Properties

Label 637.2.w.b.92.14
Level $637$
Weight $2$
Character 637.92
Analytic conductor $5.086$
Analytic rank $0$
Dimension $174$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.w (of order \(7\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(174\)
Relative dimension: \(29\) over \(\Q(\zeta_{7})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 92.14
Character \(\chi\) \(=\) 637.92
Dual form 637.2.w.b.547.14

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.118827 + 0.149004i) q^{2} +(1.11947 + 0.539107i) q^{3} +(0.436959 + 1.91444i) q^{4} +(0.156007 + 0.0751292i) q^{5} +(-0.213352 + 0.102745i) q^{6} +(0.0412747 + 2.64543i) q^{7} +(-0.680602 - 0.327760i) q^{8} +(-0.907899 - 1.13847i) q^{9} +O(q^{10})\) \(q+(-0.118827 + 0.149004i) q^{2} +(1.11947 + 0.539107i) q^{3} +(0.436959 + 1.91444i) q^{4} +(0.156007 + 0.0751292i) q^{5} +(-0.213352 + 0.102745i) q^{6} +(0.0412747 + 2.64543i) q^{7} +(-0.680602 - 0.327760i) q^{8} +(-0.907899 - 1.13847i) q^{9} +(-0.0297324 + 0.0143184i) q^{10} +(-2.91767 + 3.65864i) q^{11} +(-0.542929 + 2.37873i) q^{12} +(0.623490 - 0.781831i) q^{13} +(-0.399084 - 0.308198i) q^{14} +(0.134142 + 0.168209i) q^{15} +(-3.40871 + 1.64155i) q^{16} +(-0.0503226 + 0.220478i) q^{17} +0.277519 q^{18} +2.92632 q^{19} +(-0.0756617 + 0.331496i) q^{20} +(-1.37996 + 2.98372i) q^{21} +(-0.198455 - 0.869489i) q^{22} +(0.891659 + 3.90661i) q^{23} +(-0.585213 - 0.733834i) q^{24} +(-3.09876 - 3.88572i) q^{25} +(0.0424088 + 0.185805i) q^{26} +(-1.23206 - 5.39802i) q^{27} +(-5.04649 + 1.23496i) q^{28} +(-0.643531 + 2.81949i) q^{29} -0.0410036 q^{30} +7.49183 q^{31} +(0.496638 - 2.17591i) q^{32} +(-5.23864 + 2.52279i) q^{33} +(-0.0268724 - 0.0336969i) q^{34} +(-0.192310 + 0.415807i) q^{35} +(1.78282 - 2.23559i) q^{36} +(0.461841 - 2.02346i) q^{37} +(-0.347725 + 0.436033i) q^{38} +(1.11947 - 0.539107i) q^{39} +(-0.0815545 - 0.102266i) q^{40} +(0.210667 + 0.101452i) q^{41} +(-0.280610 - 0.560166i) q^{42} +(9.99641 - 4.81402i) q^{43} +(-8.27917 - 3.98704i) q^{44} +(-0.0561066 - 0.245819i) q^{45} +(-0.688054 - 0.331349i) q^{46} +(-6.33496 + 7.94379i) q^{47} -4.70092 q^{48} +(-6.99659 + 0.218379i) q^{49} +0.947202 q^{50} +(-0.175196 + 0.219688i) q^{51} +(1.76921 + 0.852008i) q^{52} +(2.63869 + 11.5609i) q^{53} +(0.950729 + 0.457847i) q^{54} +(-0.730049 + 0.351573i) q^{55} +(0.838976 - 1.81401i) q^{56} +(3.27592 + 1.57760i) q^{57} +(-0.343647 - 0.430920i) q^{58} +(3.22231 - 1.55178i) q^{59} +(-0.263413 + 0.330309i) q^{60} +(0.269832 - 1.18221i) q^{61} +(-0.890230 + 1.11631i) q^{62} +(2.97427 - 2.44877i) q^{63} +(-4.45260 - 5.58338i) q^{64} +(0.156007 - 0.0751292i) q^{65} +(0.246584 - 1.08035i) q^{66} +6.12150 q^{67} -0.444082 q^{68} +(-1.10790 + 4.85402i) q^{69} +(-0.0391054 - 0.0780640i) q^{70} +(-0.892093 - 3.90852i) q^{71} +(0.244772 + 1.07242i) q^{72} +(2.34057 + 2.93498i) q^{73} +(0.246624 + 0.309257i) q^{74} +(-1.37414 - 6.02049i) q^{75} +(1.27868 + 5.60227i) q^{76} +(-9.79911 - 7.56748i) q^{77} +(-0.0526935 + 0.230865i) q^{78} +8.60507 q^{79} -0.655113 q^{80} +(0.558781 - 2.44818i) q^{81} +(-0.0401495 + 0.0193350i) q^{82} +(8.78311 + 11.0137i) q^{83} +(-6.31516 - 1.33810i) q^{84} +(-0.0244150 + 0.0306155i) q^{85} +(-0.470533 + 2.06154i) q^{86} +(-2.24042 + 2.80940i) q^{87} +(3.18493 - 1.53378i) q^{88} +(3.67484 + 4.60810i) q^{89} +(0.0432950 + 0.0208498i) q^{90} +(2.09401 + 1.61713i) q^{91} +(-7.08937 + 3.41406i) q^{92} +(8.38686 + 4.03890i) q^{93} +(-0.430894 - 1.88787i) q^{94} +(0.456527 + 0.219852i) q^{95} +(1.72902 - 2.16812i) q^{96} +7.72816 q^{97} +(0.798843 - 1.06847i) q^{98} +6.81420 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 174 q - 3 q^{2} - 31 q^{4} - 4 q^{5} - 2 q^{6} + 9 q^{7} - 15 q^{8} - 31 q^{9} + O(q^{10}) \) \( 174 q - 3 q^{2} - 31 q^{4} - 4 q^{5} - 2 q^{6} + 9 q^{7} - 15 q^{8} - 31 q^{9} - 10 q^{10} - 5 q^{11} + 25 q^{12} - 29 q^{13} + 15 q^{14} - 10 q^{15} - 51 q^{16} - 9 q^{17} + 44 q^{18} + 24 q^{19} + 63 q^{20} - 28 q^{21} - 8 q^{22} - 13 q^{23} - 48 q^{24} - 49 q^{25} - 3 q^{26} - 9 q^{27} - 44 q^{28} + 2 q^{29} - 22 q^{30} + 10 q^{31} + 24 q^{32} - 26 q^{33} + 118 q^{34} + 5 q^{35} - 55 q^{36} - 32 q^{37} + 16 q^{38} + 42 q^{40} - 14 q^{41} + 4 q^{42} - 50 q^{43} + 35 q^{44} - q^{45} + 4 q^{46} - 24 q^{47} - 116 q^{48} - 25 q^{49} + 156 q^{50} + 12 q^{51} - 31 q^{52} - 30 q^{53} - 78 q^{54} + 25 q^{55} + 3 q^{56} - 63 q^{57} - 12 q^{58} - 4 q^{59} + 128 q^{60} - 42 q^{61} - 38 q^{62} - 85 q^{63} - 105 q^{64} - 4 q^{65} + 15 q^{66} + 94 q^{67} + 214 q^{68} + 32 q^{69} - 57 q^{70} - 29 q^{71} - 64 q^{72} - 66 q^{73} - 90 q^{74} + 131 q^{75} - 21 q^{76} - 82 q^{77} + 19 q^{78} + 6 q^{79} + 22 q^{80} + 49 q^{81} - 50 q^{82} + 25 q^{83} + 89 q^{84} - 86 q^{85} - 28 q^{86} + 24 q^{87} + 48 q^{88} - 50 q^{89} - 155 q^{90} - 5 q^{91} - 98 q^{92} + 89 q^{93} - 28 q^{94} - 130 q^{95} - 105 q^{96} - 42 q^{97} + 195 q^{98} + 438 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.118827 + 0.149004i −0.0840232 + 0.105362i −0.822066 0.569392i \(-0.807179\pi\)
0.738043 + 0.674754i \(0.235750\pi\)
\(3\) 1.11947 + 0.539107i 0.646325 + 0.311254i 0.728175 0.685391i \(-0.240369\pi\)
−0.0818505 + 0.996645i \(0.526083\pi\)
\(4\) 0.436959 + 1.91444i 0.218480 + 0.957222i
\(5\) 0.156007 + 0.0751292i 0.0697686 + 0.0335988i 0.468443 0.883494i \(-0.344815\pi\)
−0.398674 + 0.917093i \(0.630530\pi\)
\(6\) −0.213352 + 0.102745i −0.0871005 + 0.0419454i
\(7\) 0.0412747 + 2.64543i 0.0156004 + 0.999878i
\(8\) −0.680602 0.327760i −0.240629 0.115881i
\(9\) −0.907899 1.13847i −0.302633 0.379490i
\(10\) −0.0297324 + 0.0143184i −0.00940221 + 0.00452786i
\(11\) −2.91767 + 3.65864i −0.879711 + 1.10312i 0.114257 + 0.993451i \(0.463551\pi\)
−0.993968 + 0.109671i \(0.965020\pi\)
\(12\) −0.542929 + 2.37873i −0.156730 + 0.686679i
\(13\) 0.623490 0.781831i 0.172925 0.216841i
\(14\) −0.399084 0.308198i −0.106660 0.0823693i
\(15\) 0.134142 + 0.168209i 0.0346354 + 0.0434315i
\(16\) −3.40871 + 1.64155i −0.852179 + 0.410388i
\(17\) −0.0503226 + 0.220478i −0.0122050 + 0.0534737i −0.980664 0.195700i \(-0.937302\pi\)
