.757804 + 0.652483i \(0.226272\pi\)
\(464\) 0 0
\(465\) 3.40679e17 1.56279
\(466\) 0 0
\(467\) 7.30554e16 0.325906 0.162953 0.986634i \(-0.447898\pi\)
0.162953 + 0.986634i \(0.447898\pi\)
\(468\) 0 0
\(469\) 3.54556e17 1.53837
\(470\) 0 0
\(471\) −2.48515e17 −1.04886
\(472\) 0 0
\(473\) 3.65238e17 1.49961
\(474\) 0 0
\(475\) 3.06513e16 0.122445
\(476\) 0 0
\(477\) 1.23478e16 0.0479978
\(478\) 0 0
\(479\) 6.31390e16 0.238846 0.119423 0.992843i \(-0.461896\pi\)
0.119423 + 0.992843i \(0.461896\pi\)
\(480\) 0 0
\(481\) 1.98838e17 0.732076
\(482\) 0 0
\(483\) −2.57210e17 −0.921789
\(484\) 0 0
\(485\) 7.17451e17 2.50306
\(486\) 0 0
\(487\) −4.40097e17 −1.49489 −0.747446 0.664322i \(-0.768720\pi\)
−0.747446 + 0.664322i \(0.768720\pi\)
\(488\) 0 0
\(489\) 4.78555e16 0.158279
\(490\) 0 0
\(491\) −3.06075e17 −0.985820 −0.492910 0.870080i \(-0.664067\pi\)
−0.492910 + 0.870080i \(0.664067\pi\)
\(492\) 0 0
\(493\) −8.70491e16 −0.273061
\(494\) 0 0
\(495\) 1.05199e17 0.321425
\(496\) 0 0
\(497\) −1.47738e17 −0.439718
\(498\) 0 0
\(499\) −6.69462e14 −0.00194121 −0.000970605 1.00000i \(-0.500309\pi\)
−0.000970605 1.00000i \(0.500309\pi\)
\(500\) 0 0
\(501\) 3.69855e16 0.104493
\(502\) 0 0
\(503\) 8.04728e15 0.0221543 0.0110771 0.999939i \(-0.496474\pi\)
0.0110771 + 0.999939i \(0.496474\pi\)
\(504\) 0 0
\(505\) 6.12273e17 1.64267
\(506\) 0 0
\(507\) −7.61908e17 −1.99228
\(508\) 0 0
\(509\) −3.96340e17 −1.01019 −0.505094 0.863064i \(-0.668542\pi\)
−0.505094 + 0.863064i \(0.668542\pi\)
\(510\) 0 0
\(511\) −4.58371e17 −1.13889
\(512\) 0 0
\(513\) 5.67161e16 0.137386
\(514\) 0 0
\(515\) 9.84567e17 2.32540
\(516\) 0 0
\(517\) −5.75307e17 −1.32498
\(518\) 0 0
\(519\) 1.40071e17 0.314601
\(520\) 0 0
\(521\) −5.02031e17 −1.09973 −0.549864 0.835254i \(-0.685320\pi\)
−0.549864 + 0.835254i \(0.685320\pi\)
\(522\) 0 0
\(523\) 5.45377e17 1.16530 0.582648 0.812725i \(-0.302017\pi\)
0.582648 + 0.812725i \(0.302017\pi\)
\(524\) 0 0
\(525\) 5.27932e17 1.10038
\(526\) 0 0
\(527\) 1.13727e17 0.231257
\(528\) 0 0
\(529\) −1.82825e17 −0.362721
\(530\) 0 0
\(531\) −1.42007e17 −0.274914
\(532\) 0 0
\(533\) −7.31983e16 −0.138285
\(534\) 0 0
\(535\) −5.33093e17 −0.982887
\(536\) 0 0
\(537\) 2.57141e17 0.462741
\(538\) 0 0
\(539\) 4.52350e17 0.794598
\(540\) 0 0
\(541\) 5.75931e17 0.987617 0.493808 0.869571i \(-0.335604\pi\)
0.493808 + 0.869571i \(0.335604\pi\)
\(542\) 0 0
\(543\) −8.66822e17 −1.45121
\(544\) 0 0
\(545\) 2.63965e17 0.431488
