# Properties

 Label 637.2.w.b.92.2 Level $637$ Weight $2$ Character 637.92 Analytic conductor $5.086$ Analytic rank $0$ Dimension $174$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$637 = 7^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 637.w (of order $$7$$, degree $$6$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$5.08647060876$$ Analytic rank: $$0$$ Dimension: $$174$$ Relative dimension: $$29$$ over $$\Q(\zeta_{7})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

## Embedding invariants

 Embedding label 92.2 Character $$\chi$$ $$=$$ 637.92 Dual form 637.2.w.b.547.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.57084 + 1.96978i) q^{2} +(2.34650 + 1.13001i) q^{3} +(-0.967425 - 4.23856i) q^{4} +(3.79256 + 1.82640i) q^{5} +(-5.91185 + 2.84700i) q^{6} +(0.107940 - 2.64355i) q^{7} +(5.32882 + 2.56623i) q^{8} +(2.35865 + 2.95765i) q^{9} +O(q^{10})$$ $$q+(-1.57084 + 1.96978i) q^{2} +(2.34650 + 1.13001i) q^{3} +(-0.967425 - 4.23856i) q^{4} +(3.79256 + 1.82640i) q^{5} +(-5.91185 + 2.84700i) q^{6} +(0.107940 - 2.64355i) q^{7} +(5.32882 + 2.56623i) q^{8} +(2.35865 + 2.95765i) q^{9} +(-9.55512 + 4.60150i) q^{10} +(1.87400 - 2.34992i) q^{11} +(2.51958 - 11.0390i) q^{12} +(0.623490 - 0.781831i) q^{13} +(5.03764 + 4.36522i) q^{14} +(6.83537 + 8.57129i) q^{15} +(-5.59160 + 2.69277i) q^{16} +(-0.290990 + 1.27491i) q^{17} -9.53098 q^{18} -6.95465 q^{19} +(4.07230 - 17.8419i) q^{20} +(3.24053 - 6.08110i) q^{21} +(1.68505 + 7.38270i) q^{22} +(0.0448741 + 0.196606i) q^{23} +(9.60420 + 12.0433i) q^{24} +(7.93033 + 9.94431i) q^{25} +(0.560628 + 2.45627i) q^{26} +(0.453765 + 1.98808i) q^{27} +(-11.3093 + 2.09992i) q^{28} +(0.542464 - 2.37669i) q^{29} -27.6208 q^{30} -0.570396 q^{31} +(0.847148 - 3.71160i) q^{32} +(7.05276 - 3.39643i) q^{33} +(-2.05419 - 2.57587i) q^{34} +(5.23755 - 9.82868i) q^{35} +(10.2544 - 12.8586i) q^{36} +(-2.37752 + 10.4166i) q^{37} +(10.9247 - 13.6991i) q^{38} +(2.34650 - 1.13001i) q^{39} +(15.5229 + 19.4651i) q^{40} +(4.77248 + 2.29830i) q^{41} +(6.88805 + 15.9356i) q^{42} +(8.15214 - 3.92586i) q^{43} +(-11.7732 - 5.66968i) q^{44} +(3.54346 + 15.5249i) q^{45} +(-0.457761 - 0.220446i) q^{46} +(-3.64206 + 4.56701i) q^{47} -16.1635 q^{48} +(-6.97670 - 0.570691i) q^{49} -32.0454 q^{50} +(-2.12347 + 2.66275i) q^{51} +(-3.91702 - 1.88634i) q^{52} +(0.570583 + 2.49989i) q^{53} +(-4.62886 - 2.22914i) q^{54} +(11.3991 - 5.48953i) q^{55} +(7.35914 - 13.8100i) q^{56} +(-16.3191 - 7.85885i) q^{57} +(3.82942 + 4.80194i) q^{58} +(-10.1754 + 4.90022i) q^{59} +(29.7172 - 37.2643i) q^{60} +(1.72573 - 7.56090i) q^{61} +(0.896004 - 1.12355i) q^{62} +(8.07329 - 5.91595i) q^{63} +(-1.75873 - 2.20538i) q^{64} +(3.79256 - 1.82640i) q^{65} +(-4.38858 + 19.2276i) q^{66} -5.63879 q^{67} +5.68531 q^{68} +(-0.116871 + 0.512045i) q^{69} +(11.1329 + 25.7561i) q^{70} +(-2.86376 - 12.5470i) q^{71} +(4.97882 + 21.8136i) q^{72} +(-5.25894 - 6.59450i) q^{73} +(-16.7837 - 21.0461i) q^{74} +(7.37128 + 32.2957i) q^{75} +(6.72810 + 29.4777i) q^{76} +(-6.00984 - 5.20765i) q^{77} +(-1.46011 + 6.39715i) q^{78} -16.3012 q^{79} -26.1245 q^{80} +(1.34358 - 5.88662i) q^{81} +(-12.0240 + 5.79043i) q^{82} +(-2.67054 - 3.34875i) q^{83} +(-28.9101 - 7.85217i) q^{84} +(-3.43210 + 4.30371i) q^{85} +(-5.07267 + 22.2248i) q^{86} +(3.95858 - 4.96391i) q^{87} +(16.0166 - 7.71319i) q^{88} +(0.566938 + 0.710918i) q^{89} +(-36.1468 - 17.4074i) q^{90} +(-1.99951 - 1.73262i) q^{91} +(0.789917 - 0.380404i) q^{92} +(-1.33843 - 0.644556i) q^{93} +(-3.27486 - 14.3481i) q^{94} +(-26.3759 - 12.7020i) q^{95} +(6.18198 - 7.75196i) q^{96} +3.36724 q^{97} +(12.0834 - 12.8461i) q^{98} +11.3703 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$174 q - 3 q^{2} - 31 q^{4} - 4 q^{5} - 2 q^{6} + 9 q^{7} - 15 q^{8} - 31 q^{9}+O(q^{10})$$ 174 * q - 3 * q^2 - 31 * q^4 - 4 * q^5 - 2 * q^6 + 9 * q^7 - 15 * q^8 - 31 * q^9 $$174 q - 3 q^{2} - 31 q^{4} - 4 q^{5} - 2 q^{6} + 9 q^{7} - 15 q^{8} - 31 q^{9} - 10 q^{10} - 5 q^{11} + 25 q^{12} - 29 q^{13} + 15 q^{14} - 10 q^{15} - 51 q^{16} - 9 q^{17} + 44 q^{18} + 24 q^{19} + 63 q^{20} - 28 q^{21} - 8 q^{22} - 13 q^{23} - 48 q^{24} - 49 q^{25} - 3 q^{26} - 9 q^{27} - 44 q^{28} + 2 q^{29} - 22 q^{30} + 10 q^{31} + 24 q^{32} - 26 q^{33} + 118 q^{34} + 5 q^{35} - 55 q^{36} - 32 q^{37} + 16 q^{38} + 42 q^{40} - 14 q^{41} + 4 q^{42} - 50 q^{43} + 35 q^{44} - q^{45} + 4 q^{46} - 24 q^{47} - 116 q^{48} - 25 q^{49} + 156 q^{50} + 12 q^{51} - 31 q^{52} - 30 q^{53} - 78 q^{54} + 25 q^{55} + 3 q^{56} - 63 q^{57} - 12 q^{58} - 4 q^{59} + 128 q^{60} - 42 q^{61} - 38 q^{62} - 85 q^{63} - 105 q^{64} - 4 q^{65} + 15 q^{66} + 94 q^{67} + 214 q^{68} + 32 q^{69} - 57 q^{70} - 29 q^{71} - 64 q^{72} - 66 q^{73} - 90 q^{74} + 131 q^{75} - 21 q^{76} - 82 q^{77} + 19 q^{78} + 6 q^{79} + 22 q^{80} + 49 q^{81} - 50 q^{82} + 25 q^{83} + 89 q^{84} - 86 q^{85} - 28 q^{86} + 24 q^{87} + 48 q^{88} - 50 q^{89} - 155 q^{90} - 5 q^{91} - 98 q^{92} + 89 q^{93} - 28 q^{94} - 130 q^{95} - 105 q^{96} - 42 q^{97} + 195 q^{98} + 438 q^{99}+O(q^{100})$$ 174 * q - 3 * q^2 - 31 * q^4 - 4 * q^5 - 2 * q^6 + 9 * q^7 - 15 * q^8 - 31 * q^9 - 10 * q^10 - 5 * q^11 + 25 * q^12 - 29 * q^13 + 15 * q^14 - 10 * q^15 - 51 * q^16 - 9 * q^17 + 44 * q^18 + 24 * q^19 + 63 * q^20 - 28 * q^21 - 8 * q^22 - 13 * q^23 - 48 * q^24 - 49 * q^25 - 3 * q^26 - 9 * q^27 - 44 * q^28 + 2 * q^29 - 22 * q^30 + 10 * q^31 + 24 * q^32 - 26 * q^33 + 118 * q^34 + 5 * q^35 - 55 * q^36 - 32 * q^37 + 16 * q^38 + 42 * q^40 - 14 * q^41 + 4 * q^42 - 50 * q^43 + 35 * q^44 - q^45 + 4 * q^46 - 24 * q^47 - 116 * q^48 - 25 * q^49 + 156 * q^50 + 12 * q^51 - 31 * q^52 - 30 * q^53 - 78 * q^54 + 25 * q^55 + 3 * q^56 - 63 * q^57 - 12 * q^58 - 4 * q^59 + 128 * q^60 - 42 * q^61 - 38 * q^62 - 85 * q^63 - 105 * q^64 - 4 * q^65 + 15 * q^66 + 94 * q^67 + 214 * q^68 + 32 * q^69 - 57 * q^70 - 29 * q^71 - 64 * q^72 - 66 * q^73 - 90 * q^74 + 131 * q^75 - 21 * q^76 - 82 * q^77 + 19 * q^78 + 6 * q^79 + 22 * q^80 + 49 * q^81 - 50 * q^82 + 25 * q^83 + 89 * q^84 - 86 * q^85 - 28 * q^86 + 24 * q^87 + 48 * q^88 - 50 * q^89 - 155 * q^90 - 5 * q^91 - 98 * q^92 + 89 * q^93 - 28 * q^94 - 130 * q^95 - 105 * q^96 - 42 * q^97 + 195 * q^98 + 438 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/637\mathbb{Z}\right)^\times$$.