0.968459 + 0.249174i \(0.0801591\pi\)
\(18\) 0.277519 0.0654119
\(19\) 2.92632 0.671343 0.335672 0.941979i \(-0.391037\pi\)
0.335672 + 0.941979i \(0.391037\pi\)
\(20\) −0.0756617 + 0.331496i −0.0169185 + 0.0741247i
\(21\) −1.37996 + 2.98372i −0.301133 + 0.651102i
\(22\) −0.198455 0.869489i −0.0423108 0.185376i
\(23\) 0.891659 + 3.90661i 0.185924 + 0.814585i 0.978737 + 0.205120i \(0.0657585\pi\)
−0.792813 + 0.609465i \(0.791384\pi\)
\(24\) −0.585213 0.733834i −0.119456 0.149793i
\(25\) −3.09876 3.88572i −0.619751 0.777143i
\(26\) 0.0424088 + 0.185805i 0.00831704 + 0.0364394i
\(27\) −1.23206 5.39802i −0.237111 1.03885i
\(28\) −5.04649 + 1.23496i −0.953697 + 0.233386i
\(29\) −0.643531 + 2.81949i −0.119501 + 0.523567i 0.879374 + 0.476132i \(0.157962\pi\)
−0.998874 + 0.0474346i \(0.984895\pi\)
\(30\) −0.0410036 −0.00748619
\(31\) 7.49183 1.34557 0.672786 0.739837i \(-0.265097\pi\)
0.672786 + 0.739837i \(0.265097\pi\)
\(32\) 0.496638 2.17591i 0.0877941 0.384651i
\(33\) −5.23864 + 2.52279i −0.911930 + 0.439162i
\(34\) −0.0268724 0.0336969i −0.00460858 0.00577898i
\(35\) −0.192310 + 0.415807i −0.0325063 + 0.0702843i
\(36\) 1.78282 2.23559i 0.297137 0.372598i
\(37\) 0.461841 2.02346i 0.0759261 0.332654i −0.922672 0.385586i \(-0.873999\pi\)
0.998598 + 0.0529317i \(0.0168566\pi\)
\(38\) −0.347725 + 0.436033i −0.0564084 + 0.0707339i
\(39\) 1.11947 0.539107i 0.179258 0.0863262i
\(40\) −0.0815545 0.102266i −0.0128949 0.0161697i
\(41\) 0.210667 + 0.101452i 0.0329006 + 0.0158441i 0.450262 0.892897i \(-0.351331\pi\)
−0.417361 + 0.908741i \(0.637045\pi\)
\(42\) −0.280610 0.560166i −0.0432991 0.0864355i
\(43\) 9.99641 4.81402i 1.52444 0.734131i 0.530880 0.847447i \(-0.321862\pi\)
0.993559 + 0.113316i \(0.0361472\pi\)
\(44\) −8.27917 3.98704i −1.24813 0.601069i
\(45\) −0.0561066 0.245819i −0.00836388 0.0366446i
\(46\) −0.688054 0.331349i −0.101448 0.0488548i
\(47\) −6.33496 + 7.94379i −0.924049 + 1.15872i 0.0629540 + 0.998016i \(0.479948\pi\)
−0.987003 + 0.160704i \(0.948624\pi\)
\(48\) −4.70092 −0.678519
\(49\) −6.99659 + 0.218379i −0.999513 + 0.0311970i
\(50\) 0.947202 0.133955
\(51\) −0.175196 + 0.219688i −0.0245323 + 0.0307625i
\(52\) 1.76921 + 0.852008i 0.245346 + 0.118152i
\(53\) 2.63869 + 11.5609i 0.362452 + 1.58801i 0.746950 + 0.664881i \(0.231518\pi\)
−0.384497 + 0.923126i \(0.625625\pi\)
\(54\) 0.950729 + 0.457847i 0.129378 + 0.0623051i
\(55\) −0.730049 + 0.351573i −0.0984398 + 0.0474061i
\(56\) 0.838976 1.81401i 0.112113 0.242408i
\(57\) 3.27592 + 1.57760i 0.433906 + 0.208958i
\(58\) −0.343647 0.430920i −0.0451231 0.0565826i
\(59\) 3.22231 1.55178i 0.419509 0.202025i −0.212207 0.977225i \(-0.568065\pi\)
0.631716 + 0.775200i \(0.282351\pi\)
\(60\) −0.263413 + 0.330309i −0.0340064 + 0.0426427i
\(61\) 0.269832 1.18221i 0.0345484 0.151367i −0.954712 0.297533i \(-0.903836\pi\)
0.989260 + 0.146166i \(0.0466934\pi\)
\(62\) −0.890230 + 1.11631i −0.113059 + 0.141772i
\(63\) 2.97427 2.44877i 0.374722 0.308516i
\(64\) −4.45260 5.58338i −0.556575 0.697923i
\(65\) 0.156007 0.0751292i 0.0193503 0.00931863i
\(66\) 0.246584 1.08035i 0.0303523 0.132982i
\(67\) 6.12150 0.747860 0.373930 0.927457i \(-0.378010\pi\)
0.373930 + 0.927457i \(0.378010\pi\)
\(68\) −0.444082 −0.0538528
\(69\) −1.10790 + 4.85402i −0.133375 + 0.584356i
\(70\) −0.0391054 0.0780640i −0.00467399 0.00933043i
\(71\) −0.892093 3.90852i −0.105872 0.463856i −0.999875 0.0157950i \(-0.994972\pi\)
0.894003 0.448060i \(-0.147885\pi\)
\(72\) 0.244772 + 1.07242i 0.0288467 + 0.126386i
\(73\) 2.34057 + 2.93498i 0.273943 + 0.343513i 0.899703 0.436502i \(-0.143783\pi\)
−0.625761 + 0.780015i \(0.715211\pi\)
\(74\) 0.246624 + 0.309257i 0.0286695 + 0.0359504i
\(75\) −1.37414 6.02049i −0.158672 0.695187i
\(76\) 1.27868 + 5.60227i 0.146675 + 0.642625i
\(77\) −9.79911 7.56748i −1.11671 0.862395i
\(78\) −0.0526935 + 0.230865i −0.00596637 + 0.0261404i
\(79\) 8.60507 0.968146 0.484073 0.875028i \(-0.339157\pi\)
0.484073 + 0.875028i \(0.339157\pi\)
\(80\) −0.655113 −0.0732438
\(81\) 0.558781 2.44818i 0.0620868 0.272020i
\(82\) −0.0401495 + 0.0193350i −0.00443378 + 0.00213519i
\(83\) 8.78311 + 11.0137i 0.964072 + 1.20891i 0.977915 + 0.209004i \(0.0670221\pi\)
−0.0138428 + 0.999904i \(0.504406\pi\)
\(84\) −6.31516 1.33810i −0.689041 0.145998i
\(85\) −0.0244150 + 0.0306155i −0.00264818 + 0.00332071i
\(86\) −0.470533 + 2.06154i −0.0507389 + 0.222302i
\(87\) −2.24042 + 2.80940i −0.240198 + 0.301199i
\(88\) 3.18493 1.53378i 0.339515 0.163502i
\(89\) 3.67484 + 4.60810i 0.389532 + 0.488457i 0.937472 0.348060i \(-0.113159\pi\)
−0.547940 + 0.836517i \(0.684588\pi\)
\(90\) 0.0432950 + 0.0208498i 0.00456370 + 0.00219776i
\(91\) 2.09401 + 1.61713i 0.219512 + 0.169521i
\(92\) −7.08937 + 3.41406i −0.739118 + 0.355941i
\(93\) 8.38686 + 4.03890i 0.869677 + 0.418814i
\(94\) −0.430894 1.88787i −0.0444433 0.194719i
\(95\) 0.456527 + 0.219852i 0.0468387 + 0.0225563i
\(96\) 1.72902 2.16812i 0.176467 0.221283i
\(97\) 7.72816 0.784676 0.392338 0.919821i \(-0.371666\pi\)
0.392338 + 0.919821i \(0.371666\pi\)
\(98\) 0.798843 1.06847i 0.0806953 0.107932i
\(99\) 6.81420 0.684853
\(100\) 6.08496 7.63030i 0.608496 0.763030i
\(101\) −1.14367 0.550764i −0.113800 0.0548030i 0.376118 0.926572i \(-0.377259\pi\)
−0.489917 + 0.871769i \(0.662973\pi\)
\(102\) −0.0119165 0.0522097i −0.00117991 0.00516953i
\(103\) −9.32711 4.49170i −0.919028 0.442580i −0.0863038 0.996269i \(-0.527506\pi\)
−0.832724 + 0.553688i \(0.813220\pi\)
\(104\) −0.680602 + 0.327760i −0.0667385 + 0.0321396i
\(105\) −0.439449 + 0.361807i −0.0428858 + 0.0353088i
\(106\) −2.03616 0.980564i −0.197770 0.0952408i
\(107\) −2.93290 3.67774i −0.283534 0.355541i 0.619586 0.784929i \(-0.287301\pi\)
−0.903120 + 0.429388i \(0.858729\pi\)
\(108\) 9.79585 4.71743i 0.942606 0.453935i
\(109\) −10.2711 + 12.8795i −0.983789 + 1.23363i −0.0114798 + 0.999934i \(0.503654\pi\)
−0.972309 + 0.233698i \(0.924917\pi\)
\(110\) 0.0343635 0.150556i 0.00327643 0.0143550i
\(111\) 1.60787 2.01621i 0.152613 0.191370i