\(546\) 0 0
\(547\) 8.13450e17 1.29841 0.649207 0.760611i \(-0.275101\pi\)
0.649207 + 0.760611i \(0.275101\pi\)
\(548\) 0 0
\(549\) 1.77497e17 0.276676
\(550\) 0 0
\(551\) −1.23286e17 −0.187684
\(552\) 0 0
\(553\) −1.30432e18 −1.93942
\(554\) 0 0
\(555\) 3.55733e17 0.516677
\(556\) 0 0
\(557\) −1.53990e17 −0.218491 −0.109245 0.994015i \(-0.534843\pi\)
−0.109245 + 0.994015i \(0.534843\pi\)
\(558\) 0 0
\(559\) 1.53925e18 2.13369
\(560\) 0 0
\(561\) −1.56964e17 −0.212589
\(562\) 0 0
\(563\) −4.03985e17 −0.534640 −0.267320 0.963608i \(-0.586138\pi\)
−0.267320 + 0.963608i \(0.586138\pi\)
\(564\) 0 0
\(565\) −1.20280e18 −1.55554
\(566\) 0 0
\(567\) 7.92091e17 1.00112
\(568\) 0 0
\(569\) 2.69575e17 0.333004 0.166502 0.986041i \(-0.446753\pi\)
0.166502 + 0.986041i \(0.446753\pi\)
\(570\) 0 0
\(571\) −1.00094e18 −1.20857 −0.604287 0.796767i \(-0.706542\pi\)
−0.604287 + 0.796767i \(0.706542\pi\)
\(572\) 0 0
\(573\) 7.24442e17 0.855064
\(574\) 0 0
\(575\) −6.59297e17 −0.760747
\(576\) 0 0
\(577\) 9.66416e17 1.09024 0.545119 0.838359i \(-0.316484\pi\)
0.545119 + 0.838359i \(0.316484\pi\)
\(578\) 0 0
\(579\) −2.64267e17 −0.291495
\(580\) 0 0
\(581\) −1.78363e18 −1.92380
\(582\) 0 0
\(583\) −3.13119e17 −0.330266
\(584\) 0 0
\(585\) 4.43349e17 0.457333
\(586\) 0 0
\(587\) −4.82465e17 −0.486764 −0.243382 0.969931i \(-0.578257\pi\)
−0.243382 + 0.969931i \(0.578257\pi\)
\(588\) 0 0
\(589\) 1.61069e17 0.158951
\(590\) 0 0
\(591\) 1.33529e17 0.128901
\(592\) 0 0
\(593\) −1.90725e18 −1.80116 −0.900581 0.434688i \(-0.856859\pi\)
−0.900581 + 0.434688i \(0.856859\pi\)
\(594\) 0 0
\(595\) 3.61173e17 0.333699
\(596\) 0 0
\(597\) 6.14320e16 0.0555343
\(598\) 0 0
\(599\) 4.30062e17 0.380414 0.190207 0.981744i \(-0.439084\pi\)
0.190207 + 0.981744i \(0.439084\pi\)
\(600\) 0 0
\(601\) −7.59740e17 −0.657629 −0.328815 0.944394i \(-0.606649\pi\)
−0.328815 + 0.944394i \(0.606649\pi\)
\(602\) 0 0
\(603\) 2.59931e17 0.220189
\(604\) 0 0
\(605\) −9.82055e17 −0.814191
\(606\) 0 0
\(607\) 9.12616e17 0.740563 0.370281 0.928920i \(-0.379261\pi\)
0.370281 + 0.928920i \(0.379261\pi\)
\(608\) 0 0
\(609\) −2.12345e18 −1.68666
\(610\) 0 0
\(611\) −2.42455e18 −1.88523
\(612\) 0 0
\(613\) −8.78930e17 −0.669054 −0.334527 0.942386i \(-0.608577\pi\)
−0.334527 + 0.942386i \(0.608577\pi\)
\(614\) 0 0
\(615\) −1.30956e17 −0.0975971
\(616\) 0 0
\(617\) 6.43399e17 0.469490 0.234745 0.972057i \(-0.424574\pi\)
0.234745 + 0.972057i \(0.424574\pi\)