 $$n$$ $$197$$ $$248$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{7}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.57084 + 1.96978i −1.11075 + 1.39284i −0.200049 + 0.979786i $$0.564110\pi$$
−0.910706 + 0.413056i $$0.864461\pi$$
$$3$$ 2.34650 + 1.13001i 1.35475 + 0.652414i 0.963460 0.267853i $$-0.0863143\pi$$
0.391291 + 0.920267i $$0.372029\pi$$
$$4$$ −0.967425 4.23856i −0.483712 2.11928i
$$5$$ 3.79256 + 1.82640i 1.69608 + 0.816791i 0.994562 + 0.104144i $$0.0332102\pi$$
0.701522 + 0.712647i $$0.252504\pi$$
$$6$$ −5.91185 + 2.84700i −2.41350 + 1.16228i
$$7$$ 0.107940 2.64355i 0.0407976 0.999167i
$$8$$ 5.32882 + 2.56623i 1.88402 + 0.907298i
$$9$$ 2.35865 + 2.95765i 0.786216 + 0.985884i
$$10$$ −9.55512 + 4.60150i −3.02159 + 1.45512i
$$11$$ 1.87400 2.34992i 0.565031 0.708526i −0.414448 0.910073i $$-0.636025\pi$$
0.979479 + 0.201547i $$0.0645967\pi$$
$$12$$ 2.51958 11.0390i 0.727339 3.18668i
$$13$$ 0.623490 0.781831i 0.172925 0.216841i
$$14$$ 5.03764 + 4.36522i 1.34637 + 1.16665i
$$15$$ 6.83537 + 8.57129i 1.76489 + 2.21310i
$$16$$ −5.59160 + 2.69277i −1.39790 + 0.673193i
$$17$$ −0.290990 + 1.27491i −0.0705755 + 0.309211i −0.997879 0.0650994i $$-0.979264\pi$$
0.927303 + 0.374311i $$0.122121\pi$$
$$18$$ −9.53098 −2.24647
$$19$$ −6.95465 −1.59551 −0.797753 0.602985i $$-0.793978\pi$$
−0.797753 + 0.602985i $$0.793978\pi$$
$$20$$ 4.07230 17.8419i 0.910594 3.98957i
$$21$$ 3.24053 6.08110i 0.707141 1.32701i
$$22$$ 1.68505 + 7.38270i 0.359255 + 1.57400i
$$23$$ 0.0448741 + 0.196606i 0.00935691 + 0.0409953i 0.979391 0.201974i $$-0.0647357\pi$$
−0.970034 + 0.242969i $$0.921879\pi$$
$$24$$ 9.60420 + 12.0433i 1.96045 + 2.45833i
$$25$$ 7.93033 + 9.94431i 1.58607 + 1.98886i
$$26$$ 0.560628 + 2.45627i 0.109948 + 0.481714i
$$27$$ 0.453765 + 1.98808i 0.0873272 + 0.382605i
$$28$$ −11.3093 + 2.09992i −2.13725 + 0.396848i
$$29$$ 0.542464 2.37669i 0.100733 0.441341i −0.899259 0.437416i $$-0.855894\pi$$
0.999992 0.00392442i $$-0.00124919\pi$$
$$30$$ −27.6208 −5.04285
$$31$$ −0.570396 −0.102446 −0.0512231 0.998687i $$-0.516312\pi$$
−0.0512231 + 0.998687i $$0.516312\pi$$
$$32$$ 0.847148 3.71160i 0.149756 0.656124i
$$33$$ 7.05276 3.39643i 1.22773 0.591243i
$$34$$ −2.05419 2.57587i −0.352291 0.441758i
$$35$$ 5.23755 9.82868i 0.885307 1.66135i
$$36$$ 10.2544 12.8586i 1.70906 2.14310i
$$37$$ −2.37752 + 10.4166i −0.390863 + 1.71248i 0.270763 + 0.962646i $$0.412724\pi$$
−0.661625 + 0.749835i $$0.730133\pi$$
$$38$$ 10.9247 13.6991i 1.77221 2.22229i
$$39$$ 2.34650 1.13001i 0.375740 0.180947i
$$40$$ 15.5229 + 19.4651i 2.45439 + 3.07771i
$$41$$ 4.77248 + 2.29830i 0.745335 + 0.358935i 0.767695 0.640815i $$-0.221404\pi$$
−0.0223596 + 0.999750i $$0.507118\pi$$
$$42$$ 6.88805 + 15.9356i 1.06285 + 2.45891i
$$43$$ 8.15214 3.92586i 1.24319 0.598689i 0.307512 0.951544i $$-0.400504\pi$$
0.935678 + 0.352855i $$0.114789\pi$$
$$44$$ −11.7732 5.66968i −1.77488 0.854737i
$$45$$ 3.54346 + 15.5249i 0.528228 + 2.31432i
$$46$$ −0.457761 0.220446i −0.0674932 0.0325030i
$$47$$ −3.64206 + 4.56701i −0.531250 + 0.666166i −0.972955 0.230994i $$-0.925802\pi$$
0.441705 + 0.897160i $$0.354374\pi$$
$$48$$ −16.1635 −2.33300
$$49$$ −6.97670 0.570691i −0.996671 0.0815273i
$$50$$ −32.0454 −4.53190
$$51$$ −2.12347 + 2.66275i −0.297346 + 0.372860i
$$52$$ −3.91702 1.88634i −0.543193 0.261588i
$$53$$ 0.570583 + 2.49989i 0.0783756 + 0.343386i 0.998878 0.0473500i $$-0.0150776\pi$$
−0.920503 + 0.390736i $$0.872220\pi$$
$$54$$ −4.62886 2.22914i −0.629908 0.303348i
$$55$$ 11.3991 5.48953i 1.53706 0.740208i
$$56$$ 7.35914 13.8100i 0.983406 1.84544i
$$57$$ −16.3191 7.85885i −2.16151 1.04093i
$$58$$ 3.82942 + 4.80194i 0.502828 + 0.630526i
$$59$$ −10.1754 + 4.90022i −1.32473 + 0.637955i −0.956487 0.291776i $$-0.905754\pi$$
−0.368240 + 0.929731i $$0.620040\pi$$
$$60$$ 29.7172 37.2643i 3.83648 4.81079i
$$61$$ 1.72573 7.56090i 0.220957 0.968074i −0.735803 0.677195i $$-0.763195\pi$$
0.956760 0.290879i $$-0.0939476\pi$$
$$62$$ 0.896004 1.12355i 0.113793 0.142691i
$$63$$ 8.07329 5.91595i 1.01714 0.745340i
$$64$$ −1.75873 2.20538i −0.219842 0.275673i
$$65$$ 3.79256 1.82640i 0.470409 0.226537i
$$66$$ −4.38858 + 19.2276i −0.540197 + 2.36676i
$$67$$ −5.63879 −0.688888 −0.344444 0.938807i $$-0.611933\pi$$
−0.344444 + 0.938807i $$0.611933\pi$$
$$68$$ 5.68531 0.689445
$$69$$ −0.116871 + 0.512045i −0.0140696 + 0.0616430i
$$70$$ 11.1329 + 25.7561i 1.33064 + 3.07844i
$$71$$ −2.86376 12.5470i −0.339866 1.48905i −0.799350 0.600866i $$-0.794823\pi$$
0.459484 0.888186i $$-0.348034\pi$$
$$72$$ 4.97882 + 21.8136i 0.586760 + 2.57076i
$$73$$ −5.25894 6.59450i −0.615512 0.771827i 0.372193 0.928155i $$-0.378606\pi$$
−0.987705 + 0.156328i $$0.950034\pi$$
$$74$$ −16.7837 21.0461i −1.95106 2.44656i
$$75$$ 7.37128 + 32.2957i 0.851162 + 3.72918i
$$76$$ 6.72810 + 29.4777i 0.771766 + 3.38133i
$$77$$ −6.00984 5.20765i −0.684885 0.593467i
$$78$$ −1.46011 + 6.39715i −0.165325 + 0.724334i
$$79$$ −16.3012 −1.83403 −0.917017 0.398848i $$-0.869410\pi$$
−0.917017 + 0.398848i $$0.869410\pi$$
$$80$$ −26.1245 −2.92081
$$81$$ 1.34358 5.88662i 0.149287 0.654069i
$$82$$ −12.0240 + 5.79043i −1.32782 + 0.639446i
$$83$$ −2.67054 3.34875i −0.293129 0.367573i 0.613358 0.789805i $$-0.289818\pi$$
−0.906488 + 0.422232i $$0.861247\pi$$
$$84$$ −28.9101 7.85217i −3.15435 0.856742i
$$85$$ −3.43210 + 4.30371i −0.372263 + 0.466803i
$$86$$ −5.07267 + 22.2248i −0.547000 + 2.39656i
$$87$$ 3.95858 4.96391i 0.424405 0.532187i
$$88$$ 16.0166 7.71319i 1.70738 0.822229i
$$89$$ 0.566938 + 0.710918i 0.0600954 + 0.0753572i 0.810971 0.585087i $$-0.198940\pi$$
−0.750875 + 0.660444i $$0.770368\pi$$
$$90$$ −36.1468 17.4074i −3.81021 1.83490i
$$91$$ −1.99951 1.73262i −0.209606 0.181628i
$$92$$ 0.789917 0.380404i 0.0823545 0.0396598i
$$93$$ −1.33843 0.644556i −0.138789 0.0668373i
$$94$$ −3.27486 14.3481i −0.337776 1.47989i
$$95$$ −26.3759 12.7020i −2.70611 1.30320i
$$96$$ 6.18198 7.75196i 0.630946 0.791181i
$$97$$ 3.36724 0.341891 0.170946 0.985280i $$-0.445318\pi$$
0.170946 + 0.985280i $$0.445318\pi$$
$$98$$ 12.0834 12.8461i 1.22061 1.29765i
$$99$$ 11.3703 1.14276
$$100$$ 34.4776 43.2336i 3.44776 4.32336i
$$101$$ −5.24109 2.52397i −0.521508 0.251145i 0.154561 0.987983i $$-0.450604\pi$$
−0.676069 + 0.736838i $$0.736318\pi$$
$$102$$ −1.90938 8.36554i −0.189057 0.828312i
$$103$$ −1.88686 0.908666i −0.185918 0.0895335i 0.338609 0.940927i $$-0.390044\pi$$
