Properties

Label 6384.2.a.bt.1.3
Level $6384$
Weight $2$
Character 6384.1
Self dual yes
Analytic conductor $50.976$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6384,2,Mod(1,6384)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6384, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6384.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6384 = 2^{4} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6384.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.9764966504\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1016.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1596)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.17741\) of defining polynomial
Character \(\chi\) \(=\) 6384.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +2.91852 q^{5} -1.00000 q^{7} +1.00000 q^{9} -2.00000 q^{11} -4.35482 q^{13} -2.91852 q^{15} +2.91852 q^{17} +1.00000 q^{19} +1.00000 q^{21} -2.00000 q^{23} +3.51777 q^{25} -1.00000 q^{27} +7.79112 q^{29} -6.35482 q^{31} +2.00000 q^{33} -2.91852 q^{35} -3.83705 q^{37} +4.35482 q^{39} -4.00000 q^{41} -3.48223 q^{43} +2.91852 q^{45} +11.6282 q^{47} +1.00000 q^{49} -2.91852 q^{51} -0.918523 q^{53} -5.83705 q^{55} -1.00000 q^{57} +0.162955 q^{61} -1.00000 q^{63} -12.7096 q^{65} +5.83705 q^{67} +2.00000 q^{69} -0.918523 q^{71} -6.70964 q^{73} -3.51777 q^{75} +2.00000 q^{77} -10.8726 q^{79} +1.00000 q^{81} -5.79112 q^{83} +8.51777 q^{85} -7.79112 q^{87} -4.00000 q^{89} +4.35482 q^{91} +6.35482 q^{93} +2.91852 q^{95} -2.00000 q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 3 q^{7} + 3 q^{9} - 6 q^{11} + 2 q^{13} + 3 q^{19} + 3 q^{21} - 6 q^{23} + 13 q^{25} - 3 q^{27} + 2 q^{29} - 4 q^{31} + 6 q^{33} + 6 q^{37} - 2 q^{39} - 12 q^{41} - 8 q^{43} - 4 q^{47} + 3 q^{49}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 2.91852 1.30520 0.652601 0.757701i \(-0.273678\pi\)
0.652601 + 0.757701i \(0.273678\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −4.35482 −1.20781 −0.603905 0.797056i \(-0.706389\pi\)
−0.603905 + 0.797056i \(0.706389\pi\)
\(14\) 0 0
\(15\) −2.91852 −0.753559
\(16\) 0 0
\(17\) 2.91852 0.707846 0.353923 0.935275i \(-0.384848\pi\)
0.353923 + 0.935275i \(0.384848\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) 3.51777 0.703555
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 7.79112 1.44677 0.723387 0.690443i \(-0.242584\pi\)
0.723387 + 0.690443i \(0.242584\pi\)
\(30\) 0 0
\(31\) −6.35482 −1.14136 −0.570680 0.821173i \(-0.693320\pi\)
−0.570680 + 0.821173i \(0.693320\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) −2.91852 −0.493320
\(36\) 0 0
\(37\) −3.83705 −0.630806 −0.315403 0.948958i \(-0.602140\pi\)
−0.315403 + 0.948958i \(0.602140\pi\)
\(38\) 0 0
\(39\) 4.35482 0.697329
\(40\) 0 0
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) −3.48223 −0.531034 −0.265517 0.964106i \(-0.585543\pi\)
−0.265517 + 0.964106i \(0.585543\pi\)
\(44\) 0 0
\(45\) 2.91852 0.435068
\(46\) 0 0
\(47\) 11.6282 1.69614 0.848071 0.529883i \(-0.177764\pi\)
0.848071 + 0.529883i \(0.177764\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.91852 −0.408675
\(52\) 0 0
\(53\) −0.918523 −0.126169 −0.0630844 0.998008i \(-0.520094\pi\)
−0.0630844 + 0.998008i \(0.520094\pi\)
\(54\) 0 0
\(55\) −5.83705 −0.787067
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0.162955 0.0208642 0.0104321 0.999946i \(-0.496679\pi\)
0.0104321 + 0.999946i \(0.496679\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) −12.7096 −1.57644
\(66\) 0 0
\(67\) 5.83705 0.713109 0.356554 0.934275i \(-0.383951\pi\)
0.356554 + 0.934275i \(0.383951\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) −0.918523 −0.109009 −0.0545043 0.998514i \(-0.517358\pi\)
−0.0545043 + 0.998514i \(0.517358\pi\)
\(72\) 0 0
\(73\) −6.70964 −0.785304 −0.392652 0.919687i \(-0.628442\pi\)
−0.392652 + 0.919687i \(0.628442\pi\)
\(74\) 0 0
\(75\) −3.51777 −0.406198
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −10.8726 −1.22326 −0.611631 0.791143i \(-0.709486\pi\)