\(618\) 0 0
\(619\) −4.54790e16 −0.0324954 −0.0162477 0.999868i \(-0.505172\pi\)
−0.0162477 + 0.999868i \(0.505172\pi\)
\(620\) 0 0
\(621\) −1.21994e18 −0.853578
\(622\) 0 0
\(623\) 1.07646e18 0.737607
\(624\) 0 0
\(625\) −1.55691e18 −1.04483
\(626\) 0 0
\(627\) −2.22304e17 −0.146120
\(628\) 0 0
\(629\) 1.18752e17 0.0764563
\(630\) 0 0
\(631\) −6.14133e17 −0.387322 −0.193661 0.981069i \(-0.562036\pi\)
−0.193661 + 0.981069i \(0.562036\pi\)
\(632\) 0 0
\(633\) 1.73441e18 1.07159
\(634\) 0 0
\(635\) −5.93064e17 −0.358982
\(636\) 0 0
\(637\) 1.90637e18 1.13058
\(638\) 0 0
\(639\) −1.08309e17 −0.0629375
\(640\) 0 0
\(641\) −7.00097e17 −0.398640 −0.199320 0.979934i \(-0.563873\pi\)
−0.199320 + 0.979934i \(0.563873\pi\)
\(642\) 0 0
\(643\) −1.85864e18 −1.03711 −0.518555 0.855044i \(-0.673530\pi\)
−0.518555 + 0.855044i \(0.673530\pi\)
\(644\) 0 0
\(645\) 2.75380e18 1.50589
\(646\) 0 0
\(647\) 1.15411e17 0.0618540 0.0309270 0.999522i \(-0.490154\pi\)
0.0309270 + 0.999522i \(0.490154\pi\)
\(648\) 0 0
\(649\) 3.60105e18 1.89164
\(650\) 0 0
\(651\) 2.77422e18 1.42845
\(652\) 0 0
\(653\) 1.45570e18 0.734746 0.367373 0.930074i \(-0.380257\pi\)
0.367373 + 0.930074i \(0.380257\pi\)
\(654\) 0 0
\(655\) −2.67606e18 −1.32412
\(656\) 0 0
\(657\) −3.36040e17 −0.163011
\(658\) 0 0
\(659\) 1.85743e18 0.883402 0.441701 0.897162i \(-0.354375\pi\)
0.441701 + 0.897162i \(0.354375\pi\)
\(660\) 0 0
\(661\) −1.76561e18 −0.823349 −0.411675 0.911331i \(-0.635056\pi\)
−0.411675 + 0.911331i \(0.635056\pi\)
\(662\) 0 0
\(663\) −6.61504e17 −0.302479
\(664\) 0 0
\(665\) 5.11521e17 0.229362
\(666\) 0 0
\(667\) 2.65182e18 1.16607
\(668\) 0 0
\(669\) −3.70697e17 −0.159864
\(670\) 0 0
\(671\) −4.50102e18 −1.90377
\(672\) 0 0
\(673\) 1.71305e18 0.710676 0.355338 0.934738i \(-0.384366\pi\)
0.355338 + 0.934738i \(0.384366\pi\)
\(674\) 0 0
\(675\) 2.50397e18 1.01895
\(676\) 0 0
\(677\) −3.04430e18 −1.21524 −0.607619 0.794229i \(-0.707875\pi\)
−0.607619 + 0.794229i \(0.707875\pi\)
\(678\) 0 0
\(679\) 5.84236e18 2.28789
\(680\) 0 0
\(681\) 3.86457e18 1.48472
\(682\) 0 0
\(683\) 6.84479e17 0.258004 0.129002 0.991644i \(-0.458823\pi\)
0.129002 + 0.991644i \(0.458823\pi\)
\(684\) 0 0
\(685\) 4.37166e18 1.61680
\(686\) 0 0
\(687\) 8.68555e17 0.315194
\(688\) 0 0
\(689\) −1.31960e18 −0.469912
\(690\) 0 0
\(691\) −1.52154e18 −0.531712 −0.265856 0.964013i \(-0.585655\pi\)
−0.265856 + 0.964013i \(0.585655\pi\)
\(692\) 0 0
\(693\) 8.56660e17 0.293794