−0.524527 + 0.851394i $$0.675758\pi$$
$$104$$ 5.32882 2.56623i 0.522534 0.251639i
$$105$$ 23.3964 17.1445i 2.28326 1.67313i
$$106$$ −5.82052 2.80301i −0.565339 0.272253i
$$107$$ 2.93782 + 3.68391i 0.284010 + 0.356137i 0.903288 0.429035i $$-0.141146\pi$$
−0.619278 + 0.785171i $$0.712575\pi$$
$$108$$ 7.98760 3.84663i 0.768607 0.370142i
$$109$$ −4.22073 + 5.29263i −0.404273 + 0.506942i −0.941740 0.336343i $$-0.890810\pi$$
0.537467 + 0.843285i $$0.319381\pi$$
$$110$$ −7.09311 + 31.0769i −0.676301 + 2.96307i
$$111$$ −17.3498 + 21.7559i −1.64677 + 2.06498i
$$112$$ 6.51491 + 15.0723i 0.615601 + 1.42420i
$$113$$ 3.86411 + 4.84544i 0.363505 + 0.455821i 0.929628 0.368500i $$-0.120129\pi$$
−0.566123 + 0.824321i $$0.691557\pi$$
$$114$$ 41.1149 19.7999i 3.85076 1.85443i
$$115$$ −0.188894 + 0.827600i −0.0176145 + 0.0771741i
$$116$$ −10.5986 −0.984051
$$117$$ 3.78298 0.349737
$$118$$ 6.33165 27.7408i 0.582876 2.55375i
$$119$$ 3.33888 + 0.906861i 0.306075 + 0.0831318i
$$120$$ 14.4286 + 63.2160i 1.31715 + 5.77081i
$$121$$ 0.437483 + 1.91674i 0.0397712 + 0.174249i
$$122$$ 12.1824 + 15.2763i 1.10295 + 1.38305i
$$123$$ 8.60149 + 10.7859i 0.775570 + 0.972534i
$$124$$ 0.551816 + 2.41766i 0.0495545 + 0.217112i
$$125$$ 7.23051 + 31.6789i 0.646717 + 2.83345i
$$126$$ −1.02878 + 25.1956i −0.0916508 + 2.24460i
$$127$$ 3.95471 17.3267i 0.350924 1.53750i −0.424130 0.905602i $$-0.639420\pi$$
0.775053 0.631896i $$-0.217723\pi$$
$$128$$ 14.7209 1.30116
$$129$$ 23.5653 2.07481
$$130$$ −2.35992 + 10.3395i −0.206979 + 0.906833i
$$131$$ 0.738371 0.355581i 0.0645118 0.0310672i −0.401350 0.915925i $$-0.631459\pi$$
0.465861 + 0.884858i $$0.345745\pi$$
$$132$$ −21.2190 26.6078i −1.84688 2.31591i
$$133$$ −0.750687 + 18.3849i −0.0650928 + 1.59418i
$$134$$ 8.85766 11.1072i 0.765185 0.959512i
$$135$$ −1.91009 + 8.36865i −0.164394 + 0.720259i
$$136$$ −4.82235 + 6.04703i −0.413513 + 0.518529i
$$137$$ 6.93036 3.33749i 0.592101 0.285141i −0.113741 0.993510i $$-0.536283\pi$$
0.705841 + 0.708370i $$0.250569\pi$$
$$138$$ −0.825028 1.03455i −0.0702310 0.0880669i
$$139$$ 6.20597 + 2.98864i 0.526383 + 0.253493i 0.678150 0.734923i $$-0.262782\pi$$
−0.151767 + 0.988416i $$0.548496\pi$$
$$140$$ −46.7264 12.6912i −3.94910 1.07260i
$$141$$ −13.7069 + 6.60088i −1.15433 + 0.555895i
$$142$$ 29.2133 + 14.0684i 2.45152 + 1.18059i
$$143$$ −0.668821 2.93030i −0.0559297 0.245044i
$$144$$ −21.1529 10.1867i −1.76274 0.848891i
$$145$$ 6.39812 8.02299i 0.531335 0.666273i
$$146$$ 21.2506 1.75872
$$147$$ −15.7259 9.22289i −1.29705 0.760691i
$$148$$ 46.4516 3.81829
$$149$$ 2.39288 3.00058i 0.196032 0.245817i −0.674094 0.738646i $$-0.735466\pi$$
0.870126 + 0.492829i $$0.164037\pi$$
$$150$$ −75.1944 36.2117i −6.13960 2.95667i
$$151$$ 2.32783 + 10.1989i 0.189436 + 0.829975i 0.976914 + 0.213632i $$0.0685294\pi$$
−0.787478 + 0.616343i $$0.788614\pi$$
$$152$$ −37.0601 17.8472i −3.00597 1.44760i
$$153$$ −4.45709 + 2.14642i −0.360334 + 0.173528i
$$154$$ 19.6984 3.65763i 1.58734 0.294740i
$$155$$ −2.16326 1.04177i −0.173757 0.0836772i
$$156$$ −7.05969 8.85258i −0.565228 0.708773i
$$157$$ 14.8385 7.14586i 1.18424 0.570302i 0.265099 0.964221i $$-0.414595\pi$$
0.919145 + 0.393920i $$0.128881\pi$$
$$158$$ 25.6067 32.1098i 2.03716 2.55452i
$$159$$ −1.48604 + 6.51075i −0.117850 + 0.516336i
$$160$$ 9.99172 12.5292i 0.789915 0.990522i
$$161$$ 0.524582 0.0974052i 0.0413429 0.00767660i
$$162$$ 9.48477 + 11.8935i 0.745194 + 0.934443i
$$163$$ −16.9401 + 8.15794i −1.32685 + 0.638979i −0.956994 0.290108i $$-0.906309\pi$$
−0.369860 + 0.929087i $$0.620594\pi$$
$$164$$ 5.12449 22.4519i 0.400156 1.75320i
$$165$$ 32.9513 2.56525
$$166$$ 10.7913 0.837565
$$167$$ 2.28549 10.0134i 0.176857 0.774861i −0.806212 0.591626i $$-0.798486\pi$$
0.983069 0.183234i $$-0.0586567\pi$$
$$168$$ 32.8737 24.0892i 2.53626 1.85852i
$$169$$ −0.222521 0.974928i −0.0171170 0.0749945i
$$170$$ −3.08606 13.5209i −0.236690 1.03701i
$$171$$ −16.4036 20.5694i −1.25441 1.57298i
$$172$$ −24.5266 30.7554i −1.87014 2.34508i
$$173$$ −2.20589 9.66465i −0.167711 0.734790i −0.986909 0.161279i $$-0.948438\pi$$
0.819198 0.573511i $$-0.194419\pi$$
$$174$$ 3.55947 + 15.5950i 0.269843 + 1.18226i
$$175$$ 27.1443 19.8908i 2.05191 1.50360i
$$176$$ −4.15084 + 18.1860i −0.312881 + 1.37082i
$$177$$ −29.4139 −2.21089
$$178$$ −2.29092 −0.171712
$$179$$ −0.380027 + 1.66501i −0.0284045 + 0.124448i −0.987142 0.159843i $$-0.948901\pi$$
0.958738 + 0.284291i $$0.0917583\pi$$
$$180$$ 62.3753 30.0384i 4.64918 2.23893i
$$181$$ 4.94258 + 6.19780i 0.367379 + 0.460679i 0.930820 0.365477i $$-0.119094\pi$$
−0.563441 + 0.826156i $$0.690523\pi$$
$$182$$ 6.55378 1.21692i 0.485799 0.0902038i
$$183$$ 12.5933 15.7915i 0.930926 1.16734i
$$184$$ −0.265410 + 1.16284i −0.0195663 + 0.0857256i
$$185$$ −28.0418 + 35.1633i −2.06168 + 2.58526i
$$186$$ 3.37210 1.62392i 0.247254 0.119071i
$$187$$ 2.45062 + 3.07298i 0.179207 + 0.224719i
$$188$$ 22.8810 + 11.0189i 1.66877 + 0.803635i
$$189$$ 5.30455 0.984957i 0.385850 0.0716451i
$$190$$ 66.4525 32.0018i 4.82097 2.32166i
$$191$$ −5.10574 2.45879i −0.369438 0.177912i 0.239948 0.970786i $$-0.422870\pi$$
−0.609386 + 0.792874i $$0.708584\pi$$
$$192$$ −1.63475 7.16231i −0.117978 0.516896i
$$193$$ −9.81693 4.72758i −0.706638 0.340299i 0.0458103 0.998950i $$-0.485413\pi$$
−0.752448 + 0.658651i $$0.771127\pi$$
$$194$$ −5.28941 + 6.63270i −0.379757 + 0.476200i
$$195$$ 10.9631 0.785083
$$196$$ 4.33052 + 30.1233i 0.309323 + 2.15166i
$$197$$ −17.8496 −1.27173 −0.635865 0.771800i $$-0.719357\pi$$
−0.635865 + 0.771800i $$0.719357\pi$$
$$198$$ −17.8610 + 22.3970i −1.26933 + 1.59169i
$$199$$ 12.5419 + 6.03985i 0.889070 + 0.428154i 0.821929 0.569590i $$-0.192898\pi$$
0.0671413 + 0.997743i $$0.478612\pi$$
$$200$$ 16.7400 + 73.3425i 1.18369 + 5.18610i
$$201$$ −13.2314 6.37191i −0.933272 0.449440i
$$202$$ 13.2046 6.35900i 0.929072 0.447417i
$$203$$ −6.22435 1.69057i −0.436863 0.118655i
$$204$$ 13.3406 + 6.42447i 0.934026 + 0.449803i
$$205$$ 13.9023 + 17.4329i 0.970977 + 1.21757i
$$206$$ 4.75384 2.28933i 0.331215 0.159505i
$$207$$ −0.475651 + 0.596448i −0.0330600 + 0.0414560i
$$208$$ −1.38101 + 6.05060i −0.0957558 + 0.419534i
$$209$$ −13.0330 + 16.3428i −0.901510 + 1.13046i
$$210$$ −2.98140 + 73.0170i −0.205736 + 5.03865i
$$211$$ 11.3032 + 14.1738i 0.778144 + 0.975761i 1.00000 0.000681976i $$0.000217080\pi$$