\(112\) −4.48330 8.94976i −0.423632 0.845673i
\(113\) −4.84769 6.07881i −0.456032 0.571846i 0.499657 0.866223i \(-0.333459\pi\)
−0.955689 + 0.294377i \(0.904888\pi\)
\(114\) −0.624335 + 0.300664i −0.0584743 + 0.0281597i
\(115\) −0.154395 + 0.676450i −0.0143974 + 0.0630793i
\(116\) −5.67896 −0.527278
\(117\) −1.45616 −0.134622
\(118\) −0.151675 + 0.664531i −0.0139628 + 0.0611750i
\(119\) −0.585336 0.124025i −0.0536576 0.0113693i
\(120\) −0.0361652 0.158450i −0.00330142 0.0144645i
\(121\) −2.42514 10.6252i −0.220467 0.965929i
\(122\) 0.144091 + 0.180684i 0.0130454 + 0.0163584i
\(123\) 0.181141 + 0.227144i 0.0163329 + 0.0204809i
\(124\) 3.27363 + 14.3427i 0.293980 + 1.28801i
\(125\) −0.384151 1.68308i −0.0343595 0.150539i
\(126\) 0.0114545 + 0.734157i 0.00102045 + 0.0654039i
\(127\) 4.19478 18.3785i 0.372227 1.63083i −0.348284 0.937389i \(-0.613236\pi\)
0.720511 0.693443i \(-0.243907\pi\)
\(128\) 5.82478 0.514843
\(129\) 13.7859 1.21378
\(130\) −0.00734329 + 0.0321731i −0.000644050 + 0.00282177i
\(131\) 3.90891 1.88243i 0.341523 0.164469i −0.255258 0.966873i \(-0.582160\pi\)
0.596781 + 0.802404i \(0.296446\pi\)
\(132\) −7.11882 8.92672i −0.619614 0.776971i
\(133\) 0.120783 + 7.74136i 0.0104732 + 0.671261i
\(134\) −0.727397 + 0.912127i −0.0628376 + 0.0787958i
\(135\) 0.213338 0.934695i 0.0183612 0.0804457i
\(136\) 0.106514 0.133564i 0.00913347 0.0114530i
\(137\) 16.8017 8.09129i 1.43547 0.691286i 0.455464 0.890254i \(-0.349473\pi\)
0.980006 + 0.198969i \(0.0637592\pi\)
\(138\) −0.591621 0.741869i −0.0503621 0.0631521i
\(139\) −10.1368 4.88161i −0.859789 0.414053i −0.0485873 0.998819i \(-0.515472\pi\)
−0.811202 + 0.584766i \(0.801186\pi\)
\(140\) −0.880072 0.186475i −0.0743796 0.0157600i
\(141\) −11.3743 + 5.47759i −0.957891 + 0.461296i
\(142\) 0.688389 + 0.331511i 0.0577683 + 0.0278198i
\(143\) 1.04130 + 4.56225i 0.0870783 + 0.381515i
\(144\) 4.96362 + 2.39035i 0.413635 + 0.199196i
\(145\) −0.312222 + 0.391514i −0.0259286 + 0.0325135i
\(146\) −0.715446 −0.0592107
\(147\) −7.95019 3.52744i −0.655720 0.290939i
\(148\) 4.07560 0.335012
\(149\) 12.5658 15.7570i 1.02943 1.29087i 0.0734949 0.997296i \(-0.476585\pi\)
0.955937 0.293571i \(-0.0948438\pi\)
\(150\) 1.06036 + 0.510643i 0.0865782 + 0.0416939i
\(151\) 2.28343 + 10.0044i 0.185823 + 0.814145i 0.978788 + 0.204877i \(0.0656794\pi\)
−0.792965 + 0.609268i \(0.791463\pi\)
\(152\) −1.99166 0.959131i −0.161545 0.0777958i
\(153\) 0.296695 0.142881i 0.0239864 0.0115512i
\(154\) 2.29198 0.560887i 0.184693 0.0451976i
\(155\) 1.16878 + 0.562855i 0.0938787 + 0.0452096i
\(156\) 1.52125 + 1.90759i 0.121798 + 0.152729i
\(157\) 9.37422 4.51439i 0.748144 0.360287i −0.0206472 0.999787i \(-0.506573\pi\)
0.768792 + 0.639500i \(0.220858\pi\)
\(158\) −1.02251 + 1.28219i −0.0813467 + 0.102006i
\(159\) −3.27861 + 14.3645i −0.260011 + 1.13918i
\(160\) 0.240954 0.302147i 0.0190491 0.0238868i
\(161\) −10.2979 + 2.52006i −0.811585 + 0.198609i
\(162\) 0.298390 + 0.374170i 0.0234438 + 0.0293976i
\(163\) 4.52106 2.17723i 0.354117 0.170534i −0.248365 0.968667i \(-0.579893\pi\)
0.602481 + 0.798133i \(0.294179\pi\)
\(164\) −0.102171 + 0.447640i −0.00797820 + 0.0349548i
\(165\) −1.00680 −0.0783794
\(166\) −2.68475 −0.208377
\(167\) −1.13853 + 4.98822i −0.0881020 + 0.386000i −0.999685 0.0251171i \(-0.992004\pi\)
0.911583 + 0.411117i \(0.134861\pi\)
\(168\) 1.91715 1.57843i 0.147912 0.121778i
\(169\) −0.222521 0.974928i −0.0171170 0.0749945i
\(170\) −0.00166067 0.00727587i −0.000127368 0.000558034i
\(171\) −2.65680 3.33152i −0.203171 0.254768i
\(172\) 13.5842 + 17.0340i 1.03579 + 1.29883i
\(173\) −4.60025 20.1550i −0.349751 1.53236i −0.777747 0.628577i \(-0.783638\pi\)
0.427997 0.903780i \(-0.359219\pi\)
\(174\) −0.152390 0.667664i −0.0115526 0.0506154i
\(175\) 10.1515 8.35792i 0.767380 0.631799i
\(176\) 3.93966 17.2608i 0.296963 1.30108i
\(177\) 4.44385 0.334020
\(178\) −1.12329 −0.0841944
\(179\) 1.92133 8.41790i 0.143607 0.629184i −0.850973 0.525209i \(-0.823987\pi\)
0.994580 0.103974i \(-0.0331559\pi\)
\(180\) 0.446091 0.214826i 0.0332497 0.0160122i
\(181\) −6.85572 8.59680i −0.509581 0.638995i 0.458779 0.888550i \(-0.348287\pi\)
−0.968361 + 0.249555i \(0.919716\pi\)
\(182\) −0.489784 + 0.119858i −0.0363052 + 0.00888450i
\(183\) 0.939406 1.17798i 0.0694429 0.0870786i
\(184\) 0.673569 2.95110i 0.0496561 0.217558i
\(185\) 0.224071 0.280976i 0.0164740 0.0206578i
\(186\) −1.59840 + 0.769747i −0.117200 + 0.0564406i
\(187\) −0.659825 0.827394i −0.0482512 0.0605051i
\(188\) −17.9761 8.65681i −1.31104 0.631363i
\(189\) 14.2292 3.48214i 1.03502 0.253288i
\(190\) −0.0870064 + 0.0419001i −0.00631211 + 0.00303975i
\(191\) −5.31901 2.56150i −0.384870 0.185344i 0.231436 0.972850i \(-0.425657\pi\)
−0.616307 + 0.787506i \(0.711372\pi\)
\(192\) −1.97450 8.65085i −0.142497 0.624321i
\(193\) −3.75576 1.80868i −0.270346 0.130192i 0.293800 0.955867i \(-0.405080\pi\)
−0.564146 + 0.825675i \(0.690794\pi\)
\(194\) −0.918312 + 1.15153i −0.0659310 + 0.0826749i
\(195\) 0.215148 0.0154071
\(196\) −3.47530 13.2992i −0.248236 0.949940i
\(197\) 2.12116 0.151126 0.0755632 0.997141i \(-0.475925\pi\)
0.0755632 + 0.997141i \(0.475925\pi\)
\(198\) −0.809709 + 1.01534i −0.0575435 + 0.0721573i
\(199\) 20.7381 + 9.98694i 1.47008 + 0.707955i 0.985950 0.167038i \(-0.0534204\pi\)
0.484134 + 0.874994i \(0.339135\pi\)
\(200\) 0.835434 + 3.66027i 0.0590741 + 0.258820i
\(201\) 6.85281 + 3.30014i 0.483360 + 0.232774i
\(202\) 0.217965 0.104966i 0.0153360 0.00738541i
\(203\) −7.48533 1.58604i −0.525368 0.111318i
\(204\) −0.497135 0.239408i −0.0348064 0.0167619i
\(205\) 0.0252436 + 0.0316544i 0.00176309 + 0.00221084i
\(206\) 1.77759 0.856043i 0.123851 0.0596433i
\(207\) 3.63802 4.56193i 0.252860 0.317076i
\(208\) −0.841883 + 3.68853i −0.0583741 + 0.255754i
\(209\) −8.53803 + 10.7063i −0.590588 + 0.740574i
\(210\) −0.00169241 0.108472i −0.000116787 0.00748528i
\(211\) −8.79320 11.0263i −0.605349 0.759083i 0.380852 0.924636i \(-0.375631\pi\)
−0.986201 + 0.165553i \(0.947059\pi\)
\(212\) −20.9796 + 10.1033i −1.44089 + 0.693895i