\(694\) 0 0
\(695\) −1.63059e16 −0.00548836
\(696\) 0 0
\(697\) −4.37164e16 −0.0144421
\(698\) 0 0
\(699\) 2.60357e18 0.844243
\(700\) 0 0
\(701\) 2.38685e18 0.759727 0.379864 0.925042i \(-0.375971\pi\)
0.379864 + 0.925042i \(0.375971\pi\)
\(702\) 0 0
\(703\) 1.68186e17 0.0525510
\(704\) 0 0
\(705\) −4.33767e18 −1.33054
\(706\) 0 0
\(707\) 4.98587e18 1.50146
\(708\) 0 0
\(709\) 2.62202e18 0.775238 0.387619 0.921820i \(-0.373298\pi\)
0.387619 + 0.921820i \(0.373298\pi\)
\(710\) 0 0
\(711\) −9.56221e17 −0.277591
\(712\) 0 0
\(713\) −3.46453e18 −0.987557
\(714\) 0 0
\(715\) −1.12425e19 −3.14684
\(716\) 0 0
\(717\) 2.92926e17 0.0805162
\(718\) 0 0
\(719\) −3.47031e18 −0.936765 −0.468383 0.883526i \(-0.655163\pi\)
−0.468383 + 0.883526i \(0.655163\pi\)
\(720\) 0 0
\(721\) 8.01754e18 2.12550
\(722\) 0 0
\(723\) 7.53739e17 0.196255
\(724\) 0 0
\(725\) −5.44295e18 −1.39199
\(726\) 0 0
\(727\) −2.70856e18 −0.680402 −0.340201 0.940353i \(-0.610495\pi\)
−0.340201 + 0.940353i \(0.610495\pi\)
\(728\) 0 0
\(729\) 4.49779e18 1.10986
\(730\) 0 0
\(731\) 9.19288e17 0.222838
\(732\) 0 0
\(733\) 7.55062e18 1.79807 0.899035 0.437877i \(-0.144269\pi\)
0.899035 + 0.437877i \(0.144269\pi\)
\(734\) 0 0
\(735\) 3.41061e18 0.797928
\(736\) 0 0
\(737\) −6.59138e18 −1.51509
\(738\) 0 0
\(739\) −8.36772e18 −1.88981 −0.944905 0.327345i \(-0.893846\pi\)
−0.944905 + 0.327345i \(0.893846\pi\)
\(740\) 0 0
\(741\) −9.36872e17 −0.207904
\(742\) 0 0
\(743\) −7.67222e18 −1.67299 −0.836496 0.547974i \(-0.815399\pi\)
−0.836496 + 0.547974i \(0.815399\pi\)
\(744\) 0 0
\(745\) 4.87719e18 1.04509
\(746\) 0 0
\(747\) −1.30761e18 −0.275356
\(748\) 0 0
\(749\) −4.34109e18 −0.898395
\(750\) 0 0
\(751\) 7.27779e18 1.48027 0.740134 0.672460i \(-0.234762\pi\)
0.740134 + 0.672460i \(0.234762\pi\)
\(752\) 0 0
\(753\) 7.86538e18 1.57236
\(754\) 0 0
\(755\) −2.42684e18 −0.476854
\(756\) 0 0
\(757\) 3.87838e18 0.749077 0.374539 0.927211i \(-0.377801\pi\)
0.374539 + 0.927211i \(0.377801\pi\)
\(758\) 0 0
\(759\) 4.78167e18 0.907838
\(760\) 0 0
\(761\) −4.20319e18 −0.784474 −0.392237 0.919864i \(-0.628299\pi\)
−0.392237 + 0.919864i \(0.628299\pi\)
\(762\) 0 0
\(763\) 2.14952e18 0.394395
\(764\) 0 0
\(765\) 2.64782e17 0.0477628
\(766\) 0 0
\(767\) 1.51762e19 2.69148
\(768\) 0 0
\(769\) −1.05786e18 −0.184462 −0.0922309 0.995738i \(-0.529400\pi\)
−0.0922309 + 0.995738i \(0.529400\pi\)
\(770\) 0 0
\(771\) −1.45673e18 −0.249761
\(772\) 0 0