−0.221856 + 0.975079i $$0.571211\pi$$
$$212$$ 10.0439 4.83691i 0.689821 0.332200i
$$213$$ 7.45843 32.6775i 0.511043 2.23903i
$$214$$ −11.8713 −0.811507
$$215$$ 38.0877 2.59756
$$216$$ −2.68382 + 11.7586i −0.182611 + 0.800069i
$$217$$ −0.0615688 + 1.50787i −0.00417956 + 0.102361i
$$218$$ −3.79519 16.6278i −0.257043 1.12618i
$$219$$ −4.88821 21.4166i −0.330314 1.44720i
$$220$$ −34.2955 43.0052i −2.31220 2.89941i
$$221$$ 0.815337 + 1.02240i 0.0548455 + 0.0687740i
$$222$$ −15.6005 68.3503i −1.04704 4.58737i
$$223$$ −0.577319 2.52940i −0.0386601 0.169381i 0.951912 0.306370i $$-0.0991146\pi$$
−0.990573 + 0.136989i $$0.956257\pi$$
$$224$$ −9.72034 2.64011i −0.649468 0.176400i
$$225$$ −10.7070 + 46.9103i −0.713798 + 3.12735i
$$226$$ −15.6144 −1.03865
$$227$$ 0.658859 0.0437300 0.0218650 0.999761i $$-0.493040\pi$$
0.0218650 + 0.999761i $$0.493040\pi$$
$$228$$ −17.5228 + 76.7722i −1.16047 + 5.08437i
$$229$$ 19.4201 9.35223i 1.28332 0.618012i 0.337076 0.941477i $$-0.390562\pi$$
0.946240 + 0.323465i $$0.104848\pi$$
$$230$$ −1.33346 1.67211i −0.0879260 0.110256i
$$231$$ −8.21735 19.0109i −0.540662 1.25083i
$$232$$ 8.98983 11.2729i 0.590211 0.740101i
$$233$$ −0.447781 + 1.96186i −0.0293351 + 0.128526i −0.987475 0.157774i $$-0.949568\pi$$
0.958140 + 0.286300i $$0.0924253\pi$$
$$234$$ −5.94247 + 7.45162i −0.388471 + 0.487128i
$$235$$ −22.1539 + 10.6688i −1.44516 + 0.695954i
$$236$$ 30.6139 + 38.3886i 1.99279 + 2.49888i
$$237$$ −38.2508 18.4206i −2.48466 1.19655i
$$238$$ −7.03117 + 5.15231i −0.455763 + 0.333975i
$$239$$ −17.6114 + 8.48122i −1.13919 + 0.548604i −0.905769 0.423772i $$-0.860706\pi$$
−0.233420 + 0.972376i $$0.574992\pi$$
$$240$$ −61.3012 29.5211i −3.95697 1.90558i
$$241$$ −3.82922 16.7769i −0.246662 1.08070i −0.934816 0.355131i $$-0.884436\pi$$
0.688155 0.725564i $$-0.258421\pi$$
$$242$$ −4.46277 2.14915i −0.286877 0.138153i
$$243$$ 13.6189 17.0776i 0.873655 1.09553i
$$244$$ −33.7169 −2.15850
$$245$$ −25.4172 14.9066i −1.62385 0.952350i
$$246$$ −34.7574 −2.21605
$$247$$ −4.33615 + 5.43736i −0.275903 + 0.345971i
$$248$$ −3.03954 1.46377i −0.193011 0.0929493i
$$249$$ −2.48228 10.8756i −0.157308 0.689211i
$$250$$ −73.7584 35.5202i −4.66489 2.24649i
$$251$$ 5.90261 2.84254i 0.372569 0.179420i −0.238224 0.971210i $$-0.576565\pi$$
0.610793 + 0.791790i $$0.290851\pi$$
$$252$$ −32.8854 28.4959i −2.07159 1.79507i
$$253$$ 0.546103 + 0.262989i 0.0343332 + 0.0165340i
$$254$$ 27.9175 + 35.0075i 1.75170 + 2.19656i
$$255$$ −12.9167 + 6.22034i −0.808873 + 0.389533i
$$256$$ −19.6068 + 24.5861i −1.22542 + 1.53663i
$$257$$ 2.29089 10.0370i 0.142902 0.626094i −0.851851 0.523784i $$-0.824520\pi$$
0.994753 0.102309i $$-0.0326231\pi$$
$$258$$ −37.0173 + 46.4183i −2.30460 + 2.88988i
$$259$$ 27.2802 + 7.40947i 1.69511 + 0.460402i
$$260$$ −11.4103 14.3081i −0.707639 0.887351i
$$261$$ 8.30891 4.00136i 0.514309 0.247678i
$$262$$ −0.459451 + 2.01299i −0.0283850 + 0.124363i
$$263$$ 30.5845 1.88592 0.942960 0.332906i $$-0.108029\pi$$
0.942960 + 0.332906i $$0.108029\pi$$
$$264$$ 46.2989 2.84950
$$265$$ −2.40183 + 10.5231i −0.147543 + 0.646428i
$$266$$ −35.0350 30.3586i −2.14813 1.86140i
$$267$$ 0.526972 + 2.30882i 0.0322502 + 0.141297i
$$268$$ 5.45511 + 23.9004i 0.333224 + 1.45995i
$$269$$ 5.94502 + 7.45481i 0.362474 + 0.454528i 0.929309 0.369303i $$-0.120404\pi$$
−0.566835 + 0.823831i $$0.691832\pi$$
$$270$$ −13.4839 16.9083i −0.820605 1.02901i
$$271$$ 2.60858 + 11.4289i 0.158460 + 0.694258i 0.990266 + 0.139191i $$0.0444502\pi$$
−0.831806 + 0.555067i $$0.812693\pi$$
$$272$$ −1.80594 7.91236i −0.109501 0.479757i
$$273$$ −2.73396 6.32505i −0.165467 0.382810i
$$274$$ −4.31241 + 18.8939i −0.260522 + 1.14142i
$$275$$ 38.2297 2.30534
$$276$$ 2.28340 0.137444
$$277$$ −3.96847 + 17.3870i −0.238442 + 1.04468i 0.703970 + 0.710230i $$0.251409\pi$$
−0.942412 + 0.334454i $$0.891448\pi$$
$$278$$ −15.6356 + 7.52968i −0.937758 + 0.451600i
$$279$$ −1.34536 1.68703i −0.0805449 0.101000i
$$280$$ 53.1326 38.9345i 3.17528 2.32678i
$$281$$ −19.1781 + 24.0486i −1.14407 + 1.43462i −0.261026 + 0.965332i $$0.584061\pi$$
−0.883045 + 0.469288i $$0.844511\pi$$
$$282$$ 8.52910 37.3684i 0.507900 2.22526i
$$283$$ 6.54358 8.20539i 0.388976 0.487760i −0.548333 0.836260i $$-0.684737\pi$$
0.937309 + 0.348500i $$0.113309\pi$$
$$284$$ −50.4107 + 24.2765i −2.99132 + 1.44055i
$$285$$ −47.5376 59.6103i −2.81589 3.53101i
$$286$$ 6.82264 + 3.28561i 0.403431 + 0.194282i
$$287$$ 6.59082 12.3682i 0.389044 0.730071i
$$288$$ 12.9757 6.24878i 0.764603 0.368213i
$$289$$ 13.7757 + 6.63405i 0.810338 + 0.390238i
$$290$$ 5.75304 + 25.2057i 0.337830 + 1.48013i
$$291$$ 7.90122 + 3.80502i 0.463177 + 0.223055i
$$292$$ −22.8636 + 28.6700i −1.33799 + 1.67779i
$$293$$ 22.7283 1.32780 0.663902 0.747820i $$-0.268899\pi$$
0.663902 + 0.747820i $$0.268899\pi$$
$$294$$ 42.8700 16.4888i 2.50023 0.961647i
$$295$$ −47.5407 −2.76792
$$296$$ −39.4008 + 49.4070i −2.29012 + 2.87173i
$$297$$ 5.52217 + 2.65933i 0.320429 + 0.154310i
$$298$$ 2.15162 + 9.42687i 0.124640 + 0.546084i
$$299$$ 0.181692 + 0.0874981i 0.0105075 + 0.00506015i
$$300$$ 129.756 62.4873i 7.49148 3.60770i
$$301$$ −9.49827 21.9743i −0.547471 1.26658i
$$302$$ −23.7462 11.4356i −1.36644 0.658043i
$$303$$ −9.44607 11.8450i −0.542663 0.680477i
$$304$$ 38.8876 18.7273i 2.23036 1.07408i
$$305$$ 20.3542 25.5233i 1.16548 1.46146i
$$306$$ 2.77342 12.1512i 0.158546 0.694635i
$$307$$ 1.81389 2.27454i 0.103524 0.129815i −0.727371 0.686245i $$-0.759258\pi$$
0.830895 + 0.556430i $$0.187829\pi$$
$$308$$ −16.2589 + 30.5111i −0.926436 + 1.73853i
$$309$$ −3.40072 4.26436i −0.193460 0.242591i
$$310$$ 5.45021 2.62468i 0.309551 0.149072i
$$311$$ 1.68964 7.40280i 0.0958108 0.419774i −0.904162 0.427190i $$-0.859503\pi$$
0.999973 + 0.00741587i $$0.00236057\pi$$
$$312$$ 15.4039 0.872076
$$313$$ −29.9796 −1.69455 −0.847274 0.531157i $$-0.821758\pi$$
−0.847274 + 0.531157i $$0.821758\pi$$
$$314$$ −9.23327 + 40.4536i −0.521064 + 2.28293i
$$315$$ 41.4233 7.69154i 2.33394 0.433369i
$$316$$ 15.7702 + 69.0939i 0.887145 + 3.88683i
$$317$$ −1.89015 8.28129i −0.106161 0.465124i −0.999864 0.0164646i $$-0.994759\pi$$
0.893703 0.448659i $$-0.148098\pi$$
$$318$$ −10.4904 13.1545i −0.588272 0.737669i
$$319$$ −4.56845 5.72866i −0.255784 0.320743i
$$320$$ −2.64219 11.5762i −0.147703 0.647129i
$$321$$ 2.73072 + 11.9641i 0.152414 + 0.667768i
$$322$$ −0.632171 + 1.18632i −0.0352295 + 0.0661109i