\(213\) 1.10844 4.85639i 0.0759490 0.332754i
\(214\) 0.896506 0.0612839
\(215\) 1.92119 0.131024
\(216\) −0.930714 + 4.07772i −0.0633271 + 0.277454i
\(217\) 0.309223 + 19.8191i 0.0209914 + 1.34541i
\(218\) −0.698621 3.06086i −0.0473166 0.207307i
\(219\) 1.03792 + 4.54743i 0.0701362 + 0.307287i
\(220\) −0.992069 1.24401i −0.0668853 0.0838715i
\(221\) 0.141001 + 0.176810i 0.00948475 + 0.0118935i
\(222\) 0.109365 + 0.479160i 0.00734010 + 0.0321591i
\(223\) 2.08020 + 9.11397i 0.139301 + 0.610317i 0.995589 + 0.0938188i \(0.0299074\pi\)
−0.856288 + 0.516498i \(0.827235\pi\)
\(224\) 5.77673 + 1.22401i 0.385974 + 0.0817827i
\(225\) −1.61041 + 7.05567i −0.107361 + 0.470378i
\(226\) 1.48180 0.0985680
\(227\) −24.9599 −1.65665 −0.828323 0.560251i \(-0.810705\pi\)
−0.828323 + 0.560251i \(0.810705\pi\)
\(228\) −1.58878 + 6.96091i −0.105220 + 0.460997i
\(229\) 23.8441 11.4827i 1.57566 0.758800i 0.577331 0.816510i \(-0.304094\pi\)
0.998333 + 0.0577102i \(0.0183800\pi\)
\(230\) −0.0824474 0.103386i −0.00543642 0.00681706i
\(231\) −6.89010 13.7543i −0.453335 0.904968i
\(232\) 1.36211 1.70803i 0.0894267 0.112138i
\(233\) 4.10562 17.9879i 0.268968 1.17843i −0.642248 0.766497i \(-0.721998\pi\)
0.911216 0.411929i \(-0.135145\pi\)
\(234\) 0.173030 0.216973i 0.0113113 0.0141840i
\(235\) −1.58511 + 0.763349i −0.103401 + 0.0497954i
\(236\) 4.37882 + 5.49087i 0.285037 + 0.357425i
\(237\) 9.63310 + 4.63906i 0.625737 + 0.301339i
\(238\) 0.0880337 0.0724799i 0.00570638 0.00469817i
\(239\) 5.19813 2.50329i 0.336239 0.161924i −0.258143 0.966107i \(-0.583111\pi\)
0.594383 + 0.804182i \(0.297396\pi\)
\(240\) −0.733377 0.353176i −0.0473393 0.0227974i
\(241\) 0.739444 + 3.23972i 0.0476318 + 0.208689i 0.993144 0.116899i \(-0.0372952\pi\)
−0.945512 + 0.325587i \(0.894438\pi\)
\(242\) 1.87137 + 0.901205i 0.120296 + 0.0579317i
\(243\) −8.41112 + 10.5472i −0.539574 + 0.676604i
\(244\) 2.38118 0.152440
\(245\) −1.10793 0.491580i −0.0707828 0.0314059i
\(246\) −0.0553697 −0.00353025
\(247\) 1.82453 2.28789i 0.116092 0.145575i
\(248\) −5.09895 2.45553i −0.323784 0.155926i
\(249\) 3.89486 + 17.0645i 0.246827 + 1.08142i
\(250\) 0.296432 + 0.142754i 0.0187480 + 0.00902858i
\(251\) −20.9816 + 10.1042i −1.32435 + 0.637772i −0.956396 0.292073i \(-0.905655\pi\)
−0.367951 + 0.929845i \(0.619941\pi\)
\(252\) 5.98767 + 4.62405i 0.377188 + 0.291288i
\(253\) −16.8945 8.13594i −1.06215 0.511502i
\(254\) 2.24002 + 2.80890i 0.140552 + 0.176246i
\(255\) −0.0438368 + 0.0211107i −0.00274517 + 0.00132200i
\(256\) 8.21306 10.2989i 0.513316 0.643678i
\(257\) −3.05755 + 13.3960i −0.190725 + 0.835619i 0.785501 + 0.618861i \(0.212406\pi\)
−0.976225 + 0.216758i \(0.930452\pi\)
\(258\) −1.63814 + 2.05416i −0.101986 + 0.127886i
\(259\) 5.37197 + 1.13825i 0.333798 + 0.0707273i
\(260\) 0.212000 + 0.265839i 0.0131477 + 0.0164866i
\(261\) 3.79417 1.82718i 0.234853 0.113099i
\(262\) −0.183993 + 0.806127i −0.0113671 + 0.0498027i
\(263\) −13.7531 −0.848053 −0.424027 0.905650i \(-0.639384\pi\)
−0.424027 + 0.905650i \(0.639384\pi\)
\(264\) 4.39230 0.270327
\(265\) −0.456903 + 2.00182i −0.0280673 + 0.122971i
\(266\) −1.16785 0.901884i −0.0716053 0.0552980i
\(267\) 1.62960 + 7.13975i 0.0997299 + 0.436945i
\(268\) 2.67485 + 11.7193i 0.163392 + 0.715868i
\(269\) 11.1951 + 14.0383i 0.682579 + 0.855927i 0.995589 0.0938226i \(-0.0299087\pi\)
−0.313010 + 0.949750i \(0.601337\pi\)
\(270\) 0.113923 + 0.142855i 0.00693313 + 0.00869388i
\(271\) 1.55468 + 6.81150i 0.0944401 + 0.413769i 0.999944 0.0105685i \(-0.00336413\pi\)
−0.905504 + 0.424338i \(0.860507\pi\)
\(272\) −0.190390 0.834153i −0.0115441 0.0505780i
\(273\) 1.47238 + 2.93922i 0.0891122 + 0.177890i
\(274\) −0.790861 + 3.46499i −0.0477777 + 0.209328i
\(275\) 23.2576 1.40249
\(276\) −9.77687 −0.588498
\(277\) −3.83061 + 16.7830i −0.230159 + 1.00839i 0.719348 + 0.694650i \(0.244441\pi\)
−0.949508 + 0.313744i \(0.898417\pi\)
\(278\) 1.93190 0.930353i 0.115868 0.0557989i
\(279\) −6.80182 8.52922i −0.407214 0.510631i
\(280\) 0.267172 0.219968i 0.0159666 0.0131456i
\(281\) −3.09498 + 3.88098i −0.184631 + 0.231520i −0.865530 0.500858i \(-0.833018\pi\)
0.680899 + 0.732378i \(0.261589\pi\)
\(282\) 0.535392 2.34570i 0.0318821 0.139685i
\(283\) 1.16934 1.46630i 0.0695100 0.0871628i −0.745861 0.666102i \(-0.767962\pi\)
0.815371 + 0.578939i \(0.196533\pi\)
\(284\) 7.09283 3.41573i 0.420882 0.202686i
\(285\) 0.392543 + 0.492234i 0.0232523 + 0.0291574i
\(286\) −0.803529 0.386959i −0.0475137 0.0228814i
\(287\) −0.259688 + 0.561491i −0.0153289 + 0.0331438i
\(288\) −2.92811 + 1.41010i −0.172540 + 0.0830911i
\(289\) 15.2704 + 7.35383i 0.898258 + 0.432578i
\(290\) −0.0212368 0.0930446i −0.00124707 0.00546377i
\(291\) 8.65143 + 4.16631i 0.507156 + 0.244233i
\(292\) −4.59612 + 5.76335i −0.268968 + 0.337275i
\(293\) −19.3922 −1.13290 −0.566452 0.824095i \(-0.691684\pi\)
−0.566452 + 0.824095i \(0.691684\pi\)
\(294\) 1.47030 0.765455i 0.0857495 0.0446422i
\(295\) 0.619289 0.0360564
\(296\) −0.977538 + 1.22579i −0.0568183 + 0.0712478i
\(297\) 23.3442 + 11.2420i 1.35457 + 0.652325i
\(298\) 0.854707 + 3.74472i 0.0495118 + 0.216926i
\(299\) 3.61025 + 1.73861i 0.208786 + 0.100546i
\(300\) 10.9255 5.26142i 0.630782 0.303768i
\(301\) 13.1477 + 26.2461i 0.757824 + 1.51280i
\(302\) −1.76203 0.848547i −0.101393 0.0488284i
\(303\) −0.983383 1.23312i −0.0564939 0.0708411i
\(304\) −9.97498 + 4.80370i −0.572104 + 0.275511i
\(305\) 0.130914 0.164161i 0.00749613 0.00939985i
\(306\) −0.0139655 + 0.0611868i −0.000798354 + 0.00349782i
\(307\) −18.0142 + 22.5891i −1.02813 + 1.28923i −0.0716475 + 0.997430i \(0.522826\pi\)
−0.956479 + 0.291800i \(0.905746\pi\)
\(308\) 10.2057 22.0665i 0.581524 1.25736i
\(309\) −8.01989 10.0566i −0.456236 0.572101i
\(310\) −0.222750 + 0.107271i −0.0126514 + 0.00609257i
\(311\) 3.89443 17.0626i 0.220833 0.967532i −0.736020 0.676960i \(-0.763297\pi\)
0.956853 0.290572i \(-0.0938457\pi\)
\(312\) −0.938609 −0.0531383
\(313\) −18.2105 −1.02932 −0.514660 0.857395i \(-0.672082\pi\)
−0.514660 + 0.857395i \(0.672082\pi\)