\(773\) −3.99865e18 −0.674135 −0.337067 0.941480i \(-0.609435\pi\)
−0.337067 + 0.941480i \(0.609435\pi\)
\(774\) 0 0
\(775\) 7.11106e18 1.17889
\(776\) 0 0
\(777\) 2.89681e18 0.472262
\(778\) 0 0
\(779\) −6.19145e16 −0.00992656
\(780\) 0 0
\(781\) 2.74652e18 0.433063
\(782\) 0 0
\(783\) −1.00714e19 −1.56185
\(784\) 0 0
\(785\) −1.06306e19 −1.62146
\(786\) 0 0
\(787\) 3.70765e18 0.556242 0.278121 0.960546i \(-0.410288\pi\)
0.278121 + 0.960546i \(0.410288\pi\)
\(788\) 0 0
\(789\) −7.92747e18 −1.16986
\(790\) 0 0
\(791\) −9.79470e18 −1.42182
\(792\) 0 0
\(793\) −1.89689e19 −2.70874
\(794\) 0 0
\(795\) −2.36084e18 −0.331650
\(796\) 0 0
\(797\) −9.34891e18 −1.29206 −0.646029 0.763313i \(-0.723571\pi\)
−0.646029 + 0.763313i \(0.723571\pi\)
\(798\) 0 0
\(799\) −1.44802e18 −0.196889
\(800\) 0 0
\(801\) 7.89171e17 0.105575
\(802\) 0 0
\(803\) 8.52137e18 1.12165
\(804\) 0 0
\(805\) −1.10026e19 −1.42502
\(806\) 0 0
\(807\) −7.04529e18 −0.897885
\(808\) 0 0
\(809\) 7.08823e17 0.0888940 0.0444470 0.999012i \(-0.485847\pi\)
0.0444470 + 0.999012i \(0.485847\pi\)
\(810\) 0 0
\(811\) 3.89604e17 0.0480826 0.0240413 0.999711i \(-0.492347\pi\)
0.0240413 + 0.999711i \(0.492347\pi\)
\(812\) 0 0
\(813\) 5.36307e18 0.651365
\(814\) 0 0
\(815\) 2.04710e18 0.244689
\(816\) 0 0
\(817\) 1.30197e18 0.153164
\(818\) 0 0
\(819\) 3.61028e18 0.418019
\(820\) 0 0
\(821\) 7.16237e18 0.816256 0.408128 0.912925i \(-0.366182\pi\)
0.408128 + 0.912925i \(0.366182\pi\)
\(822\) 0 0
\(823\) 1.18202e19 1.32595 0.662975 0.748642i \(-0.269294\pi\)
0.662975 + 0.748642i \(0.269294\pi\)
\(824\) 0 0
\(825\) −9.81454e18 −1.08373
\(826\) 0 0
\(827\) 2.55631e18 0.277862 0.138931 0.990302i \(-0.455633\pi\)
0.138931 + 0.990302i \(0.455633\pi\)
\(828\) 0 0
\(829\) 8.49442e17 0.0908928 0.0454464 0.998967i \(-0.485529\pi\)
0.0454464 + 0.998967i \(0.485529\pi\)
\(830\) 0 0
\(831\) −7.39889e18 −0.779399
\(832\) 0 0
\(833\) 1.13855e18 0.118075
\(834\) 0 0
\(835\) 1.58212e18 0.161539
\(836\) 0 0
\(837\) 1.31580e19 1.32274
\(838\) 0 0
\(839\) −3.04116e18 −0.301014 −0.150507 0.988609i \(-0.548091\pi\)
−0.150507 + 0.988609i \(0.548091\pi\)
\(840\) 0 0
\(841\) 1.16320e19 1.13365
\(842\) 0 0
\(843\) 1.70316e19 1.63447
\(844\) 0 0
\(845\) −3.25919e19 −3.07993
\(846\) 0 0
\(847\) −7.99709e18 −0.744200
\(848\) 0 0
\(849\) −8.40298e18 −0.770075
\(850\) 0 0
\(851\) −3.61762e18 −0.326498
\(852\) 0 0
\(853\) −8.23955e18 −0.732377 −0.366188 0.930541i \(-0.619337\pi\)