$$323$$ 2.02373 8.86656i 0.112604 0.493349i
$$324$$ −26.2506 −1.45837
$$325$$ 12.7193 0.705537
$$326$$ 10.5410 46.1831i 0.583812 2.55785i
$$327$$ −15.8847 + 7.64966i −0.878425 + 0.423027i
$$328$$ 19.5337 + 24.4945i 1.07857 + 1.35248i
$$329$$ 11.6800 + 10.1209i 0.643938 + 0.557985i
$$330$$ −51.7613 + 64.9066i −2.84937 + 3.57299i
$$331$$ −3.30852 + 14.4956i −0.181853 + 0.796748i 0.798895 + 0.601470i $$0.205418\pi$$
−0.980748 + 0.195278i $$0.937439\pi$$
$$332$$ −11.6103 + 14.5589i −0.637200 + 0.799023i
$$333$$ −36.4165 + 17.5372i −1.99561 + 0.961035i
$$334$$ 16.1340 + 20.2314i 0.882814 + 1.10701i
$$335$$ −21.3855 10.2987i −1.16841 0.562678i
$$336$$ −1.74470 + 42.7291i −0.0951811 + 2.33106i
$$337$$ −17.9891 + 8.66308i −0.979927 + 0.471908i −0.854080 0.520142i $$-0.825879\pi$$
−0.125847 + 0.992050i $$0.540165\pi$$
$$338$$ 2.26994 + 1.09314i 0.123468 + 0.0594591i
$$339$$ 3.59171 + 15.7363i 0.195075 + 0.854680i
$$340$$ 21.5619 + 10.3836i 1.16936 + 0.563132i
$$341$$ −1.06892 + 1.34038i −0.0578853 + 0.0725859i
$$342$$ 66.2846 3.58426
$$343$$ −2.26172 + 18.3816i −0.122121 + 0.992515i
$$344$$ 53.5160 2.88539
$$345$$ −1.37844 + 1.72851i −0.0742127 + 0.0930597i
$$346$$ 22.5023 + 10.8365i 1.20973 + 0.582576i
$$347$$ −0.868451 3.80493i −0.0466209 0.204259i 0.946253 0.323426i $$-0.104835\pi$$
−0.992874 + 0.119167i $$0.961978\pi$$
$$348$$ −24.8695 11.9765i −1.33314 0.642008i
$$349$$ −22.9959 + 11.0743i −1.23094 + 0.592792i −0.932339 0.361585i $$-0.882236\pi$$
−0.298605 + 0.954377i $$0.596521\pi$$
$$350$$ −3.45899 + 84.7135i −0.184891 + 4.52813i
$$351$$ 1.83726 + 0.884777i 0.0980656 + 0.0472259i
$$352$$ −7.13439 8.94624i −0.380264 0.476836i
$$353$$ 18.8549 9.08006i 1.00355 0.483283i 0.141407 0.989952i $$-0.454837\pi$$
0.862141 + 0.506669i $$0.169123\pi$$
$$354$$ 46.2047 57.9388i 2.45575 3.07941i
$$355$$ 12.0548 52.8155i 0.639802 2.80316i
$$356$$ 2.46480 3.09076i 0.130634 0.163810i
$$357$$ 6.80991 + 5.90093i 0.360419 + 0.312310i
$$358$$ −2.68272 3.36403i −0.141786 0.177795i
$$359$$ 14.2090 6.84272i 0.749925 0.361145i −0.0195610 0.999809i $$-0.506227\pi$$
0.769486 + 0.638664i $$0.220513\pi$$
$$360$$ −20.9580 + 91.8229i −1.10458 + 4.83949i
$$361$$ 29.3671 1.54564
$$362$$ −19.9723 −1.04972
$$363$$ −1.13939 + 4.99199i −0.0598024 + 0.262011i
$$364$$ −5.40943 + 10.1512i −0.283531 + 0.532069i
$$365$$ −7.90064 34.6150i −0.413538 1.81183i
$$366$$ 11.3236 + 49.6121i 0.591896 + 2.59326i
$$367$$ 2.09447 + 2.62639i 0.109331 + 0.137096i 0.833486 0.552541i $$-0.186342\pi$$
−0.724155 + 0.689637i $$0.757770\pi$$
$$368$$ −0.780334 0.978508i −0.0406777 0.0510083i
$$369$$ 4.45901 + 19.5362i 0.232127 + 1.01701i
$$370$$ −25.2146 110.472i −1.31084 5.74318i
$$371$$ 6.67017 1.23853i 0.346298 0.0643011i
$$372$$ −1.43716 + 6.29660i −0.0745131 + 0.326463i
$$373$$ −9.84224 −0.509612 −0.254806 0.966992i $$-0.582012\pi$$
−0.254806 + 0.966992i $$0.582012\pi$$
$$374$$ −9.90263 −0.512053
$$375$$ −18.8313 + 82.5051i −0.972442 + 4.26055i
$$376$$ −31.1279 + 14.9904i −1.60530 + 0.773071i
$$377$$ −1.51995 1.90596i −0.0782815 0.0981619i
$$378$$ −6.39248 + 11.9960i −0.328794 + 0.617007i
$$379$$ 1.25623 1.57527i 0.0645284 0.0809161i −0.748520 0.663112i $$-0.769235\pi$$
0.813048 + 0.582196i $$0.197807\pi$$
$$380$$ −28.3214 + 124.084i −1.45286 + 6.36539i
$$381$$ 28.8591 36.1882i 1.47850 1.85398i
$$382$$ 12.8636 6.19478i 0.658159 0.316953i
$$383$$ 15.6516 + 19.6265i 0.799762 + 1.00287i 0.999734 + 0.0230678i $$0.00734337\pi$$
−0.199972 + 0.979802i $$0.564085\pi$$
$$384$$ 34.5425 + 16.6348i 1.76274 + 0.848892i
$$385$$ −13.2814 30.7267i −0.676884 1.56598i
$$386$$ 24.7331 11.9109i 1.25888 0.606247i
$$387$$ 30.8394 + 14.8515i 1.56765 + 0.754942i
$$388$$ −3.25755 14.2723i −0.165377 0.724564i
$$389$$ −3.84743 1.85283i −0.195072 0.0939420i 0.333798 0.942645i $$-0.391670\pi$$
−0.528870 + 0.848703i $$0.677384\pi$$
$$390$$ −17.2213 + 21.5948i −0.872034 + 1.09350i
$$391$$ −0.263714 −0.0133366
$$392$$ −35.7131 20.9449i −1.80378 1.05788i
$$393$$ 2.13440 0.107666
$$394$$ 28.0389 35.1597i 1.41258 1.77132i
$$395$$ −61.8235 29.7726i −3.11068 1.49802i
$$396$$ −10.9999 48.1939i −0.552768 2.42183i
$$397$$ 3.63408 + 1.75008i 0.182389 + 0.0878341i 0.522850 0.852425i $$-0.324869\pi$$
−0.340461 + 0.940259i $$0.610583\pi$$
$$398$$ −31.5985 + 15.2170i −1.58389 + 0.762761i
$$399$$ −22.5367 + 42.2919i −1.12825 + 2.11725i
$$400$$ −71.1209 34.2500i −3.55605 1.71250i
$$401$$ 3.93768 + 4.93769i 0.196638 + 0.246576i 0.870369 0.492401i $$-0.163881\pi$$
−0.673730 + 0.738977i $$0.735309\pi$$
$$402$$ 33.3357 16.0536i 1.66263 0.800682i
$$403$$ −0.355636 + 0.445954i −0.0177155 + 0.0222145i
$$404$$ −5.62767 + 24.6564i −0.279987 + 1.22670i
$$405$$ 15.8469 19.8714i 0.787441 0.987420i
$$406$$ 13.1075 9.60494i 0.650515 0.476685i
$$407$$ 20.0227 + 25.1077i 0.992488 + 1.24454i
$$408$$ −18.1489 + 8.74003i −0.898502 + 0.432696i
$$409$$ −7.77727 + 34.0744i −0.384561 + 1.68487i 0.298419 + 0.954435i $$0.403541\pi$$
−0.682980 + 0.730437i $$0.739316\pi$$
$$410$$ −56.1772 −2.77440
$$411$$ 20.0335 0.988178
$$412$$ −2.02604 + 8.87666i −0.0998158 + 0.437322i
$$413$$ 11.8556 + 27.4281i 0.583378 + 1.34965i
$$414$$ −0.427695 1.87385i −0.0210200 0.0920948i
$$415$$ −4.01202 17.5778i −0.196942 0.862860i
$$416$$ −2.37366 2.97647i −0.116378 0.145933i
$$417$$ 11.1851 + 14.0257i 0.547736 + 0.686839i
$$418$$ −11.7190 51.3441i −0.573193 2.51132i
$$419$$ −0.265628 1.16379i −0.0129768 0.0568549i 0.968025 0.250854i $$-0.0807113\pi$$
−0.981002 + 0.193999i $$0.937854\pi$$
$$420$$ −95.3022 82.5813i −4.65027 4.02956i
$$421$$ 8.45838 37.0586i 0.412236 1.80613i −0.161253 0.986913i $$-0.551554\pi$$
0.573490 0.819213i $$-0.305589\pi$$
$$422$$ −45.6747 −2.22341
$$423$$ −22.0980 −1.07444
$$424$$ −3.37474 + 14.7857i −0.163892 + 0.718058i
$$425$$ −14.9858 + 7.21677i −0.726917 + 0.350065i
$$426$$ 52.6514 + 66.0227i 2.55097 + 3.19881i
$$427$$ −19.8013 5.37817i −0.958253 0.260268i
$$428$$ 12.7724 16.0160i 0.617375 0.774164i
$$429$$ 1.74189 7.63171i 0.0840992 0.368463i
$$430$$ −59.8298 + 75.0242i −2.88525 + 3.61799i
$$431$$ 20.2279 9.74123i 0.974342 0.469219i 0.122187 0.992507i $$-0.461009\pi$$
0.852156 + 0.523289i $$0.175295\pi$$
$$432$$ −7.89070 9.89463i −0.379642 0.476056i
$$433$$ −6.22735 2.99893i −0.299267 0.144119i 0.278224 0.960516i $$-0.410254\pi$$
−0.577492 + 0.816397i $$0.695968\pi$$
$$434$$ −2.87345 2.48991i −0.137930 0.119519i