\(314\) −0.441246 + 1.93323i −0.0249010 + 0.109098i
\(315\) 0.647982 0.158572i 0.0365096 0.00893453i
\(316\) 3.76007 + 16.4739i 0.211520 + 0.926731i
\(317\) −0.273978 1.20038i −0.0153881 0.0674198i 0.966651 0.256098i \(-0.0824369\pi\)
−0.982039 + 0.188678i \(0.939580\pi\)
\(318\) −1.75079 2.19542i −0.0981793 0.123113i
\(319\) −8.43791 10.5808i −0.472432 0.592411i
\(320\) −0.275163 1.20557i −0.0153821 0.0673934i
\(321\) −1.30059 5.69826i −0.0725919 0.318046i
\(322\) 0.848162 1.83387i 0.0472662 0.102198i
\(323\) −0.147260 + 0.645188i −0.00819376 + 0.0358992i
\(324\) 4.93107 0.273948
\(325\) −4.97002 −0.275687
\(326\) −0.212807 + 0.932369i −0.0117863 + 0.0516391i
\(327\) −18.4415 + 8.88098i −1.01982 + 0.491119i
\(328\) −0.110128 0.138096i −0.00608081 0.00762510i
\(329\) −21.2762 16.4308i −1.17299 0.905860i
\(330\) 0.119635 0.150017i 0.00658568 0.00825819i
\(331\) 2.67593 11.7240i 0.147083 0.644411i −0.846604 0.532223i \(-0.821357\pi\)
0.993687 0.112188i \(-0.0357860\pi\)
\(332\) −17.2472 + 21.6273i −0.946564 + 1.18695i
\(333\) −2.72295 + 1.31130i −0.149217 + 0.0718589i
\(334\) −0.607977 0.762379i −0.0332670 0.0417155i
\(335\) 0.954998 + 0.459903i 0.0521771 + 0.0251272i
\(336\) −0.194029 12.4359i −0.0105851 0.678436i
\(337\) −28.8249 + 13.8813i −1.57019 + 0.756164i −0.997955 0.0639252i \(-0.979638\pi\)
−0.572236 + 0.820089i \(0.693924\pi\)
\(338\) 0.171710 + 0.0826910i 0.00933977 + 0.00449780i
\(339\) −2.14970 9.41845i −0.116756 0.511540i
\(340\) −0.0692800 0.0333635i −0.00375723 0.00180939i
\(341\) −21.8587 + 27.4099i −1.18371 + 1.48433i
\(342\) 0.812109 0.0439138
\(343\) −0.866488 18.5000i −0.0467860 0.998905i
\(344\) −8.38142 −0.451896
\(345\) −0.537519 + 0.674028i −0.0289391 + 0.0362884i
\(346\) 3.54981 + 1.70950i 0.190839 + 0.0919032i
\(347\) −1.97299 8.64421i −0.105915 0.464046i −0.999874 0.0158955i \(-0.994940\pi\)
0.893958 0.448150i \(-0.147917\pi\)
\(348\) −6.35741 3.06157i −0.340793 0.164117i
\(349\) −2.19199 + 1.05561i −0.117335 + 0.0565053i −0.491630 0.870804i \(-0.663599\pi\)
0.374296 + 0.927309i \(0.377885\pi\)
\(350\) 0.0390955 + 2.50576i 0.00208974 + 0.133938i
\(351\) −4.98852 2.40235i −0.266268 0.128228i
\(352\) 6.51187 + 8.16562i 0.347084 + 0.435229i
\(353\) −28.7349 + 13.8380i −1.52940 + 0.736521i −0.994133 0.108160i \(-0.965504\pi\)
−0.535269 + 0.844682i \(0.679790\pi\)
\(354\) −0.528048 + 0.662152i −0.0280655 + 0.0351930i
\(355\) 0.154470 0.676779i 0.00819844 0.0359197i
\(356\) −7.21619 + 9.04882i −0.382458 + 0.479587i
\(357\) −0.588402 0.454400i −0.0311415 0.0240494i
\(358\) 1.02600 + 1.28656i 0.0542256 + 0.0679967i
\(359\) 15.4436 7.43725i 0.815083 0.392523i 0.0205834 0.999788i \(-0.493448\pi\)
0.794499 + 0.607265i \(0.207733\pi\)
\(360\) −0.0423836 + 0.185694i −0.00223381 + 0.00978696i
\(361\) −10.4367 −0.549298
\(362\) 2.09560 0.110142
\(363\) 3.01327 13.2020i 0.158156 0.692925i
\(364\) −2.18090 + 4.71549i −0.114310 + 0.247159i
\(365\) 0.144643 + 0.633723i 0.00757097 + 0.0331706i
\(366\) 0.0638969 + 0.279951i 0.00333994 + 0.0146332i
\(367\) 6.91740 + 8.67414i 0.361085 + 0.452786i 0.928878 0.370385i \(-0.120774\pi\)
−0.567793 + 0.823171i \(0.692203\pi\)
\(368\) −9.45231 11.8528i −0.492736 0.617871i
\(369\) −0.0757644 0.331945i −0.00394413 0.0172804i
\(370\) 0.0152410 + 0.0667750i 0.000792339 + 0.00347147i
\(371\) −30.4745 + 7.45764i −1.58216 + 0.387182i
\(372\) −4.06753 + 17.8210i −0.210892 + 0.923976i
\(373\) 0.190197 0.00984802 0.00492401 0.999988i \(-0.498433\pi\)
0.00492401 + 0.999988i \(0.498433\pi\)
\(374\) 0.201690 0.0104291
\(375\) 0.477313 2.09125i 0.0246484 0.107992i
\(376\) 6.91524 3.33021i 0.356626 0.171742i
\(377\) 1.80313 + 2.26106i 0.0928661 + 0.116450i
\(378\) −1.17196 + 2.53398i −0.0602791 + 0.130334i
\(379\) −3.93804 + 4.93814i −0.202283 + 0.253655i −0.872618 0.488404i \(-0.837579\pi\)
0.670334 + 0.742059i \(0.266151\pi\)
\(380\) −0.221410 + 0.970062i −0.0113581 + 0.0497631i
\(381\) 14.6039 18.3127i 0.748182 0.938190i
\(382\) 1.01371 0.488179i 0.0518661 0.0249774i
\(383\) −14.3334 17.9735i −0.732400 0.918401i 0.266568 0.963816i \(-0.414110\pi\)
−0.998968 + 0.0454151i \(0.985539\pi\)
\(384\) 6.52065 + 3.14018i 0.332756 + 0.160247i
\(385\) −0.960194 1.91678i −0.0489360 0.0976882i
\(386\) 0.715785 0.344704i 0.0364325 0.0175450i
\(387\) −14.5563 7.00997i −0.739941 0.356337i
\(388\) 3.37689 + 14.7951i 0.171436 + 0.751109i
\(389\) 20.6982 + 9.96772i 1.04944 + 0.505383i 0.877426 0.479712i \(-0.159259\pi\)
0.172013 + 0.985095i \(0.444973\pi\)
\(390\) −0.0255653 + 0.0320579i −0.00129455 + 0.00162331i
\(391\) −0.906192 −0.0458281
\(392\) 4.83347 + 2.14458i 0.244127 + 0.108318i
\(393\) 5.39073 0.271926
\(394\) −0.252051 + 0.316061i −0.0126981 + 0.0159229i
\(395\) 1.34245 + 0.646492i 0.0675462 + 0.0325285i
\(396\) 2.97753 + 13.0454i 0.149626 + 0.655556i
\(397\) 8.70256 + 4.19093i 0.436769 + 0.210337i 0.639329 0.768933i \(-0.279212\pi\)
−0.202561 + 0.979270i \(0.564926\pi\)
\(398\) −3.95233 + 1.90334i −0.198113 + 0.0954060i
\(399\) −4.03821 + 8.73132i −0.202163 + 0.437113i
\(400\) 16.9414 + 8.15853i 0.847068 + 0.407927i
\(401\) 0.217735 + 0.273031i 0.0108732 + 0.0136345i 0.787238 0.616649i \(-0.211510\pi\)
−0.776365 + 0.630283i \(0.782939\pi\)
\(402\) −1.30603 + 0.628952i −0.0651390 + 0.0313693i
\(403\) 4.67108 5.85735i 0.232683 0.291775i
\(404\) 0.554668 2.43016i 0.0275958 0.120905i
\(405\) 0.271104 0.339953i 0.0134712 0.0168924i
\(406\) 1.12578 0.926881i 0.0558718 0.0460003i
\(407\) 6.05560 + 7.59349i 0.300165 + 0.376395i
\(408\) 0.191244 0.0920981i 0.00946797 0.00455954i
\(409\) 5.23813 22.9497i 0.259009 1.13479i −0.663305 0.748350i \(-0.730847\pi\)
0.922313 0.386443i \(-0.126296\pi\)
\(410\) −0.00771625 −0.000381078
\(411\) 23.1711 1.14294
\(412\) 4.52354 19.8189i 0.222859 0.976409i
\(413\) 4.23814 + 8.46035i 0.208545 + 0.416307i
\(414\) 0.247452 + 1.08416i 0.0121616 + 0.0532835i
\(415\) 0.542782 + 2.37808i 0.0266441 + 0.116735i
\(416\) −1.39155 1.74495i −0.0682263 0.0855531i
\(417\) −8.71607 10.9296i −0.426828 0.535225i
\(418\) −0.580743 2.54440i −0.0284051 0.124451i