−0.611631 + 0.791143i \(0.709486\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −5.79112 −0.635658 −0.317829 0.948148i \(-0.602954\pi\)
−0.317829 + 0.948148i \(0.602954\pi\)
\(84\) 0 0
\(85\) 8.51777 0.923882
\(86\) 0 0
\(87\) −7.79112 −0.835295
\(88\) 0 0
\(89\) −4.00000 −0.423999 −0.212000 0.977270i \(-0.567998\pi\)
−0.212000 + 0.977270i \(0.567998\pi\)
\(90\) 0 0
\(91\) 4.35482 0.456509
\(92\) 0 0
\(93\) 6.35482 0.658964
\(94\) 0 0
\(95\) 2.91852 0.299434
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 1.08148 0.107611 0.0538055 0.998551i \(-0.482865\pi\)
0.0538055 + 0.998551i \(0.482865\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) 2.91852 0.284819
\(106\) 0 0
\(107\) 1.95407 0.188907 0.0944536 0.995529i \(-0.469890\pi\)
0.0944536 + 0.995529i \(0.469890\pi\)
\(108\) 0 0
\(109\) −7.83705 −0.750653 −0.375326 0.926893i \(-0.622469\pi\)
−0.375326 + 0.926893i \(0.622469\pi\)
\(110\) 0 0
\(111\) 3.83705 0.364196
\(112\) 0 0
\(113\) −13.6282 −1.28203 −0.641015 0.767529i \(-0.721486\pi\)
−0.641015 + 0.767529i \(0.721486\pi\)
\(114\) 0 0
\(115\) −5.83705 −0.544307
\(116\) 0 0
\(117\) −4.35482 −0.402603
\(118\) 0 0
\(119\) −2.91852 −0.267541
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 4.00000 0.360668
\(124\) 0 0
\(125\) −4.32591 −0.386921
\(126\) 0 0
\(127\) −9.83705 −0.872897 −0.436448 0.899729i \(-0.643764\pi\)
−0.436448 + 0.899729i \(0.643764\pi\)
\(128\) 0 0
\(129\) 3.48223 0.306593
\(130\) 0 0
\(131\) −7.95407 −0.694950 −0.347475 0.937689i \(-0.612961\pi\)
−0.347475 + 0.937689i \(0.612961\pi\)
\(132\) 0 0
\(133\) −1.00000 −0.0867110
\(134\) 0 0
\(135\) −2.91852 −0.251186
\(136\) 0 0
\(137\) 2.70964 0.231500 0.115750 0.993278i \(-0.463073\pi\)
0.115750 + 0.993278i \(0.463073\pi\)
\(138\) 0 0
\(139\) −20.3837 −1.72893 −0.864463 0.502697i \(-0.832341\pi\)
−0.864463 + 0.502697i \(0.832341\pi\)
\(140\) 0 0
\(141\) −11.6282 −0.979268
\(142\) 0 0
\(143\) 8.70964 0.728337
\(144\) 0 0
\(145\) 22.7385 1.88833
\(146\) 0 0
\(147\) −1.00000 −0.0824786
\(148\) 0 0
\(149\) 0.872594 0.0714856 0.0357428 0.999361i \(-0.488620\pi\)
0.0357428 + 0.999361i \(0.488620\pi\)
\(150\) 0 0
\(151\) 12.7096 1.03430 0.517148 0.855896i \(-0.326994\pi\)
0.517148 + 0.855896i \(0.326994\pi\)
\(152\) 0 0
\(153\) 2.91852 0.235949
\(154\) 0 0
\(155\) −18.5467 −1.48971
\(156\) 0 0
\(157\) 16.5467 1.32057 0.660285 0.751016i \(-0.270436\pi\)
0.660285 + 0.751016i \(0.270436\pi\)
\(158\) 0 0
\(159\) 0.918523 0.0728436
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) 5.22741 0.409443 0.204721 0.978820i \(-0.434371\pi\)
0.204721 + 0.978820i \(0.434371\pi\)
\(164\) 0 0
\(165\) 5.83705 0.454413
\(166\) 0 0
\(167\) 18.8726 1.46041 0.730203 0.683231i \(-0.239426\pi\)
0.730203 + 0.683231i \(0.239426\pi\)
\(168\) 0 0
\(169\) 5.96445 0.458804
\(170\) 0 0
\(171\) 1.00000 0.0764719
\(172\) 0 0
\(173\) −7.67409 −0.583450 −0.291725 0.956502i \(-0.594229\pi\)
−0.291725 + 0.956502i \(0.594229\pi\)
\(174\) 0 0
\(175\) −3.51777 −0.265919
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.95407 −0.146054 −0.0730271 0.997330i \(-0.523266\pi\)
−0.0730271 + 0.997330i \(0.523266\pi\)
\(180\) 0 0
\(181\) −18.7096 −1.39068 −0.695338 0.718683i \(-0.744745\pi\)
−0.695338 + 0.718683i \(0.744745\pi\)
\(182\) 0 0
\(183\) −0.162955 −0.0120460
\(184\) 0 0
\(185\) −11.1985 −0.823330
\(186\) 0 0
\(187\) −5.83705 −0.426847
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −10.7096 −0.774922 −0.387461 0.921886i \(-0.626648\pi\)
−0.387461 + 0.921886i \(0.626648\pi\)
\(192\) 0 0
\(193\) −12.5467 −0.903130 −0.451565 0.892238i \(-0.649134\pi\)
−0.451565 + 0.892238i \(0.649134\pi\)
\(194\) 0 0
\(195\) 12.7096 0.910156
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −10.1630 −0.720433 −0.360216 0.932869i \(-0.617297\pi\)
−0.360216 + 0.932869i \(0.617297\pi\)
\(200\) 0 0
\(201\) −5.83705 −0.411713
\(202\) 0 0
\(203\) −7.79112 −0.546829
\(204\) 0 0
\(205\) −11.6741 −0.815354
\(206\) 0 0
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0.918523 0.0629361