$$435$$ 24.0793 11.5960i 1.15451 0.555984i
$$436$$ 26.5164 + 12.7696i 1.26991 + 0.611554i
$$437$$ −0.312084 1.36733i −0.0149290 0.0654082i
$$438$$ 49.8646 + 24.0135i 2.38262 + 1.14741i
$$439$$ −12.4367 + 15.5952i −0.593574 + 0.744318i −0.984361 0.176163i $$-0.943631\pi$$
0.390787 + 0.920481i $$0.372203\pi$$
$$440$$ 74.8314 3.56744
$$441$$ −14.7677 21.9807i −0.703223 1.04670i
$$442$$ −3.29466 −0.156711
$$443$$ 5.92371 7.42810i 0.281444 0.352920i −0.620936 0.783862i $$-0.713247\pi$$
0.902380 + 0.430942i $$0.141819\pi$$
$$444$$ 108.998 + 52.4909i 5.17284 + 2.49111i
$$445$$ 0.851726 + 3.73166i 0.0403757 + 0.176898i
$$446$$ 5.88923 + 2.83610i 0.278863 + 0.134293i
$$447$$ 9.00557 4.33686i 0.425949 0.205126i
$$448$$ −6.01987 + 4.41125i −0.284412 + 0.208412i
$$449$$ −9.41395 4.53352i −0.444272 0.213950i 0.198354 0.980131i $$-0.436441\pi$$
−0.642625 + 0.766180i $$0.722155\pi$$
$$450$$ −75.5838 94.7791i −3.56305 4.46793i
$$451$$ 14.3444 6.90791i 0.675452 0.325281i
$$452$$ 16.7995 21.0659i 0.790181 0.990856i
$$453$$ −6.06264 + 26.5622i −0.284848 + 1.24800i
$$454$$ −1.03496 + 1.29780i −0.0485733 + 0.0609090i
$$455$$ −4.41881 10.2230i −0.207157 0.479260i
$$456$$ −66.7938 83.7568i −3.12791 3.92227i
$$457$$ −4.81903 + 2.32072i −0.225425 + 0.108559i −0.543187 0.839611i $$-0.682783\pi$$
0.317763 + 0.948170i $$0.397068\pi$$
$$458$$ −12.0842 + 52.9441i −0.564655 + 2.47392i
$$459$$ −2.66666 −0.124469
$$460$$ 3.69058 0.172074
$$461$$ 3.48253 15.2579i 0.162197 0.710634i −0.826775 0.562533i $$-0.809827\pi$$
0.988972 0.148101i $$-0.0473159\pi$$
$$462$$ 50.3555 + 13.6769i 2.34275 + 0.636305i
$$463$$ −3.39920 14.8929i −0.157974 0.692130i −0.990427 0.138035i $$-0.955921\pi$$
0.832453 0.554095i $$-0.186936\pi$$
$$464$$ 3.36664 + 14.7502i 0.156293 + 0.684762i
$$465$$ −3.89887 4.88903i −0.180806 0.226723i
$$466$$ −3.16102 3.96380i −0.146432 0.183619i
$$467$$ −8.48888 37.1922i −0.392818 1.72105i −0.654647 0.755935i $$-0.727183\pi$$
0.261828 0.965114i $$-0.415675\pi$$
$$468$$ −3.65975 16.0344i −0.169172 0.741190i
$$469$$ −0.608653 + 14.9064i −0.0281050 + 0.688314i
$$470$$ 13.7853 60.3973i 0.635868 2.78592i
$$471$$ 42.8935 1.97643
$$472$$ −66.7981 −3.07463
$$473$$ 6.05163 26.5139i 0.278254 1.21911i
$$474$$ 96.3706 46.4096i 4.42645 2.13166i
$$475$$ −55.1526 69.1592i −2.53058 3.17324i
$$476$$ 0.613674 15.0294i 0.0281277 0.688871i
$$477$$ −6.04800 + 7.58395i −0.276919 + 0.347245i
$$478$$ 10.9587 48.0132i 0.501240 2.19607i
$$479$$ 2.66541 3.34232i 0.121786 0.152715i −0.717201 0.696866i $$-0.754577\pi$$
0.838987 + 0.544152i $$0.183148\pi$$
$$480$$ 37.6037 18.1090i 1.71637 0.826559i
$$481$$ 6.66167 + 8.35348i 0.303746 + 0.380886i
$$482$$ 39.0618 + 18.8112i 1.77922 + 0.856826i
$$483$$ 1.34100 + 0.364224i 0.0610176 + 0.0165728i
$$484$$ 7.70099 3.70860i 0.350045 0.168573i
$$485$$ 12.7705 + 6.14993i 0.579877 + 0.279254i
$$486$$ 12.2458 + 53.6525i 0.555482 + 2.43373i
$$487$$ 3.31353 + 1.59571i 0.150150 + 0.0723086i 0.507450 0.861681i $$-0.330588\pi$$
−0.357300 + 0.933990i $$0.616302\pi$$
$$488$$ 28.5991 35.8621i 1.29462 1.62340i
$$489$$ −48.9686 −2.21444
$$490$$ 69.2892 26.6503i 3.13017 1.20394i
$$491$$ −16.2397 −0.732887 −0.366443 0.930440i $$-0.619425\pi$$
−0.366443 + 0.930440i $$0.619425\pi$$
$$492$$ 37.3955 46.8925i 1.68592 2.11408i
$$493$$ 2.87222 + 1.38319i 0.129358 + 0.0622957i
$$494$$ −3.89897 17.0825i −0.175423 0.768578i
$$495$$ 43.1227 + 20.7668i 1.93822 + 0.933398i
$$496$$ 3.18943 1.53595i 0.143209 0.0689661i
$$497$$ −33.4776 + 6.21618i −1.50168 + 0.278834i
$$498$$ 25.3217 + 12.1943i 1.13469 + 0.546439i
$$499$$ 0.0189150 + 0.0237186i 0.000846750 + 0.00106179i 0.782255 0.622959i $$-0.214070\pi$$
−0.781408 + 0.624021i $$0.785498\pi$$
$$500$$ 127.278 61.2940i 5.69206 2.74115i
$$501$$ 16.6782 20.9138i 0.745127 0.934359i
$$502$$ −3.67289 + 16.0920i −0.163929 + 0.718221i
$$503$$ 12.0970 15.1691i 0.539377 0.676358i −0.435219 0.900324i $$-0.643329\pi$$
0.974597 + 0.223967i $$0.0719006\pi$$
$$504$$ 58.2028 10.8072i 2.59256 0.481390i
$$505$$ −15.2674 19.1447i −0.679388 0.851926i
$$506$$ −1.37587 + 0.662585i −0.0611650 + 0.0294555i
$$507$$ 0.579537 2.53912i 0.0257381 0.112766i
$$508$$ −77.2663 −3.42814
$$509$$ 24.6422 1.09225 0.546124 0.837704i $$-0.316103\pi$$
0.546124 + 0.837704i $$0.316103\pi$$
$$510$$ 8.03739 35.2141i 0.355902 1.55931i
$$511$$ −18.0005 + 13.1904i −0.796296 + 0.583511i
$$512$$ −11.0785 48.5382i −0.489607 2.14511i
$$513$$ −3.15578 13.8264i −0.139331 0.610449i
$$514$$ 16.1721 + 20.2792i 0.713321 + 0.894476i
$$515$$ −5.49646 6.89234i −0.242203 0.303713i
$$516$$ −22.7976 99.8829i −1.00361 4.39710i
$$517$$ 3.90687 + 17.1171i 0.171824 + 0.752809i
$$518$$ −57.4479 + 42.0967i −2.52412 + 1.84962i
$$519$$ 5.74506 25.1708i 0.252180 1.10487i
$$520$$ 24.8968 1.09180
$$521$$ −29.8533 −1.30790 −0.653948 0.756539i $$-0.726889\pi$$
−0.653948 + 0.756539i $$0.726889\pi$$
$$522$$ −5.17022 + 22.6522i −0.226294 + 0.991460i
$$523$$ −8.36985 + 4.03071i −0.365988 + 0.176250i −0.607834 0.794064i $$-0.707961\pi$$
0.241846 + 0.970315i $$0.422247\pi$$
$$524$$ −2.22147 2.78564i −0.0970454 0.121691i
$$525$$ 86.1709 16.0003i 3.76080 0.698311i
$$526$$ −48.0435 + 60.2446i −2.09479 + 2.62679i
$$527$$ 0.165980 0.727205i 0.00723019 0.0316775i
$$528$$ −30.2904 + 37.9829i −1.31822 + 1.65300i
$$529$$ 20.6856 9.96168i 0.899376 0.433117i
$$530$$ −16.9552 21.2612i −0.736489 0.923527i
$$531$$ −38.4934 18.5374i −1.67047 0.804457i
$$532$$ 78.6520 14.6042i 3.41000 0.633173i
$$533$$ 4.77248 2.29830i 0.206719 0.0995506i
$$534$$ −5.37564 2.58877i −0.232627 0.112027i
$$535$$ 4.41356 + 19.3371i 0.190815 + 0.836015i
$$536$$ −30.0481 14.4704i −1.29788 0.625027i
$$537$$ −2.77321 + 3.47749i −0.119673 + 0.150065i
$$538$$ −24.0230 −1.03571
$$539$$ −14.4154 + 15.3252i −0.620914 + 0.660102i
$$540$$ 37.3189 1.60595
$$541$$ −19.6136 + 24.5946i −0.843252 + 1.05741i 0.154337 + 0.988018i $$0.450676\pi$$
−0.997590 + 0.0693869i $$0.977896\pi$$
$$542$$ −26.6101 12.8147i −1.14300 0.550440i
$$543$$ 4.59415 + 20.1283i 0.197154 + 0.863788i
$$544$$ 4.48545 + 2.16008i 0.192312 + 0.0926125i
$$545$$ −25.6739 + 12.3639i −1.09975 + 0.529610i
$$546$$ 16.7536 + 4.55037i 0.716986 + 0.194738i
$$547$$ 34.4564 + 16.5933i 1.47325 + 0.709479i 0.986454 0.164039i $$-0.0524522\pi$$
0.486793 + 0.873517i $$0.338166\pi$$
$$548$$ −20.8507 26.1460i −0.890700 1.11690i