\(419\) 5.78969 + 25.3663i 0.282845 + 1.23923i 0.894127 + 0.447813i \(0.147797\pi\)
−0.611282 + 0.791413i \(0.709346\pi\)
\(420\) −0.884681 0.683206i −0.0431680 0.0333370i
\(421\) 7.15799 31.3612i 0.348859 1.52845i −0.430916 0.902392i \(-0.641809\pi\)
0.779775 0.626060i \(-0.215333\pi\)
\(422\) 2.68783 0.130842
\(423\) 14.7953 0.719370
\(424\) 1.99330 8.73320i 0.0968030 0.424122i
\(425\) 1.01265 0.487667i 0.0491208 0.0236553i
\(426\) 0.591909 + 0.742231i 0.0286781 + 0.0359612i
\(427\) 3.13859 + 0.665026i 0.151887 + 0.0321828i
\(428\) 5.75928 7.22190i 0.278385 0.349084i
\(429\) −1.29384 + 5.66867i −0.0624670 + 0.273686i
\(430\) −0.228288 + 0.286265i −0.0110090 + 0.0138049i
\(431\) 20.0748 9.66752i 0.966969 0.465668i 0.117365 0.993089i \(-0.462555\pi\)
0.849604 + 0.527421i \(0.176841\pi\)
\(432\) 13.0609 + 16.3778i 0.628392 + 0.787978i
\(433\) 12.6637 + 6.09854i 0.608581 + 0.293077i 0.712679 0.701490i \(-0.247482\pi\)
−0.104099 + 0.994567i \(0.533196\pi\)
\(434\) −2.98987 2.30896i −0.143518 0.110834i
\(435\) −0.560590 + 0.269966i −0.0268782 + 0.0129439i
\(436\) −29.1451 14.0356i −1.39580 0.672181i
\(437\) 2.60928 + 11.4320i 0.124819 + 0.546866i
\(438\) −0.800918 0.385702i −0.0382694 0.0184295i
\(439\) −9.16681 + 11.4948i −0.437508 + 0.548618i −0.950885 0.309546i \(-0.899823\pi\)
0.513377 + 0.858163i \(0.328394\pi\)
\(440\) 0.612104 0.0291809
\(441\) 6.60082 + 7.76714i 0.314325 + 0.369864i
\(442\) −0.0431000 −0.00205006
\(443\) 6.40302 8.02913i 0.304217 0.381475i −0.606100 0.795389i \(-0.707267\pi\)
0.910316 + 0.413913i \(0.135838\pi\)
\(444\) 4.56250 + 2.19718i 0.216527 + 0.104274i
\(445\) 0.227099 + 0.994984i 0.0107655 + 0.0471668i
\(446\) −1.60520 0.773025i −0.0760085 0.0366038i
\(447\) 22.5618 10.8652i 1.06713 0.513905i
\(448\) 14.5867 12.0095i 0.689155 0.567395i
\(449\) −12.0629 5.80917i −0.569282 0.274152i 0.127021 0.991900i \(-0.459459\pi\)
−0.696303 + 0.717748i \(0.745173\pi\)
\(450\) −0.859964 1.07836i −0.0405391 0.0508344i
\(451\) −0.985831 + 0.474751i −0.0464210 + 0.0223552i
\(452\) 9.51929 11.9368i 0.447750 0.561461i
\(453\) −2.83720 + 12.4306i −0.133303 + 0.584040i
\(454\) 2.96590 3.71912i 0.139197 0.174547i
\(455\) 0.205188 + 0.409605i 0.00961937 + 0.0192026i
\(456\) −1.71252 2.14743i −0.0801961 0.100563i
\(457\) −8.99121 + 4.32994i −0.420591 + 0.202546i −0.632195 0.774810i \(-0.717846\pi\)
0.211604 + 0.977356i \(0.432131\pi\)
\(458\) −1.12235 + 4.91733i −0.0524439 + 0.229772i
\(459\) 1.25214 0.0584451
\(460\) −1.36249 −0.0635264
\(461\) −7.60681 + 33.3276i −0.354285 + 1.55222i 0.412888 + 0.910782i \(0.364520\pi\)
−0.767173 + 0.641440i \(0.778337\pi\)
\(462\) 2.86818 + 0.607728i 0.133440 + 0.0282741i
\(463\) 5.41444 + 23.7222i 0.251630 + 1.10246i 0.929947 + 0.367695i \(0.119853\pi\)
−0.678316 + 0.734770i \(0.737290\pi\)
\(464\) −2.43473 10.6672i −0.113029 0.495214i
\(465\) 1.00497 + 1.26020i 0.0466045 + 0.0584402i
\(466\) 2.19241 + 2.74920i 0.101562 + 0.127354i
\(467\) −7.66967 33.6030i −0.354910 1.55496i −0.765679 0.643223i \(-0.777597\pi\)
0.410769 0.911739i \(-0.365260\pi\)
\(468\) −0.636281 2.78773i −0.0294121 0.128863i
\(469\) 0.252663 + 16.1940i 0.0116669 + 0.747769i
\(470\) 0.0746114 0.326894i 0.00344157 0.0150785i
\(471\) 12.9279 0.595685
\(472\) −2.70172 −0.124357
\(473\) −11.5535 + 50.6190i −0.531229 + 2.32747i
\(474\) −1.83591 + 0.884126i −0.0843260 + 0.0406093i
\(475\) −9.06794 11.3708i −0.416066 0.521730i
\(476\) −0.0183293 1.17479i −0.000840124 0.0538463i
\(477\) 10.7660 13.5002i 0.492942 0.618130i
\(478\) −0.244677 + 1.07200i −0.0111913 + 0.0490322i
\(479\) −11.5151 + 14.4394i −0.526136 + 0.659754i −0.971899 0.235397i \(-0.924361\pi\)
0.445763 + 0.895151i \(0.352932\pi\)
\(480\) 0.432629 0.208343i 0.0197467 0.00950953i
\(481\) −1.29405 1.62269i −0.0590035 0.0739881i
\(482\) −0.570597 0.274785i −0.0259900 0.0125161i
\(483\) −12.8867 2.73052i −0.586365 0.124243i
\(484\) 19.2817 9.28558i 0.876441 0.422072i
\(485\) 1.20565 + 0.580611i 0.0547458 + 0.0263642i
\(486\) −0.572111 2.50658i −0.0259515 0.113701i
\(487\) −29.5060 14.2093i −1.33704 0.643886i −0.377648 0.925949i \(-0.623267\pi\)
−0.959396 + 0.282063i \(0.908981\pi\)
\(488\) −0.571130 + 0.716174i −0.0258538 + 0.0324197i
\(489\) 6.23494 0.281954
\(490\) 0.204899 0.106673i 0.00925638 0.00481898i
\(491\) −7.20637 −0.325219 −0.162609 0.986691i \(-0.551991\pi\)
−0.162609 + 0.986691i \(0.551991\pi\)
\(492\) −0.355703 + 0.446037i −0.0160363 + 0.0201089i
\(493\) −0.589252 0.283769i −0.0265386 0.0127803i
\(494\) 0.124101 + 0.543724i 0.00558359 + 0.0244633i
\(495\) 1.06307 + 0.511945i 0.0477812 + 0.0230102i
\(496\) −25.5375 + 12.2982i −1.14667 + 0.552206i
\(497\) 10.3029 2.52129i 0.462147 0.113095i
\(498\) −3.00549 1.44737i −0.134679 0.0648581i
\(499\) −8.99668 11.2815i −0.402747 0.505029i 0.538557 0.842589i \(-0.318970\pi\)
−0.941304 + 0.337560i \(0.890398\pi\)
\(500\) 3.05430 1.47087i 0.136592 0.0657794i
\(501\) −3.96373 + 4.97036i −0.177086 + 0.222059i
\(502\) 0.987608 4.32699i 0.0440791 0.193123i
\(503\) 22.0099 27.5995i 0.981373 1.23060i 0.00833318 0.999965i \(-0.497347\pi\)
0.973040 0.230637i \(-0.0740811\pi\)
\(504\) −2.82690 + 0.691791i −0.125920 + 0.0308148i
\(505\) −0.137043 0.171846i −0.00609833 0.00764706i
\(506\) 3.21980 1.55058i 0.143138 0.0689315i
\(507\) 0.276486 1.21136i 0.0122792 0.0537985i
\(508\) 37.0177 1.64239
\(509\) 26.2923 1.16539 0.582694 0.812692i \(-0.301999\pi\)
0.582694 + 0.812692i \(0.301999\pi\)
\(510\) 0.00206341 0.00904038i 9.13692e−5 0.000400315i
\(511\) −7.66767 + 6.31295i −0.339198 + 0.279268i
\(512\) 3.15091 + 13.8050i 0.139252 + 0.610102i
\(513\) −3.60541 15.7963i −0.159183 0.697424i
\(514\) −1.63274 2.04739i −0.0720170 0.0903065i
\(515\) −1.11764 1.40148i −0.0492491 0.0617564i
\(516\) 6.02389 + 26.3924i 0.265187 + 1.16186i
\(517\) −10.5802 46.3547i −0.465315 2.03868i
\(518\) −0.807937 + 0.665191i −0.0354987 + 0.0292268i
\(519\) 5.71588 25.0429i 0.250899 1.09926i
\(520\) −0.130803 −0.00573610
\(521\) −22.4173 −0.982121 −0.491060 0.871125i \(-0.663391\pi\)
−0.491060 + 0.871125i \(0.663391\pi\)