\(214\) 0 0
\(215\) −10.1630 −0.693108
\(216\) 0 0
\(217\) 6.35482 0.431393
\(218\) 0 0
\(219\) 6.70964 0.453395
\(220\) 0 0
\(221\) −12.7096 −0.854943
\(222\) 0 0
\(223\) −14.7385 −0.986966 −0.493483 0.869755i \(-0.664277\pi\)
−0.493483 + 0.869755i \(0.664277\pi\)
\(224\) 0 0
\(225\) 3.51777 0.234518
\(226\) 0 0
\(227\) 26.5467 1.76197 0.880983 0.473149i \(-0.156883\pi\)
0.880983 + 0.473149i \(0.156883\pi\)
\(228\) 0 0
\(229\) 6.80150 0.449456 0.224728 0.974422i \(-0.427851\pi\)
0.224728 + 0.974422i \(0.427851\pi\)
\(230\) 0 0
\(231\) −2.00000 −0.131590
\(232\) 0 0
\(233\) 21.2563 1.39255 0.696274 0.717776i \(-0.254840\pi\)
0.696274 + 0.717776i \(0.254840\pi\)
\(234\) 0 0
\(235\) 33.9371 2.21381
\(236\) 0 0
\(237\) 10.8726 0.706251
\(238\) 0 0
\(239\) 24.5467 1.58779 0.793896 0.608053i \(-0.208049\pi\)
0.793896 + 0.608053i \(0.208049\pi\)
\(240\) 0 0
\(241\) −0.964452 −0.0621258 −0.0310629 0.999517i \(-0.509889\pi\)
−0.0310629 + 0.999517i \(0.509889\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 2.91852 0.186458
\(246\) 0 0
\(247\) −4.35482 −0.277091
\(248\) 0 0
\(249\) 5.79112 0.366997
\(250\) 0 0
\(251\) 23.6282 1.49140 0.745698 0.666284i \(-0.232116\pi\)
0.745698 + 0.666284i \(0.232116\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) 0 0
\(255\) −8.51777 −0.533404
\(256\) 0 0
\(257\) −5.12741 −0.319839 −0.159919 0.987130i \(-0.551123\pi\)
−0.159919 + 0.987130i \(0.551123\pi\)
\(258\) 0 0
\(259\) 3.83705 0.238422
\(260\) 0 0
\(261\) 7.79112 0.482258
\(262\) 0 0
\(263\) 3.83705 0.236602 0.118301 0.992978i \(-0.462255\pi\)
0.118301 + 0.992978i \(0.462255\pi\)
\(264\) 0 0
\(265\) −2.68073 −0.164676
\(266\) 0 0
\(267\) 4.00000 0.244796
\(268\) 0 0
\(269\) −2.16295 −0.131878 −0.0659388 0.997824i \(-0.521004\pi\)
−0.0659388 + 0.997824i \(0.521004\pi\)
\(270\) 0 0
\(271\) −20.8015 −1.26360 −0.631800 0.775131i \(-0.717684\pi\)
−0.631800 + 0.775131i \(0.717684\pi\)
\(272\) 0 0
\(273\) −4.35482 −0.263566
\(274\) 0 0
\(275\) −7.03555 −0.424260
\(276\) 0 0
\(277\) 23.6111 1.41866 0.709328 0.704879i \(-0.248999\pi\)
0.709328 + 0.704879i \(0.248999\pi\)
\(278\) 0 0
\(279\) −6.35482 −0.380453
\(280\) 0 0
\(281\) −7.08148 −0.422446 −0.211223 0.977438i \(-0.567745\pi\)
−0.211223 + 0.977438i \(0.567745\pi\)
\(282\) 0 0
\(283\) −10.8726 −0.646309 −0.323154 0.946346i \(-0.604743\pi\)
−0.323154 + 0.946346i \(0.604743\pi\)
\(284\) 0 0
\(285\) −2.91852 −0.172878
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) −8.48223 −0.498954
\(290\) 0 0
\(291\) 2.00000 0.117242
\(292\) 0 0
\(293\) −22.6385 −1.32256 −0.661279 0.750140i \(-0.729986\pi\)
−0.661279 + 0.750140i \(0.729986\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.00000 0.116052
\(298\) 0 0
\(299\) 8.70964 0.503691
\(300\) 0 0
\(301\) 3.48223 0.200712
\(302\) 0 0
\(303\) −1.08148 −0.0621293
\(304\) 0 0
\(305\) 0.475587 0.0272320
\(306\) 0 0
\(307\) 33.7030 1.92353 0.961766 0.273873i \(-0.0883047\pi\)
0.961766 + 0.273873i \(0.0883047\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 11.7200 0.664581 0.332291 0.943177i \(-0.392179\pi\)
0.332291 + 0.943177i \(0.392179\pi\)
\(312\) 0 0
\(313\) −1.19850 −0.0677434 −0.0338717 0.999426i \(-0.510784\pi\)
−0.0338717 + 0.999426i \(0.510784\pi\)
\(314\) 0 0
\(315\) −2.91852 −0.164440
\(316\) 0 0
\(317\) −31.0474 −1.74380 −0.871899 0.489686i \(-0.837111\pi\)
−0.871899 + 0.489686i \(0.837111\pi\)
\(318\) 0 0
\(319\) −15.5822 −0.872438
\(320\) 0 0
\(321\) −1.95407 −0.109066
\(322\) 0 0
\(323\) 2.91852 0.162391
\(324\) 0 0
\(325\) −15.3193 −0.849760
\(326\) 0 0
\(327\) 7.83705 0.433390
\(328\) 0 0
\(329\) −11.6282 −0.641081
\(330\) 0 0
\(331\) −0.325910 −0.0179136 −0.00895681 0.999960i \(-0.502851\pi\)
−0.00895681 + 0.999960i \(0.502851\pi\)
\(332\) 0 0
\(333\) −3.83705 −0.210269
\(334\) 0 0
\(335\) 17.0355 0.930751
\(336\) 0 0
\(337\) 15.8370 0.862699 0.431349 0.902185i \(-0.358038\pi\)
0.431349 + 0.902185i \(0.358038\pi\)
\(338\) 0 0
\(339\) 13.6282 0.740180
\(340\) 0 0
\(341\) 12.7096 0.688266