−0.366188 + 0.930541i \(0.619337\pi\)
\(854\) 0 0
\(855\) 3.75005e17 0.0328289
\(856\) 0 0
\(857\) 1.38781e19 1.19662 0.598309 0.801266i \(-0.295840\pi\)
0.598309 + 0.801266i \(0.295840\pi\)
\(858\) 0 0
\(859\) −2.04003e19 −1.73253 −0.866265 0.499585i \(-0.833486\pi\)
−0.866265 + 0.499585i \(0.833486\pi\)
\(860\) 0 0
\(861\) −1.06640e18 −0.0892073
\(862\) 0 0
\(863\) 1.01018e18 0.0832393 0.0416196 0.999134i \(-0.486748\pi\)
0.0416196 + 0.999134i \(0.486748\pi\)
\(864\) 0 0
\(865\) 5.99177e18 0.486352
\(866\) 0 0
\(867\) 1.09102e19 0.872385
\(868\) 0 0
\(869\) 2.42481e19 1.91007
\(870\) 0 0
\(871\) −2.77785e19 −2.15571
\(872\) 0 0
\(873\) 4.28313e18 0.327468
\(874\) 0 0
\(875\) −1.11471e18 −0.0839671
\(876\) 0 0
\(877\) −6.40587e18 −0.475424 −0.237712 0.971336i \(-0.576397\pi\)
−0.237712 + 0.971336i \(0.576397\pi\)
\(878\) 0 0
\(879\) −4.36192e18 −0.318970
\(880\) 0 0
\(881\) −2.13343e19 −1.53722 −0.768609 0.639719i \(-0.779051\pi\)
−0.768609 + 0.639719i \(0.779051\pi\)
\(882\) 0 0
\(883\) 1.52275e19 1.08115 0.540574 0.841296i \(-0.318207\pi\)
0.540574 + 0.841296i \(0.318207\pi\)
\(884\) 0 0
\(885\) 2.71510e19 1.89957
\(886\) 0 0
\(887\) 1.15760e19 0.798095 0.399048 0.916930i \(-0.369341\pi\)
0.399048 + 0.916930i \(0.369341\pi\)
\(888\) 0 0
\(889\) −4.82945e18 −0.328123
\(890\) 0 0
\(891\) −1.47254e19 −0.985966
\(892\) 0 0
\(893\) −2.05080e18 −0.135328
\(894\) 0 0
\(895\) 1.09996e19 0.715366
\(896\) 0 0
\(897\) 2.01517e19 1.29170
\(898\) 0 0
\(899\) −2.86021e19 −1.80701
\(900\) 0 0
\(901\) −7.88107e17 −0.0490765
\(902\) 0 0
\(903\) 2.24248e19 1.37644
\(904\) 0 0
\(905\) −3.70798e19 −2.24348
\(906\) 0 0
\(907\) 4.61304e18 0.275132 0.137566 0.990493i \(-0.456072\pi\)
0.137566 + 0.990493i \(0.456072\pi\)
\(908\) 0 0
\(909\) 3.65523e18 0.214906
\(910\) 0 0
\(911\) −1.15962e19 −0.672116 −0.336058 0.941841i \(-0.609094\pi\)
−0.336058 + 0.941841i \(0.609094\pi\)
\(912\) 0 0
\(913\) 3.31587e19 1.89469
\(914\) 0 0
\(915\) −3.39365e19 −1.91175
\(916\) 0 0
\(917\) −2.17917e19 −1.21029
\(918\) 0 0
\(919\) 3.37058e19 1.84567 0.922836 0.385194i \(-0.125866\pi\)
0.922836 + 0.385194i \(0.125866\pi\)
\(920\) 0 0
\(921\) 1.12989e18 0.0610025
\(922\) 0 0
\(923\) 1.15749e19 0.616176
\(924\) 0 0
\(925\) 7.42527e18 0.389755
\(926\) 0 0
\(927\) 5.87780e18 0.304226
\(928\) 0 0
\(929\) 1.85962e19 0.949121 0.474561 0.880223i \(-0.342607\pi\)
0.474561 + 0.880223i \(0.342607\pi\)
\(930\) 0 0
\(931\) 1.61250e18 0.0811569