\(522\) −0.178592 + 0.782464i −0.00781677 + 0.0342475i
\(523\) 24.0193 11.5671i 1.05029 0.505793i 0.172585 0.984995i \(-0.444788\pi\)
0.877705 + 0.479202i \(0.159074\pi\)
\(524\) 5.31185 + 6.66085i 0.232049 + 0.290980i
\(525\) 15.8701 3.88368i 0.692627 0.169498i
\(526\) 1.63424 2.04927i 0.0712562 0.0893524i
\(527\) −0.377009 + 1.65178i −0.0164228 + 0.0719528i
\(528\) 13.7157 17.1990i 0.596900 0.748489i
\(529\) 6.25573 3.01260i 0.271988 0.130983i
\(530\) −0.243987 0.305950i −0.0105981 0.0132896i
\(531\) −4.69219 2.25964i −0.203624 0.0980600i
\(532\) −14.7676 + 3.61389i −0.640258 + 0.156682i
\(533\) 0.210667 0.101452i 0.00912498 0.00439436i
\(534\) −1.25749 0.605576i −0.0544170 0.0262058i
\(535\) −0.181248 0.794102i −0.00783606 0.0343320i
\(536\) −4.16630 2.00638i −0.179957 0.0866626i
\(537\) 6.68902 8.38776i 0.288652 0.361959i
\(538\) −3.42204 −0.147534
\(539\) 19.6148 26.2352i 0.844868 1.13003i
\(540\) 1.88264 0.0810160
\(541\) −7.26612 + 9.11143i −0.312395 + 0.391731i −0.913097 0.407742i \(-0.866316\pi\)
0.600702 + 0.799473i \(0.294888\pi\)
\(542\) −1.19968 0.577735i −0.0515306 0.0248158i
\(543\) −3.04016 13.3198i −0.130466 0.571607i
\(544\) 0.454749 + 0.218996i 0.0194972 + 0.00938935i
\(545\) −2.56999 + 1.23764i −0.110086 + 0.0530147i
\(546\) −0.612913 0.129868i −0.0262303 0.00555784i
\(547\) −29.8394 14.3699i −1.27584 0.614413i −0.331523 0.943447i \(-0.607563\pi\)
−0.944318 + 0.329034i \(0.893277\pi\)
\(548\) 22.8320 + 28.6304i 0.975335 + 1.22303i
\(549\) −1.59089 + 0.766132i −0.0678975 + 0.0326977i
\(550\) −2.76362 + 3.46547i −0.117841 + 0.147768i
\(551\) −1.88318 + 8.25073i −0.0802260 + 0.351493i
\(552\) 2.34499 2.94053i 0.0998096 0.125157i
\(553\) 0.355172 + 22.7641i 0.0151035 + 0.968029i
\(554\) −2.04556 2.56505i −0.0869074 0.108978i
\(555\) 0.402316 0.193745i 0.0170774 0.00822403i
\(556\) 4.91621 21.5393i 0.208494 0.913471i
\(557\) −40.0675 −1.69771 −0.848857 0.528623i \(-0.822709\pi\)
−0.848857 + 0.528623i \(0.822709\pi\)
\(558\) 2.07913 0.0880164
\(559\) 2.46891 10.8170i 0.104424 0.457511i
\(560\) −0.0270396 1.73305i −0.00114263 0.0732349i
\(561\) −0.292598 1.28196i −0.0123535 0.0541243i
\(562\) −0.210515 0.922328i −0.00888005 0.0389060i
\(563\) 24.3468 + 30.5300i 1.02610 + 1.28668i 0.957313 + 0.289053i \(0.0933405\pi\)
0.0687839 + 0.997632i \(0.478088\pi\)
\(564\) −15.4567 19.3820i −0.650843 0.816131i
\(565\) −0.299579 1.31254i −0.0126034 0.0552190i
\(566\) 0.0795366 + 0.348472i 0.00334317 + 0.0146474i
\(567\) 6.49955 + 1.37717i 0.272955 + 0.0578356i
\(568\) −0.673897 + 2.95254i −0.0282761 + 0.123886i
\(569\) 12.2284 0.512642 0.256321 0.966592i \(-0.417490\pi\)
0.256321 + 0.966592i \(0.417490\pi\)
\(570\) −0.119989 −0.00502580
\(571\) 8.76437 38.3992i 0.366778 1.60696i −0.368795 0.929511i \(-0.620229\pi\)
0.735572 0.677446i \(-0.236913\pi\)
\(572\) −8.27917 + 3.98704i −0.346170 + 0.166706i
\(573\) −4.57354 5.73503i −0.191062 0.239584i
\(574\) −0.0528065 0.105415i −0.00220410 0.00439993i
\(575\) 12.4170 15.5704i 0.517823 0.649329i
\(576\) −2.31400 + 10.1383i −0.0964167 + 0.422429i
\(577\) −2.41734 + 3.03124i −0.100635 + 0.126192i −0.829599 0.558360i \(-0.811431\pi\)
0.728964 + 0.684552i \(0.240002\pi\)
\(578\) −2.91028 + 1.40152i −0.121052 + 0.0582955i
\(579\) −3.22938 4.04951i −0.134208 0.168292i
\(580\) −0.885960 0.426656i −0.0367875 0.0177159i
\(581\) −28.7734 + 23.6897i −1.19372 + 0.982814i
\(582\) −1.64882 + 0.794029i −0.0683457 + 0.0329135i
\(583\) −49.9959 24.0768i −2.07062 0.997158i
\(584\) −0.631024 2.76470i −0.0261120 0.114404i
\(585\) −0.227171 0.109400i −0.00939237 0.00452313i
\(586\) 2.30431 2.88951i 0.0951902 0.119365i
\(587\) 24.7214 1.02036 0.510180 0.860067i \(-0.329579\pi\)
0.510180 + 0.860067i \(0.329579\pi\)
\(588\) 3.27919 16.7615i 0.135231 0.691234i
\(589\) 21.9235 0.903341
\(590\) −0.0735881 + 0.0922765i −0.00302957 + 0.00379896i
\(591\) 2.37457 + 1.14353i 0.0976767 + 0.0470386i
\(592\) 1.74732 + 7.65552i 0.0718145 + 0.314640i
\(593\) −17.2762 8.31977i −0.709447 0.341652i 0.0441166 0.999026i \(-0.485953\pi\)
−0.753564 + 0.657375i \(0.771667\pi\)
\(594\) −4.44901 + 2.14253i −0.182545 + 0.0879091i
\(595\) −0.0819988 0.0633246i −0.00336162 0.00259605i
\(596\) 35.6567 + 17.1714i 1.46056 + 0.703367i
\(597\) 17.8316 + 22.3601i 0.729798 + 0.915138i
\(598\) −0.688054 + 0.331349i −0.0281366 + 0.0135499i
\(599\) 15.1305 18.9731i 0.618216 0.775219i −0.369876 0.929081i \(-0.620600\pi\)
0.988092 + 0.153862i \(0.0491712\pi\)
\(600\) −1.03804 + 4.54795i −0.0423778 + 0.185669i
\(601\) 5.50643 6.90485i 0.224612 0.281655i −0.656738 0.754119i \(-0.728064\pi\)
0.881350 + 0.472464i \(0.156635\pi\)
\(602\) −5.47308 1.15967i −0.223066 0.0472647i
\(603\) −5.55770 6.96913i −0.226327 0.283805i
\(604\) −18.1551 + 8.74302i −0.738719 + 0.355748i
\(605\) 0.419925 1.83981i 0.0170724 0.0747989i
\(606\) 0.300593 0.0122107
\(607\) 38.1123 1.54693 0.773465 0.633839i \(-0.218522\pi\)
0.773465 + 0.633839i \(0.218522\pi\)
\(608\) 1.45332 6.36741i 0.0589399 0.258233i
\(609\) −7.52454 5.81092i −0.304910 0.235470i
\(610\) 0.00890458 + 0.0390135i 0.000360536 + 0.00157961i
\(611\) 2.26092 + 9.90574i 0.0914671 + 0.400743i
\(612\) 0.403181 + 0.505573i 0.0162976 + 0.0204366i
\(613\) 0.312313 + 0.391629i 0.0126142 + 0.0158177i 0.788099 0.615549i \(-0.211066\pi\)
−0.775484 + 0.631367i \(0.782494\pi\)
\(614\) −1.22530 5.36839i −0.0494491 0.216650i
\(615\) 0.0111942 + 0.0490451i 0.000451394 + 0.00197769i
\(616\) 4.18897 + 8.36220i 0.168778 + 0.336923i
\(617\) 6.50611 28.5051i 0.261926 1.14757i −0.657233 0.753687i \(-0.728273\pi\)
0.919159 0.393886i \(-0.128870\pi\)
\(618\) 2.45145 0.0986120
\(619\) 26.0191 1.04580 0.522899 0.852395i \(-0.324851\pi\)
0.522899 + 0.852395i \(0.324851\pi\)
\(620\) −0.566845 + 2.48351i −0.0227650 + 0.0997402i
\(621\) 19.9894 9.62638i 0.802147 0.386293i
\(622\) 2.07964 + 2.60778i 0.0833858 + 0.104562i
\(623\) −12.0387 + 9.91172i −0.482321 + 0.397105i
\(624\) −2.93097 + 3.67532i −0.117333 + 0.147131i
\(625\) −5.46315 + 23.9356i −0.218526 + 0.957424i