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 5.83705 0.314256
\(346\) 0 0
\(347\) −12.8726 −0.691037 −0.345519 0.938412i \(-0.612297\pi\)
−0.345519 + 0.938412i \(0.612297\pi\)
\(348\) 0 0
\(349\) −20.6385 −1.10476 −0.552378 0.833594i \(-0.686279\pi\)
−0.552378 + 0.833594i \(0.686279\pi\)
\(350\) 0 0
\(351\) 4.35482 0.232443
\(352\) 0 0
\(353\) −18.9185 −1.00693 −0.503466 0.864015i \(-0.667942\pi\)
−0.503466 + 0.864015i \(0.667942\pi\)
\(354\) 0 0
\(355\) −2.68073 −0.142278
\(356\) 0 0
\(357\) 2.91852 0.154465
\(358\) 0 0
\(359\) −24.6385 −1.30037 −0.650186 0.759775i \(-0.725309\pi\)
−0.650186 + 0.759775i \(0.725309\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) −19.5822 −1.02498
\(366\) 0 0
\(367\) 32.2919 1.68562 0.842811 0.538210i \(-0.180899\pi\)
0.842811 + 0.538210i \(0.180899\pi\)
\(368\) 0 0
\(369\) −4.00000 −0.208232
\(370\) 0 0
\(371\) 0.918523 0.0476873
\(372\) 0 0
\(373\) −7.74519 −0.401031 −0.200515 0.979691i \(-0.564262\pi\)
−0.200515 + 0.979691i \(0.564262\pi\)
\(374\) 0 0
\(375\) 4.32591 0.223389
\(376\) 0 0
\(377\) −33.9289 −1.74743
\(378\) 0 0
\(379\) −22.4548 −1.15343 −0.576713 0.816946i \(-0.695665\pi\)
−0.576713 + 0.816946i \(0.695665\pi\)
\(380\) 0 0
\(381\) 9.83705 0.503967
\(382\) 0 0
\(383\) −18.1630 −0.928084 −0.464042 0.885813i \(-0.653601\pi\)
−0.464042 + 0.885813i \(0.653601\pi\)
\(384\) 0 0
\(385\) 5.83705 0.297483
\(386\) 0 0
\(387\) −3.48223 −0.177011
\(388\) 0 0
\(389\) −9.90814 −0.502363 −0.251181 0.967940i \(-0.580819\pi\)
−0.251181 + 0.967940i \(0.580819\pi\)
\(390\) 0 0
\(391\) −5.83705 −0.295192
\(392\) 0 0
\(393\) 7.95407 0.401230
\(394\) 0 0
\(395\) −31.7319 −1.59661
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 1.00000 0.0500626
\(400\) 0 0
\(401\) −20.9185 −1.04462 −0.522311 0.852755i \(-0.674930\pi\)
−0.522311 + 0.852755i \(0.674930\pi\)
\(402\) 0 0
\(403\) 27.6741 1.37854
\(404\) 0 0
\(405\) 2.91852 0.145023
\(406\) 0 0
\(407\) 7.67409 0.380391
\(408\) 0 0
\(409\) −20.0289 −0.990366 −0.495183 0.868789i \(-0.664899\pi\)
−0.495183 + 0.868789i \(0.664899\pi\)
\(410\) 0 0
\(411\) −2.70964 −0.133657
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −16.9015 −0.829662
\(416\) 0 0
\(417\) 20.3837 0.998196
\(418\) 0 0
\(419\) 23.7200 1.15880 0.579399 0.815044i \(-0.303287\pi\)
0.579399 + 0.815044i \(0.303287\pi\)
\(420\) 0 0
\(421\) −2.70964 −0.132060 −0.0660299 0.997818i \(-0.521033\pi\)
−0.0660299 + 0.997818i \(0.521033\pi\)
\(422\) 0 0
\(423\) 11.6282 0.565381
\(424\) 0 0
\(425\) 10.2667 0.498008
\(426\) 0 0
\(427\) −0.162955 −0.00788594
\(428\) 0 0
\(429\) −8.70964 −0.420505
\(430\) 0 0
\(431\) −31.1393 −1.49993 −0.749964 0.661479i \(-0.769929\pi\)
−0.749964 + 0.661479i \(0.769929\pi\)
\(432\) 0 0
\(433\) −24.6385 −1.18405 −0.592026 0.805919i \(-0.701672\pi\)
−0.592026 + 0.805919i \(0.701672\pi\)
\(434\) 0 0
\(435\) −22.7385 −1.09023
\(436\) 0 0
\(437\) −2.00000 −0.0956730
\(438\) 0 0
\(439\) 20.1000 0.959321 0.479660 0.877454i \(-0.340760\pi\)
0.479660 + 0.877454i \(0.340760\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −27.8370 −1.32258 −0.661289 0.750131i \(-0.729990\pi\)
−0.661289 + 0.750131i \(0.729990\pi\)
\(444\) 0 0
\(445\) −11.6741 −0.553405
\(446\) 0 0
\(447\) −0.872594 −0.0412723
\(448\) 0 0
\(449\) 4.82666 0.227784 0.113892 0.993493i \(-0.463668\pi\)
0.113892 + 0.993493i \(0.463668\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) 0 0
\(453\) −12.7096 −0.597151
\(454\) 0 0
\(455\) 12.7096 0.595837
\(456\) 0 0
\(457\) 1.48223 0.0693356 0.0346678 0.999399i \(-0.488963\pi\)
0.0346678 + 0.999399i \(0.488963\pi\)
\(458\) 0 0
\(459\) −2.91852 −0.136225
\(460\) 0 0
\(461\) −32.3378 −1.50612 −0.753061 0.657951i \(-0.771423\pi\)
−0.753061 + 0.657951i \(0.771423\pi\)
\(462\) 0 0
\(463\) −29.4193 −1.36723 −0.683615 0.729843i \(-0.739593\pi\)
−0.683615 + 0.729843i \(0.739593\pi\)
\(464\) 0 0
\(465\) 18.5467 0.860082
\(466\) 0 0
\(467\) 13.4652 0.623095 0.311548 0.950231i \(-0.399153\pi\)
0.311548 + 0.950231i \(0.399153\pi\)
\(468\) 0 0