\(932\) 0 0
\(933\) 8.54209e18 0.423969
\(934\) 0 0
\(935\) −6.71440e18 −0.328649
\(936\) 0 0
\(937\) −1.98036e19 −0.955956 −0.477978 0.878372i \(-0.658630\pi\)
−0.477978 + 0.878372i \(0.658630\pi\)
\(938\) 0 0
\(939\) 8.09869e18 0.385557
\(940\) 0 0
\(941\) −4.72442e18 −0.221828 −0.110914 0.993830i \(-0.535378\pi\)
−0.110914 + 0.993830i \(0.535378\pi\)
\(942\) 0 0
\(943\) 1.33175e18 0.0616734
\(944\) 0 0
\(945\) 4.17871e19 1.90869
\(946\) 0 0
\(947\) 6.80052e18 0.306385 0.153192 0.988196i \(-0.451045\pi\)
0.153192 + 0.988196i \(0.451045\pi\)
\(948\) 0 0
\(949\) 3.59122e19 1.59592
\(950\) 0 0
\(951\) 7.24156e18 0.317438
\(952\) 0 0
\(953\) 2.79658e19 1.20927 0.604636 0.796502i \(-0.293319\pi\)
0.604636 + 0.796502i \(0.293319\pi\)
\(954\) 0 0
\(955\) 3.09893e19 1.32187
\(956\) 0 0
\(957\) 3.94760e19 1.66114
\(958\) 0 0
\(959\) 3.55993e19 1.47782
\(960\) 0 0
\(961\) 1.29502e19 0.530366
\(962\) 0 0
\(963\) −3.18253e18 −0.128588
\(964\) 0 0
\(965\) −1.13045e19 −0.450632
\(966\) 0 0
\(967\) 1.17480e19 0.462053 0.231026 0.972948i \(-0.425792\pi\)
0.231026 + 0.972948i \(0.425792\pi\)
\(968\) 0 0
\(969\) −5.59531e17 −0.0217130
\(970\) 0 0
\(971\) 2.00922e19 0.769313 0.384656 0.923060i \(-0.374320\pi\)
0.384656 + 0.923060i \(0.374320\pi\)
\(972\) 0 0
\(973\) −1.32782e17 −0.00501656
\(974\) 0 0
\(975\) −4.13621e19 −1.54196
\(976\) 0 0
\(977\) 2.46828e18 0.0907986 0.0453993 0.998969i \(-0.485544\pi\)
0.0453993 + 0.998969i \(0.485544\pi\)
\(978\) 0 0
\(979\) −2.00120e19 −0.726444
\(980\) 0 0
\(981\) 1.57585e18 0.0564503
\(982\) 0 0
\(983\) −4.47351e19 −1.58143 −0.790716 0.612183i \(-0.790292\pi\)
−0.790716 + 0.612183i \(0.790292\pi\)
\(984\) 0 0
\(985\) 5.71192e18 0.199272
\(986\) 0 0
\(987\) −3.53226e19 −1.21616
\(988\) 0 0
\(989\) −2.80047e19 −0.951602
\(990\) 0 0
\(991\) −3.50615e18 −0.117585 −0.0587924 0.998270i \(-0.518725\pi\)
−0.0587924 + 0.998270i \(0.518725\pi\)
\(992\) 0 0
\(993\) −4.40294e18 −0.145738
\(994\) 0 0
\(995\) 2.62786e18 0.0858523
\(996\) 0 0
\(997\) 5.04474e19 1.62675 0.813373 0.581742i \(-0.197629\pi\)
0.813373 + 0.581742i \(0.197629\pi\)
\(998\) 0 0
\(999\) 1.37395e19 0.437315
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 64.14.a.m.1.1 3
4.3 odd 2 64.14.a.n.1.3 3
8.3 odd 2 32.14.a.c.1.1 3
8.5 even 2 32.14.a.d.1.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.14.a.c.1.1 3 8.3 odd 2
32.14.a.d.1.3 yes 3 8.5 even 2
64.14.a.m.1.1 3 1.1 even 1 trivial
64.14.a.n.1.3 3 4.3 odd 2