$$549$$ 26.4329 12.7294i 1.12813 0.543278i
$$550$$ −60.0529 + 75.3039i −2.56066 + 3.21097i
$$551$$ −3.77265 + 16.5291i −0.160720 + 0.704161i
$$552$$ −1.93681 + 2.42868i −0.0824360 + 0.103371i
$$553$$ −1.75956 + 43.0931i −0.0748242 + 1.83251i
$$554$$ −28.0146 35.1293i −1.19023 1.49250i
$$555$$ −105.535 + 50.8230i −4.47971 + 2.15732i
$$556$$ 6.66372 29.1957i 0.282605 1.23817i
$$557$$ −6.09082 −0.258076 −0.129038 0.991640i $$-0.541189\pi$$
−0.129038 + 0.991640i $$0.541189\pi$$
$$558$$ 5.43644 0.230143
$$559$$ 2.01341 8.82134i 0.0851583 0.373103i
$$560$$ −2.81989 + 69.0615i −0.119162 + 2.91838i
$$561$$ 2.27786 + 9.97998i 0.0961715 + 0.421355i
$$562$$ −17.2445 75.5532i −0.727417 3.18702i
$$563$$ −9.05305 11.3522i −0.381541 0.478437i 0.553565 0.832806i $$-0.313267\pi$$
−0.935106 + 0.354369i $$0.884696\pi$$
$$564$$ 41.2386 + 51.7116i 1.73646 + 2.17745i
$$565$$ 5.80516 + 25.4341i 0.244225 + 1.07002i
$$566$$ 5.88384 + 25.7788i 0.247316 + 1.08356i
$$567$$ −15.4165 4.18723i −0.647434 0.175847i
$$568$$ 16.9379 74.2097i 0.710697 3.11377i
$$569$$ −30.1507 −1.26399 −0.631993 0.774974i $$-0.717763\pi$$
−0.631993 + 0.774974i $$0.717763\pi$$
$$570$$ 192.093 8.04589
$$571$$ 0.548586 2.40351i 0.0229576 0.100584i −0.962151 0.272517i $$-0.912144\pi$$
0.985109 + 0.171933i $$0.0550012\pi$$
$$572$$ −11.7732 + 5.66968i −0.492263 + 0.237061i
$$573$$ −9.20213 11.5391i −0.384425 0.482053i
$$574$$ 14.0094 + 32.4109i 0.584742 + 1.35281i
$$575$$ −1.59925 + 2.00540i −0.0666933 + 0.0836308i
$$576$$ 2.37452 10.4034i 0.0989382 0.433477i
$$577$$ −1.98400 + 2.48786i −0.0825952 + 0.103571i −0.821412 0.570335i $$-0.806813\pi$$
0.738817 + 0.673906i $$0.235385\pi$$
$$578$$ −34.7071 + 16.7141i −1.44363 + 0.695214i
$$579$$ −17.6932 22.1865i −0.735303 0.922041i
$$580$$ −40.1957 19.3572i −1.66903 0.803764i
$$581$$ −9.14083 + 6.69822i −0.379225 + 0.277889i
$$582$$ −19.9066 + 9.58652i −0.825156 + 0.397374i
$$583$$ 6.94380 + 3.34396i 0.287583 + 0.138493i
$$584$$ −11.1010 48.6365i −0.459361 2.01259i
$$585$$ 14.3472 + 6.90924i 0.593183 + 0.285662i
$$586$$ −35.7027 + 44.7697i −1.47486 + 1.84942i
$$587$$ 27.5445 1.13688 0.568442 0.822723i $$-0.307546\pi$$
0.568442 + 0.822723i $$0.307546\pi$$
$$588$$ −23.8782 + 75.5777i −0.984719 + 3.11677i
$$589$$ 3.96691 0.163454
$$590$$ 74.6790 93.6445i 3.07448 3.85528i
$$591$$ −41.8840 20.1703i −1.72288 0.829694i
$$592$$ −14.7554 64.6476i −0.606443 2.65700i
$$593$$ 42.7340 + 20.5796i 1.75488 + 0.845103i 0.975953 + 0.217983i $$0.0699478\pi$$
0.778923 + 0.627120i $$0.215766\pi$$
$$594$$ −13.9128 + 6.70003i −0.570847 + 0.274906i
$$595$$ 11.0066 + 9.53746i 0.451227 + 0.390998i
$$596$$ −15.0331 7.23954i −0.615778 0.296543i
$$597$$ 22.6044 + 28.3450i 0.925135 + 1.16008i
$$598$$ −0.457761 + 0.220446i −0.0187192 + 0.00901471i
$$599$$ −1.34828 + 1.69070i −0.0550894 + 0.0690800i −0.808613 0.588341i $$-0.799781\pi$$
0.753523 + 0.657421i $$0.228353\pi$$
$$600$$ −43.5978 + 191.014i −1.77987 + 7.79813i
$$601$$ −2.56555 + 3.21710i −0.104651 + 0.131228i −0.831399 0.555676i $$-0.812459\pi$$
0.726748 + 0.686904i $$0.241031\pi$$
$$602$$ 58.2048 + 15.8088i 2.37225 + 0.644319i
$$603$$ −13.2999 16.6776i −0.541615 0.679164i
$$604$$ 40.9767 19.7333i 1.66732 0.802938i
$$605$$ −1.84155 + 8.06837i −0.0748698 + 0.328026i
$$606$$ 38.1703 1.55056
$$607$$ −27.5664 −1.11888 −0.559442 0.828869i $$-0.688985\pi$$
−0.559442 + 0.828869i $$0.688985\pi$$
$$608$$ −5.89161 + 25.8128i −0.238936 + 1.04685i
$$609$$ −12.6950 11.0005i −0.514429 0.445763i
$$610$$ 18.3020 + 80.1862i 0.741026 + 3.24665i
$$611$$ 1.29984 + 5.69496i 0.0525858 + 0.230394i
$$612$$ 13.4096 + 16.8152i 0.542053 + 0.679712i
$$613$$ 20.2458 + 25.3875i 0.817721 + 1.02539i 0.999118 + 0.0419798i $$0.0133665\pi$$
−0.181398 + 0.983410i $$0.558062\pi$$
$$614$$ 1.63101 + 7.14590i 0.0658220 + 0.288385i
$$615$$ 12.9222 + 56.6160i 0.521075 + 2.28298i
$$616$$ −18.6614 43.1733i −0.751888 1.73950i
$$617$$ −0.625835 + 2.74196i −0.0251952 + 0.110387i −0.985962 0.166970i $$-0.946602\pi$$
0.960767 + 0.277358i $$0.0894587\pi$$
$$618$$ 13.7418 0.552778
$$619$$ 4.39529 0.176662 0.0883309 0.996091i $$-0.471847\pi$$
0.0883309 + 0.996091i $$0.471847\pi$$
$$620$$ −2.32283 + 10.1770i −0.0932869 + 0.408717i
$$621$$ −0.370506 + 0.178426i −0.0148679 + 0.00716000i
$$622$$ 11.9277 + 14.9569i 0.478257 + 0.599716i
$$623$$ 1.94054 1.42199i 0.0777462 0.0569709i
$$624$$ −10.0778 + 12.6372i −0.403435 + 0.505891i
$$625$$ −16.2848 + 71.3483i −0.651392 + 2.85393i
$$626$$ 47.0933 59.0531i 1.88223 2.36024i
$$627$$ −49.0495 + 23.6210i −1.95885 + 0.943331i
$$628$$ −44.6433 55.9810i −1.78146 2.23388i
$$629$$ −12.5884 6.06227i −0.501933 0.241718i
$$630$$ −49.9190 + 93.6769i −1.98882 + 3.73218i
$$631$$ −20.2975 + 9.77474i −0.808029 + 0.389126i −0.791829 0.610743i $$-0.790871\pi$$
−0.0161996 + 0.999869i $$0.505157\pi$$
$$632$$ −86.8665 41.8327i −3.45536 1.66402i
$$633$$ 10.5064 + 46.0314i 0.417591 + 1.82959i
$$634$$ 19.2814 + 9.28544i 0.765763 + 0.368772i
$$635$$ 46.6440 58.4897i 1.85101 2.32109i
$$636$$ 29.0339 1.15127
$$637$$ −4.79608 + 5.09878i −0.190028 + 0.202021i
$$638$$ 18.4605 0.730858
$$639$$ 30.3550 38.0639i 1.20082 1.50579i
$$640$$ 55.8299 + 26.8863i 2.20687 + 1.06277i
$$641$$ 6.42063 + 28.1306i 0.253600 + 1.11109i 0.927957 + 0.372688i $$0.121564\pi$$
−0.674357 + 0.738405i $$0.735579\pi$$
$$642$$ −27.8560 13.4148i −1.09939 0.529438i
$$643$$ 3.38079 1.62810i 0.133325 0.0642060i −0.366032 0.930602i $$-0.619284\pi$$
0.499357 + 0.866396i $$0.333570\pi$$
$$644$$ −0.920352 2.12924i −0.0362670 0.0839040i
$$645$$ 89.3727 + 43.0396i 3.51905 + 1.69468i
$$646$$ 14.2862 + 17.9143i 0.562082 + 0.704828i
$$647$$ −0.880138 + 0.423852i −0.0346018 + 0.0166633i −0.451105 0.892471i $$-0.648970\pi$$
0.416503 + 0.909134i $$0.363256\pi$$
$$648$$ 22.2661 27.9208i 0.874696 1.09683i
$$649$$ −7.55358 + 33.0944i −0.296504 + 1.29907i
$$650$$ −19.9800 + 25.0541i −0.783679 + 0.982702i
$$651$$ −1.84839 + 3.46864i −0.0724439 + 0.135947i
$$652$$ 50.9663 + 63.9097i 1.99599 + 2.50290i
$$653$$ 38.0356 18.3170i 1.48845 0.716800i 0.499675 0.866213i $$-0.333453\pi$$
0.988775 + 0.149413i $$0.0477385\pi$$
$$654$$ 9.88424 43.3057i 0.386505 1.69339i
$$655$$ 3.44975 0.134793
$$656$$ −32.8746 −1.28354
$$657$$ 7.10024 31.1082i 0.277007 1.21365i
$$658$$ −38.2834 + 7.10851i −1.49244 + 0.277119i
$$659$$ 7.62589 + 33.4112i 0.297062 + 1.30152i 0.874478 + 0.485065i $$0.161204\pi$$