\(469\) −5.83705 −0.269530
\(470\) 0 0
\(471\) −16.5467 −0.762431
\(472\) 0 0
\(473\) 6.96445 0.320226
\(474\) 0 0
\(475\) 3.51777 0.161407
\(476\) 0 0
\(477\) −0.918523 −0.0420563
\(478\) 0 0
\(479\) −13.6993 −0.625935 −0.312968 0.949764i \(-0.601323\pi\)
−0.312968 + 0.949764i \(0.601323\pi\)
\(480\) 0 0
\(481\) 16.7096 0.761894
\(482\) 0 0
\(483\) −2.00000 −0.0910032
\(484\) 0 0
\(485\) −5.83705 −0.265047
\(486\) 0 0
\(487\) 25.0355 1.13447 0.567234 0.823556i \(-0.308013\pi\)
0.567234 + 0.823556i \(0.308013\pi\)
\(488\) 0 0
\(489\) −5.22741 −0.236392
\(490\) 0 0
\(491\) −10.8015 −0.487465 −0.243732 0.969843i \(-0.578372\pi\)
−0.243732 + 0.969843i \(0.578372\pi\)
\(492\) 0 0
\(493\) 22.7385 1.02409
\(494\) 0 0
\(495\) −5.83705 −0.262356
\(496\) 0 0
\(497\) 0.918523 0.0412014
\(498\) 0 0
\(499\) −9.92890 −0.444479 −0.222239 0.974992i \(-0.571337\pi\)
−0.222239 + 0.974992i \(0.571337\pi\)
\(500\) 0 0
\(501\) −18.8726 −0.843165
\(502\) 0 0
\(503\) −27.3023 −1.21735 −0.608674 0.793421i \(-0.708298\pi\)
−0.608674 + 0.793421i \(0.708298\pi\)
\(504\) 0 0
\(505\) 3.15632 0.140454
\(506\) 0 0
\(507\) −5.96445 −0.264891
\(508\) 0 0
\(509\) 23.2563 1.03082 0.515409 0.856944i \(-0.327640\pi\)
0.515409 + 0.856944i \(0.327640\pi\)
\(510\) 0 0
\(511\) 6.70964 0.296817
\(512\) 0 0
\(513\) −1.00000 −0.0441511
\(514\) 0 0
\(515\) −23.3482 −1.02884
\(516\) 0 0
\(517\) −23.2563 −1.02281
\(518\) 0 0
\(519\) 7.67409 0.336855
\(520\) 0 0
\(521\) −0.743677 −0.0325811 −0.0162905 0.999867i \(-0.505186\pi\)
−0.0162905 + 0.999867i \(0.505186\pi\)
\(522\) 0 0
\(523\) −32.4837 −1.42041 −0.710207 0.703993i \(-0.751399\pi\)
−0.710207 + 0.703993i \(0.751399\pi\)
\(524\) 0 0
\(525\) 3.51777 0.153528
\(526\) 0 0
\(527\) −18.5467 −0.807906
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.4193 0.754513
\(534\) 0 0
\(535\) 5.70300 0.246562
\(536\) 0 0
\(537\) 1.95407 0.0843244
\(538\) 0 0
\(539\) −2.00000 −0.0861461
\(540\) 0 0
\(541\) 44.4548 1.91126 0.955631 0.294566i \(-0.0951751\pi\)
0.955631 + 0.294566i \(0.0951751\pi\)
\(542\) 0 0
\(543\) 18.7096 0.802907
\(544\) 0 0
\(545\) −22.8726 −0.979754
\(546\) 0 0
\(547\) 34.5467 1.47711 0.738555 0.674193i \(-0.235509\pi\)
0.738555 + 0.674193i \(0.235509\pi\)
\(548\) 0 0
\(549\) 0.162955 0.00695474
\(550\) 0 0
\(551\) 7.79112 0.331913
\(552\) 0 0
\(553\) 10.8726 0.462350
\(554\) 0 0
\(555\) 11.1985 0.475350
\(556\) 0 0
\(557\) 19.1274 0.810454 0.405227 0.914216i \(-0.367192\pi\)
0.405227 + 0.914216i \(0.367192\pi\)
\(558\) 0 0
\(559\) 15.1645 0.641389
\(560\) 0 0
\(561\) 5.83705 0.246440
\(562\) 0 0
\(563\) −6.87259 −0.289645 −0.144823 0.989458i \(-0.546261\pi\)
−0.144823 + 0.989458i \(0.546261\pi\)
\(564\) 0 0
\(565\) −39.7741 −1.67331
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) −22.4297 −0.940300 −0.470150 0.882586i \(-0.655800\pi\)
−0.470150 + 0.882586i \(0.655800\pi\)
\(570\) 0 0
\(571\) −5.74519 −0.240429 −0.120214 0.992748i \(-0.538358\pi\)
−0.120214 + 0.992748i \(0.538358\pi\)
\(572\) 0 0
\(573\) 10.7096 0.447402
\(574\) 0 0
\(575\) −7.03555 −0.293403
\(576\) 0 0
\(577\) −40.5467 −1.68798 −0.843990 0.536358i \(-0.819800\pi\)
−0.843990 + 0.536358i \(0.819800\pi\)
\(578\) 0 0
\(579\) 12.5467 0.521422
\(580\) 0 0
\(581\) 5.79112 0.240256
\(582\) 0 0
\(583\) 1.83705 0.0760826
\(584\) 0 0
\(585\) −12.7096 −0.525479
\(586\) 0 0
\(587\) −7.72002 −0.318639 −0.159320 0.987227i \(-0.550930\pi\)
−0.159320 + 0.987227i \(0.550930\pi\)
\(588\) 0 0
\(589\) −6.35482 −0.261846
\(590\) 0 0
\(591\) 6.00000 0.246807
\(592\) 0 0
\(593\) −36.2459 −1.48844 −0.744221 0.667933i \(-0.767179\pi\)
−0.744221 + 0.667933i \(0.767179\pi\)
\(594\) 0 0
\(595\) −8.51777 −0.349195
\(596\) 0 0
\(597\) 10.1630 0.415942
\(598\) 0 0
\(599\) 27.1393 1.10888 0.554441 0.832223i \(-0.312932\pi\)
0.554441 + 0.832223i \(0.312932\pi\)
\(600\) 0 0
\(601\) 15.0934 0.615671 0.307836 0.951440i \(-0.400395\pi\)
0.307836 + 0.951440i \(0.400395\pi\)
\(602\) 0 0
\(603\) 5.83705 0.237703
\(604\) 0 0
\(605\) −20.4297 −0.830584
\(606\) 0 0
\(607\) −25.4193 −1.03174 −0.515868 0.856668i \(-0.672531\pi\)
−0.515868 + 0.856668i \(0.672531\pi\)
\(608\) 0 0
\(609\) 7.79112 0.315712
\(610\) 0 0
\(611\) −50.6385 −2.04862
\(612\) 0 0
\(613\) 26.1919 1.05788 0.528940 0.848659i \(-0.322590\pi\)
0.528940 + 0.848659i \(0.322590\pi\)
\(614\) 0 0
\(615\) 11.6741 0.470745
\(616\) 0 0
\(617\) −9.34818 −0.376344 −0.188172 0.982136i \(-0.560256\pi\)
−0.188172 + 0.982136i \(0.560256\pi\)
\(618\) 0 0
\(619\) 20.3837 0.819291 0.409646 0.912245i \(-0.365652\pi\)
0.409646 + 0.912245i \(0.365652\pi\)
\(620\) 0 0
\(621\) 2.00000 0.0802572
\(622\) 0 0
\(623\) 4.00000 0.160257
\(624\) 0 0
\(625\) −30.2141 −1.20857
\(626\) 0 0
\(627\) 2.00000 0.0798723
\(628\) 0 0
\(629\) −11.1985 −0.446514
\(630\) 0 0
\(631\) 27.8660 1.10933 0.554663 0.832075i \(-0.312847\pi\)
0.554663 + 0.832075i \(0.312847\pi\)
\(632\) 0 0
\(633\) 4.00000 0.158986
\(634\) 0 0
\(635\) −28.7096 −1.13931
\(636\) 0 0
\(637\) −4.35482 −0.172544
\(638\) 0 0
\(639\) −0.918523 −0.0363362
\(640\) 0 0
\(641\) 35.3733 1.39716 0.698582 0.715530i \(-0.253815\pi\)
0.698582 + 0.715530i \(0.253815\pi\)
\(642\) 0 0
\(643\) 36.2919 1.43121 0.715606 0.698504i \(-0.246151\pi\)
0.715606 + 0.698504i \(0.246151\pi\)
\(644\) 0 0
\(645\) 10.1630 0.400166
\(646\) 0 0
\(647\) 27.6282 1.08618 0.543088 0.839676i \(-0.317255\pi\)
0.543088 + 0.839676i \(0.317255\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −6.35482 −0.249065
\(652\) 0 0
\(653\) 25.6741 1.00470 0.502352 0.864663i \(-0.332468\pi\)
0.502352 + 0.864663i \(0.332468\pi\)
\(654\) 0 0
\(655\) −23.2141 −0.907051
\(656\) 0 0
\(657\) −6.70964 −0.261768
\(658\) 0 0
\(659\) −13.0104 −0.506812 −0.253406 0.967360i \(-0.581551\pi\)
−0.253406 + 0.967360i \(0.581551\pi\)
\(660\) 0 0
\(661\) −50.1578 −1.95091 −0.975457 0.220192i \(-0.929332\pi\)
−0.975457 + 0.220192i \(0.929332\pi\)
\(662\) 0 0
\(663\) 12.7096 0.493601
\(664\) 0 0
\(665\) −2.91852 −0.113175
\(666\) 0 0
\(667\) −15.5822 −0.603346
\(668\) 0 0
\(669\) 14.7385 0.569825
\(670\) 0 0
\(671\) −0.325910 −0.0125816
\(672\) 0 0
\(673\) 48.5467 1.87134 0.935669 0.352880i \(-0.114798\pi\)
0.935669 + 0.352880i \(0.114798\pi\)
\(674\) 0 0
\(675\) −3.51777 −0.135399
\(676\) 0 0
\(677\) −7.76595 −0.298470 −0.149235 0.988802i \(-0.547681\pi\)
−0.149235 + 0.988802i \(0.547681\pi\)
\(678\) 0 0
\(679\) 2.00000 0.0767530
\(680\) 0 0
\(681\) −26.5467 −1.01727
\(682\) 0 0
\(683\) −20.2089 −0.773271 −0.386636 0.922233i \(-0.626363\pi\)
−0.386636 + 0.922233i \(0.626363\pi\)
\(684\) 0 0
\(685\) 7.90814 0.302155
\(686\) 0 0
\(687\) −6.80150 −0.259493
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 13.1274 0.499390 0.249695 0.968325i \(-0.419670\pi\)
0.249695 + 0.968325i \(0.419670\pi\)
\(692\) 0 0
\(693\) 2.00000 0.0759737
\(694\) 0 0
\(695\) −59.4904 −2.25660
\(696\) 0 0
\(697\) −11.6741 −0.442188
\(698\) 0 0
\(699\) −21.2563 −0.803988
\(700\) 0 0
\(701\) 0.906632 0.0342430 0.0171215 0.999853i \(-0.494550\pi\)
0.0171215 + 0.999853i \(0.494550\pi\)
\(702\) 0 0
\(703\) −3.83705 −0.144717
\(704\) 0 0
\(705\) −33.9371 −1.27814
\(706\) 0 0
\(707\) −1.08148 −0.0406731
\(708\) 0 0
\(709\) 25.1563 0.944765 0.472383 0.881394i \(-0.343394\pi\)
0.472383 + 0.881394i \(0.343394\pi\)
\(710\) 0 0
\(711\) −10.8726 −0.407754
\(712\) 0 0
\(713\) 12.7096 0.475980
\(714\) 0 0
\(715\) 25.4193 0.950627
\(716\) 0 0
\(717\) −24.5467 −0.916713
\(718\) 0 0
\(719\) −41.1393 −1.53424 −0.767118 0.641505i \(-0.778310\pi\)
−0.767118 + 0.641505i \(0.778310\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 0.964452 0.0358683
\(724\) 0 0
\(725\) 27.4074 1.01788
\(726\) 0 0
\(727\) −25.3274 −0.939342 −0.469671 0.882842i \(-0.655627\pi\)
−0.469671 + 0.882842i \(0.655627\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −10.1630 −0.375890
\(732\) 0 0
\(733\) 42.3837 1.56548 0.782739 0.622350i \(-0.213822\pi\)
0.782739 + 0.622350i \(0.213822\pi\)
\(734\) 0 0
\(735\) −2.91852 −0.107651
\(736\) 0 0
\(737\) −11.6741 −0.430021
\(738\) 0 0
\(739\) 9.73704 0.358183 0.179091 0.983832i \(-0.442684\pi\)