−0.577416 + 0.816450i $$0.695939\pi$$
$$660$$ −31.8779 139.666i −1.24084 5.43650i
$$661$$ −9.40604 11.7948i −0.365853 0.458765i 0.564499 0.825434i $$-0.309069\pi$$
−0.930351 + 0.366669i $$0.880498\pi$$
$$662$$ −23.3559 29.2873i −0.907751 1.13828i
$$663$$ 0.757859 + 3.32040i 0.0294328 + 0.128954i
$$664$$ −5.63717 24.6981i −0.218765 0.958471i
$$665$$ −36.4253 + 68.3550i −1.41251 + 2.65069i
$$666$$ 22.6601 99.2805i 0.878062 3.84704i
$$667$$ 0.491616 0.0190354
$$668$$ −44.6535 −1.72770
$$669$$ 1.50358 6.58760i 0.0581317 0.254692i
$$670$$ 53.8793 25.9469i 2.08154 1.00242i
$$671$$ −14.5335 18.2244i −0.561059 0.703545i
$$672$$ −19.8254 17.1791i −0.764782 0.662699i
$$673$$ −15.3586 + 19.2591i −0.592032 + 0.742384i −0.984112 0.177547i $$-0.943184\pi$$
0.392081 + 0.919931i $$0.371755\pi$$
$$674$$ 11.1937 49.0428i 0.431165 1.88906i
$$675$$ −16.1715 + 20.2785i −0.622443 + 0.780519i
$$676$$ −3.91702 + 1.88634i −0.150655 + 0.0725515i
$$677$$ 10.3312 + 12.9550i 0.397062 + 0.497900i 0.939668 0.342087i $$-0.111134\pi$$
−0.542606 + 0.839987i $$0.682562\pi$$
$$678$$ −36.6390 17.6444i −1.40711 0.677630i
$$679$$ 0.363461 8.90146i 0.0139484 0.341607i
$$680$$ −29.3333 + 14.1262i −1.12488 + 0.541715i
$$681$$ 1.54601 + 0.744519i 0.0592432 + 0.0285300i
$$682$$ −0.961149 4.21107i −0.0368043 0.161250i
$$683$$ −3.07352 1.48013i −0.117605 0.0566356i 0.374156 0.927366i $$-0.377932\pi$$
−0.491761 + 0.870730i $$0.663647\pi$$
$$684$$ −71.3156 + 89.4270i −2.72682 + 3.41933i
$$685$$ 32.3794 1.23715
$$686$$ −32.6549 33.3298i −1.24677 1.27254i
$$687$$ 56.1373 2.14177
$$688$$ −35.0120 + 43.9037i −1.33482 + 1.67381i
$$689$$ 2.31024 + 1.11256i 0.0880133 + 0.0423850i
$$690$$ −1.23946 5.43043i −0.0471855 0.206733i
$$691$$ −6.48560 3.12330i −0.246724 0.118816i 0.306435 0.951891i $$-0.400864\pi$$
−0.553159 + 0.833075i $$0.686578\pi$$
$$692$$ −38.8302 + 18.6996i −1.47610 + 0.710854i
$$693$$ 1.22732 30.0580i 0.0466220 1.14181i
$$694$$ 8.85906 + 4.26630i 0.336285 + 0.161947i
$$695$$ 18.0781 + 22.6692i 0.685740 + 0.859891i
$$696$$ 33.8331 16.2932i 1.28244 0.617591i
$$697$$ −4.31888 + 5.41570i −0.163589 + 0.205134i
$$698$$ 14.3092 62.6928i 0.541612 2.37296i
$$699$$ −3.26764 + 4.09749i −0.123594 + 0.154981i
$$700$$ −110.569 95.8099i −4.17910 3.62127i
$$701$$ −5.15407 6.46300i −0.194667 0.244104i 0.674913 0.737898i $$-0.264181\pi$$
−0.869579 + 0.493794i $$0.835610\pi$$
$$702$$ −4.62886 + 2.22914i −0.174705 + 0.0841335i
$$703$$ 16.5348 72.4439i 0.623623 2.73227i
$$704$$ −8.47832 −0.319539
$$705$$ −64.0400 −2.41189
$$706$$ −11.7325 + 51.4034i −0.441558 + 1.93459i
$$707$$ −7.23797 + 13.5826i −0.272212 + 0.510827i
$$708$$ 28.4557 + 124.673i 1.06943 + 4.68549i
$$709$$ 4.50251 + 19.7268i 0.169095 + 0.740854i 0.986361 + 0.164594i $$0.0526314\pi$$
−0.817266 + 0.576260i $$0.804511\pi$$
$$710$$ 85.0986 + 106.710i 3.19369 + 4.00476i
$$711$$ −38.4489 48.2134i −1.44195 1.80814i
$$712$$ 1.19674 + 5.24325i 0.0448496 + 0.196499i
$$713$$ −0.0255961 0.112144i −0.000958580 0.00419981i
$$714$$ −22.3208 + 4.14456i −0.835335 + 0.155106i
$$715$$ 2.81535 12.3349i 0.105288 0.461298i
$$716$$ 7.42488 0.277481
$$717$$ −50.9091 −1.90123
$$718$$ −8.84158 + 38.7375i −0.329965 + 1.44567i
$$719$$ 16.8158 8.09804i 0.627122 0.302006i −0.0931984 0.995648i $$-0.529709\pi$$
0.720320 + 0.693642i $$0.243995\pi$$
$$720$$ −61.6186 77.2673i −2.29639 2.87958i
$$721$$ −2.60577 + 4.88994i −0.0970440 + 0.182111i
$$722$$ −46.1312 + 57.8467i −1.71682 + 2.15283i
$$723$$ 9.97287 43.6940i 0.370895 1.62500i
$$724$$ 21.4882 26.9454i 0.798603 1.00142i
$$725$$ 27.9365 13.4535i 1.03754 0.499651i
$$726$$ −8.04329 10.0860i −0.298515 0.374325i
$$727$$ −5.55289 2.67413i −0.205945 0.0991780i 0.328068 0.944654i $$-0.393602\pi$$
−0.534013 + 0.845476i $$0.679317\pi$$
$$728$$ −6.20875 14.3640i −0.230112 0.532365i
$$729$$ 34.9346 16.8236i 1.29387 0.623096i
$$730$$ 80.5944 + 38.8122i 2.98293 + 1.43650i
$$731$$ 2.63294 + 11.5356i 0.0973827 + 0.426661i
$$732$$ −79.1165 38.1005i −2.92423 1.40824i
$$733$$ 11.3917 14.2848i 0.420763 0.527620i −0.525597 0.850734i $$-0.676158\pi$$
0.946360 + 0.323113i $$0.104730\pi$$
$$734$$ −8.46349 −0.312393
$$735$$ −42.7968 63.7002i −1.57858 2.34962i
$$736$$ 0.767739 0.0282992
$$737$$ −10.5671 + 13.2507i −0.389243 + 0.488095i
$$738$$ −45.4864 21.9051i −1.67438 0.806337i
$$739$$ −6.87480 30.1204i −0.252893 1.10800i −0.928674 0.370896i $$-0.879051\pi$$
0.675781 0.737103i $$-0.263807\pi$$
$$740$$ 176.170 + 84.8392i 6.47615 + 3.11875i
$$741$$ −16.3191 + 7.85885i −0.599496 + 0.288702i
$$742$$ −8.03817 + 15.0843i −0.295091 + 0.553761i
$$743$$ 3.50619 + 1.68849i 0.128630 + 0.0619447i 0.497092 0.867698i $$-0.334401\pi$$
−0.368462 + 0.929643i $$0.620116\pi$$
$$744$$ −5.47820 6.86945i −0.200841 0.251846i
$$745$$ 14.5554 7.00951i 0.533268 0.256808i
$$746$$ 15.4606 19.3870i 0.566053 0.709808i
$$747$$ 3.60557 15.7970i 0.131921 0.577983i
$$748$$ 10.6542 13.3600i 0.389558 0.488490i
$$749$$ 10.0557 7.36862i 0.367427 0.269244i
$$750$$ −132.936 166.696i −4.85412 6.08688i
$$751$$ 18.8159 9.06128i 0.686604 0.330651i −0.0578498 0.998325i $$-0.518424\pi$$
0.744453 + 0.667674i $$0.232710\pi$$
$$752$$ 8.06706 35.3441i 0.294175 1.28887i
$$753$$ 17.0626 0.621794
$$754$$ 6.14192 0.223675
$$755$$ −9.79884 + 42.9315i −0.356616 + 1.56244i
$$756$$ −9.30656 21.5308i −0.338476 0.783068i
$$757$$ 2.57282 + 11.2722i 0.0935106 + 0.409697i 0.999919 0.0127051i $$-0.00404426\pi$$
−0.906409 + 0.422402i $$0.861187\pi$$
$$758$$ 1.12958 + 4.94900i 0.0410281 + 0.179756i
$$759$$ 0.984247 + 1.23421i 0.0357259 + 0.0447989i
$$760$$ −107.957 135.373i −3.91599 4.91050i
$$761$$ −1.06975 4.68687i −0.0387783 0.169899i 0.951831 0.306624i $$-0.0991994\pi$$
−0.990609 + 0.136725i $$0.956342\pi$$
$$762$$ 25.9495 + 113.692i 0.940050 + 4.11863i
$$763$$ 13.5357 + 11.7290i 0.490027 + 0.424619i
$$764$$ −5.48234 + 24.0197i −0.198344 + 0.869002i
$$765$$ −20.8240 −0.752893
$$766$$ −63.2462 −2.28518
$$767$$ −2.51312 + 11.0107i −0.0907435 + 0.397573i
$$768$$ −73.7898 + 35.5353i −2.66266 + 1.28227i
$$769$$ −9.54594 11.9702i −0.344235 0.431657i 0.579333 0.815091i $$-0.303313\pi$$
−0.923569 + 0.383433i $$0.874742\pi$$
$$770$$ 81.3877 + 22.1054i 2.93301 + 0.796624i
$$771$$ 16.7176 20.9632i 0.602068 0.754970i
$$772$$ −10.5410 + 46.1833i −0.379380 + 1.66217i
$$773$$ 16.3937 20.5570i 0.589639 0.739384i −0.394084 0.919074i $$-0.628938\pi$$