0.179091 + 0.983832i \(0.442684\pi\)
\(740\) 0 0
\(741\) 4.35482 0.159978
\(742\) 0 0
\(743\) 38.7215 1.42056 0.710278 0.703922i \(-0.248569\pi\)
0.710278 + 0.703922i \(0.248569\pi\)
\(744\) 0 0
\(745\) 2.54668 0.0933033
\(746\) 0 0
\(747\) −5.79112 −0.211886
\(748\) 0 0
\(749\) −1.95407 −0.0714002
\(750\) 0 0
\(751\) −18.6385 −0.680130 −0.340065 0.940402i \(-0.610449\pi\)
−0.340065 + 0.940402i \(0.610449\pi\)
\(752\) 0 0
\(753\) −23.6282 −0.861058
\(754\) 0 0
\(755\) 37.0934 1.34997
\(756\) 0 0
\(757\) 51.4771 1.87097 0.935483 0.353370i \(-0.114964\pi\)
0.935483 + 0.353370i \(0.114964\pi\)
\(758\) 0 0
\(759\) −4.00000 −0.145191
\(760\) 0 0
\(761\) −10.5008 −0.380652 −0.190326 0.981721i \(-0.560955\pi\)
−0.190326 + 0.981721i \(0.560955\pi\)
\(762\) 0 0
\(763\) 7.83705 0.283720
\(764\) 0 0
\(765\) 8.51777 0.307961
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 7.45332 0.268773 0.134387 0.990929i \(-0.457094\pi\)
0.134387 + 0.990929i \(0.457094\pi\)
\(770\) 0 0
\(771\) 5.12741 0.184659
\(772\) 0 0
\(773\) 21.4193 0.770398 0.385199 0.922834i \(-0.374133\pi\)
0.385199 + 0.922834i \(0.374133\pi\)
\(774\) 0 0
\(775\) −22.3548 −0.803009
\(776\) 0 0
\(777\) −3.83705 −0.137653
\(778\) 0 0
\(779\) −4.00000 −0.143315
\(780\) 0 0
\(781\) 1.83705 0.0657346
\(782\) 0 0
\(783\) −7.79112 −0.278432
\(784\) 0 0
\(785\) 48.2919 1.72361
\(786\) 0 0
\(787\) −33.7030 −1.20138 −0.600691 0.799481i \(-0.705108\pi\)
−0.600691 + 0.799481i \(0.705108\pi\)
\(788\) 0 0
\(789\) −3.83705 −0.136602
\(790\) 0 0
\(791\) 13.6282 0.484562
\(792\) 0 0
\(793\) −0.709639 −0.0252000
\(794\) 0 0
\(795\) 2.68073 0.0950757
\(796\) 0 0
\(797\) 33.4771 1.18582 0.592910 0.805269i \(-0.297979\pi\)
0.592910 + 0.805269i \(0.297979\pi\)
\(798\) 0 0
\(799\) 33.9371 1.20061
\(800\) 0 0
\(801\) −4.00000 −0.141333
\(802\) 0 0
\(803\) 13.4193 0.473556
\(804\) 0 0
\(805\) 5.83705 0.205729
\(806\) 0 0
\(807\) 2.16295 0.0761396
\(808\) 0 0
\(809\) −22.7675 −0.800461 −0.400231 0.916414i \(-0.631070\pi\)
−0.400231 + 0.916414i \(0.631070\pi\)
\(810\) 0 0
\(811\) −52.7675 −1.85292 −0.926458 0.376398i \(-0.877163\pi\)
−0.926458 + 0.376398i \(0.877163\pi\)
\(812\) 0 0
\(813\) 20.8015 0.729540
\(814\) 0 0
\(815\) 15.2563 0.534406
\(816\) 0 0
\(817\) −3.48223 −0.121828
\(818\) 0 0
\(819\) 4.35482 0.152170
\(820\) 0 0
\(821\) 28.9304 1.00968 0.504839 0.863213i \(-0.331552\pi\)
0.504839 + 0.863213i \(0.331552\pi\)
\(822\) 0 0
\(823\) 17.6111 0.613886 0.306943 0.951728i \(-0.400694\pi\)
0.306943 + 0.951728i \(0.400694\pi\)
\(824\) 0 0
\(825\) 7.03555 0.244946
\(826\) 0 0
\(827\) 8.82666 0.306933 0.153467 0.988154i \(-0.450956\pi\)
0.153467 + 0.988154i \(0.450956\pi\)
\(828\) 0 0
\(829\) 11.6030 0.402989 0.201494 0.979490i \(-0.435420\pi\)
0.201494 + 0.979490i \(0.435420\pi\)
\(830\) 0 0
\(831\) −23.6111 −0.819061
\(832\) 0 0
\(833\) 2.91852 0.101121
\(834\) 0 0
\(835\) 55.0801 1.90613
\(836\) 0 0
\(837\) 6.35482 0.219655
\(838\) 0 0
\(839\) −25.7452 −0.888823 −0.444411 0.895823i \(-0.646587\pi\)
−0.444411 + 0.895823i \(0.646587\pi\)
\(840\) 0 0
\(841\) 31.7015 1.09315
\(842\) 0 0
\(843\) 7.08148 0.243899
\(844\) 0 0
\(845\) 17.4074 0.598832
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) 0 0
\(849\) 10.8726 0.373146
\(850\) 0 0
\(851\) 7.67409 0.263064
\(852\) 0 0
\(853\) 36.1289 1.23703 0.618515 0.785773i \(-0.287734\pi\)
0.618515 + 0.785773i \(0.287734\pi\)
\(854\) 0 0
\(855\) 2.91852 0.0998114
\(856\) 0 0
\(857\) −44.3837 −1.51612 −0.758060 0.652185i \(-0.773852\pi\)
−0.758060 + 0.652185i \(0.773852\pi\)
\(858\) 0 0
\(859\) 24.0578 0.820842 0.410421 0.911896i \(-0.365382\pi\)
0.410421 + 0.911896i \(0.365382\pi\)
\(860\) 0 0
\(861\) −4.00000 −0.136320
\(862\) 0 0
\(863\) −43.2312 −1.47161 −0.735803 0.677196i \(-0.763195\pi\)
−0.735803 + 0.677196i \(0.763195\pi\)
\(864\) 0 0
\(865\) −22.3970 −0.761521
\(866\) 0 0
\(867\) 8.48223 0.288071
\(868\) 0 0
\(869\) 21.7452 0.737655
\(870\) 0 0
\(871\) −25.4193 −0.861299
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) 4.32591 0.146242
\(876\) 0 0
\(877\) 49.0223 1.65536 0.827682 0.561197i \(-0.189659\pi\)
0.827682 + 0.561197i \(0.189659\pi\)
\(878\) 0 0
\(879\) 22.6385 0.763579
\(880\) 0 0
\(881\) −32.0119 −1.07851 −0.539254 0.842143i \(-0.681294\pi\)
−0.539254 + 0.842143i \(0.681294\pi\)
\(882\) 0 0
\(883\) 25.0934 0.844459 0.422230 0.906489i \(-0.361248\pi\)
0.422230 + 0.906489i \(0.361248\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.80150 −0.295525 −0.147763 0.989023i \(-0.547207\pi\)
−0.147763 + 0.989023i \(0.547207\pi\)
\(888\) 0 0
\(889\) 9.83705 0.329924
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 11.6282 0.389122
\(894\) 0 0
\(895\) −5.70300 −0.190630
\(896\) 0 0
\(897\) −8.70964 −0.290806
\(898\) 0 0
\(899\) −49.5111 −1.65129
\(900\) 0 0
\(901\) −2.68073 −0.0893080
\(902\) 0 0
\(903\) −3.48223 −0.115881
\(904\) 0 0
\(905\) −54.6045 −1.81512
\(906\) 0 0
\(907\) 52.3837 1.73937 0.869687 0.493604i \(-0.164321\pi\)
0.869687 + 0.493604i \(0.164321\pi\)
\(908\) 0 0
\(909\) 1.08148 0.0358703
\(910\) 0 0
\(911\) 16.5926 0.549738 0.274869 0.961482i \(-0.411366\pi\)
0.274869 + 0.961482i \(0.411366\pi\)
\(912\) 0 0
\(913\) 11.5822 0.383316
\(914\) 0 0
\(915\) −0.475587 −0.0157224
\(916\) 0 0
\(917\) 7.95407 0.262667
\(918\) 0 0
\(919\) −13.9289 −0.459472 −0.229736 0.973253i \(-0.573786\pi\)
−0.229736 + 0.973253i \(0.573786\pi\)
\(920\) 0 0
\(921\) −33.7030 −1.11055
\(922\) 0 0
\(923\) 4.00000 0.131662
\(924\) 0 0
\(925\) −13.4979 −0.443807
\(926\) 0 0
\(927\) −8.00000 −0.262754
\(928\) 0 0
\(929\) 54.0830 1.77441 0.887203 0.461380i \(-0.152646\pi\)
0.887203 + 0.461380i \(0.152646\pi\)
\(930\) 0 0
\(931\) 1.00000 0.0327737
\(932\) 0 0
\(933\) −11.7200 −0.383696
\(934\) 0 0
\(935\) −17.0355 −0.557122
\(936\) 0 0
\(937\) 4.25481 0.138999 0.0694993 0.997582i \(-0.477860\pi\)
0.0694993 + 0.997582i \(0.477860\pi\)
\(938\) 0 0
\(939\) 1.19850 0.0391117
\(940\) 0 0
\(941\) 8.47559 0.276296 0.138148 0.990412i \(-0.455885\pi\)
0.138148 + 0.990412i \(0.455885\pi\)
\(942\) 0 0
\(943\) 8.00000 0.260516
\(944\) 0 0
\(945\) 2.91852 0.0949395
\(946\) 0 0
\(947\) 4.78074 0.155353 0.0776765 0.996979i \(-0.475250\pi\)
0.0776765 + 0.996979i \(0.475250\pi\)
\(948\) 0 0
\(949\) 29.2193 0.948497
\(950\) 0 0
\(951\) 31.0474 1.00678
\(952\) 0 0
\(953\) 31.0815 1.00683 0.503414 0.864045i \(-0.332077\pi\)
0.503414 + 0.864045i \(0.332077\pi\)
\(954\) 0 0
\(955\) −31.2563 −1.01143
\(956\) 0 0
\(957\) 15.5822 0.503702
\(958\) 0 0
\(959\) −2.70964 −0.0874988
\(960\) 0 0
\(961\) 9.38373 0.302701
\(962\) 0 0
\(963\) 1.95407 0.0629691
\(964\) 0 0
\(965\) −36.6178 −1.17877
\(966\) 0 0
\(967\) −21.9371 −0.705448 −0.352724 0.935727i \(-0.614745\pi\)
−0.352724 + 0.935727i \(0.614745\pi\)
\(968\) 0 0
\(969\) −2.91852 −0.0937565
\(970\) 0 0
\(971\) −39.4904 −1.26731 −0.633653 0.773617i \(-0.718445\pi\)
−0.633653 + 0.773617i \(0.718445\pi\)
\(972\) 0 0
\(973\) 20.3837 0.653472
\(974\) 0 0
\(975\) 15.3193 0.490609
\(976\) 0 0
\(977\) −9.24443 −0.295756 −0.147878 0.989006i \(-0.547244\pi\)
−0.147878 + 0.989006i \(0.547244\pi\)
\(978\) 0 0
\(979\) 8.00000 0.255681
\(980\) 0 0
\(981\) −7.83705 −0.250218
\(982\) 0 0
\(983\) 19.2904 0.615267 0.307633 0.951505i \(-0.400463\pi\)
0.307633 + 0.951505i \(0.400463\pi\)
\(984\) 0 0
\(985\) −17.5111 −0.557951
\(986\) 0 0
\(987\) 11.6282 0.370128
\(988\) 0 0
\(989\) 6.96445 0.221457
\(990\) 0 0
\(991\) −10.4548 −0.332108 −0.166054 0.986117i \(-0.553103\pi\)
−0.166054 + 0.986117i \(0.553103\pi\)
\(992\) 0 0
\(993\) 0.325910 0.0103424
\(994\) 0 0
\(995\) −29.6608 −0.940311
\(996\) 0 0
\(997\) 34.1497 1.08153 0.540766 0.841173i \(-0.318135\pi\)
0.540766 + 0.841173i \(0.318135\pi\)
\(998\) 0 0
\(999\) 3.83705 0.121399
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6384.2.a.bt.1.3 3
4.3 odd 2 1596.2.a.j.1.3 3
12.11 even 2 4788.2.a.p.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1596.2.a.j.1.3 3 4.3 odd 2
4788.2.a.p.1.1 3 12.11 even 2
6384.2.a.bt.1.3 3 1.1 even 1 trivial