\(626\) 2.16390 2.71344i 0.0864867 0.108451i
\(627\) −15.3299 + 7.38250i −0.612218 + 0.294828i
\(628\) 12.7387 + 15.9738i 0.508329 + 0.637425i
\(629\) 0.422886 + 0.203651i 0.0168616 + 0.00812011i
\(630\) −0.0533696 + 0.115394i −0.00212630 + 0.00459743i
\(631\) 25.6464 12.3506i 1.02097 0.491672i 0.152964 0.988232i \(-0.451118\pi\)
0.868002 + 0.496560i \(0.165404\pi\)
\(632\) −5.85663 2.82040i −0.232964 0.112190i
\(633\) −3.89933 17.0841i −0.154984 0.679031i
\(634\) 0.211417 + 0.101813i 0.00839643 + 0.00404351i
\(635\) 2.03518 2.55204i 0.0807637 0.101275i
\(636\) −28.9328 −1.14726
\(637\) −4.19157 + 5.60631i −0.166076 + 0.222130i
\(638\) 2.57923 0.102113
\(639\) −3.63979 + 4.56416i −0.143988 + 0.180555i
\(640\) 0.908708 + 0.437611i 0.0359198 + 0.0172981i
\(641\) −8.40370 36.8190i −0.331926 1.45426i −0.815397 0.578902i \(-0.803481\pi\)
0.483471 0.875360i \(-0.339376\pi\)
\(642\) 1.00361 + 0.483313i 0.0396093 + 0.0190748i
\(643\) 8.72841 4.20338i 0.344215 0.165765i −0.253787 0.967260i \(-0.581676\pi\)
0.598001 + 0.801495i \(0.295962\pi\)
\(644\) −9.32427 18.6135i −0.367428 0.733475i
\(645\) 2.15071 + 1.03573i 0.0846840 + 0.0407817i
\(646\) −0.0786372 0.0986079i −0.00309394 0.00387968i
\(647\) −14.7493 + 7.10287i −0.579853 + 0.279242i −0.700732 0.713425i \(-0.747143\pi\)
0.120879 + 0.992667i \(0.461429\pi\)
\(648\) −1.18272 + 1.48309i −0.0464618 + 0.0582612i
\(649\) −3.72422 + 16.3169i −0.146189 + 0.640494i
\(650\) 0.590571 0.740553i 0.0231641 0.0290469i
\(651\) −10.3385 + 22.3535i −0.405196 + 0.876105i
\(652\) 6.14370 + 7.70396i 0.240606 + 0.301710i
\(653\) 0.274694 0.132286i 0.0107496 0.00517674i −0.428501 0.903541i \(-0.640958\pi\)
0.439251 + 0.898364i \(0.355244\pi\)
\(654\) 0.868047 3.80316i 0.0339433 0.148715i
\(655\) 0.751244 0.0293535
\(656\) −0.884640 −0.0345394
\(657\) 1.21638 5.32933i 0.0474557 0.207917i
\(658\) 4.97644 1.21782i 0.194002 0.0474756i
\(659\) 4.00007 + 17.5254i 0.155821 + 0.682694i 0.991128 + 0.132911i \(0.0424325\pi\)
−0.835307 + 0.549783i \(0.814710\pi\)
\(660\) −0.439931 1.92746i −0.0171243 0.0750265i
\(661\) −18.1190 22.7206i −0.704749 0.883728i 0.292619 0.956229i \(-0.405473\pi\)
−0.997368 + 0.0725015i \(0.976902\pi\)
\(662\) 1.42896 + 1.79185i 0.0555379 + 0.0696423i
\(663\) 0.0625266 + 0.273947i 0.00242833 + 0.0106392i
\(664\) −2.36795 10.3747i −0.0918944 0.402616i
\(665\) −0.562759 + 1.21678i −0.0218229 + 0.0471849i
\(666\) 0.128170 0.561548i 0.00496647 0.0217595i
\(667\) −11.5885 −0.448708
\(668\) −10.0472 −0.388736
\(669\) −2.58469 + 11.3242i −0.0999297 + 0.437821i
\(670\) −0.182007 + 0.0876498i −0.00703153 + 0.00338621i
\(671\) 3.53801 + 4.43652i 0.136583 + 0.171270i
\(672\) 5.80698 + 4.48451i 0.224009 + 0.172994i
\(673\) −11.3555 + 14.2394i −0.437723 + 0.548888i −0.950942 0.309371i \(-0.899882\pi\)
0.513218 + 0.858258i \(0.328453\pi\)
\(674\) 1.35679 5.94449i 0.0522617 0.228973i
\(675\) −17.1573 + 21.5146i −0.660385 + 0.828097i
\(676\) 1.76921 0.852008i 0.0680466 0.0327695i
\(677\) −30.5113 38.2600i −1.17265 1.47045i −0.852224 0.523177i \(-0.824747\pi\)
−0.320422 0.947275i \(-0.603825\pi\)
\(678\) 1.65883 + 0.798849i 0.0637069 + 0.0306796i
\(679\) 0.318978 + 20.4443i 0.0122412 + 0.784581i
\(680\) 0.0266514 0.0128347i 0.00102204 0.000492187i
\(681\) −27.9418 13.4561i −1.07073 0.515637i
\(682\) −1.48679 6.51407i −0.0569322 0.249436i
\(683\) −33.7299 16.2435i −1.29064 0.621539i −0.342536 0.939505i \(-0.611286\pi\)
−0.948102 + 0.317966i \(0.897000\pi\)
\(684\) 5.21710 6.54203i 0.199481 0.250141i
\(685\) 3.22909 0.123377
\(686\) 2.85953 + 2.06918i 0.109177 + 0.0790017i
\(687\) 32.8831 1.25457
\(688\) −26.1725 + 32.8192i −0.997816 + 1.25122i
\(689\) 10.6838 + 5.14507i 0.407022 + 0.196012i
\(690\) −0.0365612 0.160185i −0.00139186 0.00609814i
\(691\) −28.8021 13.8704i −1.09568 0.527653i −0.203385 0.979099i \(-0.565194\pi\)
−0.892299 + 0.451445i \(0.850909\pi\)
\(692\) 36.5755 17.6138i 1.39039 0.669578i
\(693\) 0.281254 + 18.0265i 0.0106840 + 0.684770i
\(694\) 1.52247 + 0.733181i 0.0577920 + 0.0278312i
\(695\) −1.21466 1.52313i −0.0460746 0.0577757i
\(696\) 2.44564 1.17776i 0.0927019 0.0446429i
\(697\) −0.0329692 + 0.0413420i −0.00124880 + 0.00156594i
\(698\) 0.103177 0.452050i 0.00390532 0.0171103i
\(699\) 14.2935 17.9235i 0.540630 0.677929i
\(700\) 20.4366 + 15.7824i 0.772429 + 0.596518i
\(701\) 26.2281 + 32.8890i 0.990622 + 1.24220i 0.970174 + 0.242409i \(0.0779377\pi\)
0.0204476 + 0.999791i \(0.493491\pi\)
\(702\) 0.950729 0.457847i 0.0358829 0.0172803i
\(703\) 1.35149 5.92127i 0.0509725 0.223325i
\(704\) 33.4188 1.25952
\(705\) −2.18601 −0.0823297
\(706\) 1.35256 5.92593i 0.0509041 0.223025i
\(707\) 1.40980 3.04824i 0.0530210 0.114641i
\(708\) 1.94178 + 8.50751i 0.0729767 + 0.319732i
\(709\) −4.67503 20.4826i −0.175574 0.769241i −0.983639 0.180148i \(-0.942342\pi\)
0.808065 0.589093i \(-0.200515\pi\)
\(710\) 0.0824876 + 0.103436i 0.00309571 + 0.00388189i
\(711\) −7.81253 9.79661i −0.292993 0.367402i
\(712\) −0.990747 4.34075i −0.0371298 0.162676i
\(713\) 6.68015 + 29.2677i 0.250174 + 1.09608i
\(714\) 0.137625 0.0336793i 0.00515050 0.00126042i
\(715\) −0.180307 + 0.789977i −0.00674311 + 0.0295435i
\(716\) 16.9552 0.633644
\(717\) 7.16868 0.267719
\(718\) −0.726934 + 3.18490i −0.0271289 + 0.118860i
\(719\) 24.2612 11.6836i 0.904788 0.435723i 0.0771724 0.997018i \(-0.475411\pi\)
0.827616 + 0.561295i \(0.189697\pi\)
\(720\) 0.594776 + 0.745826i 0.0221660 + 0.0277953i
\(721\) 11.4975 24.8596i 0.428189 0.925820i
\(722\) 1.24016 1.55511i 0.0461538 0.0578751i
\(723\) −0.918771 + 4.02540i −0.0341694 + 0.149706i
\(724\) 13.4624 16.8813i 0.500327 0.627390i
\(725\) 12.9499 6.23634i 0.480947 0.231612i
\(726\) 1.60909 + 2.01774i 0.0597191 + 0.0748853i
\(727\) 16.9645 + 8.16969i 0.629180 + 0.302997i 0.721165 0.692763i \(-0.243607\pi\)
−0.0919850 + 0.995760i \(0.529321\pi\)
\(728\) −0.895159 1.78696i −0.0331768 0.0662290i
\(729\) −21.8894 + 10.5414i −0.810720 + 0.390422i
\(730\) −0.111615 0.0537509i −0.00413105 0.00198941i
\(731\) 0.558339 + 2.44624i 0.0206509 + 0.0904775i
\(732\) 2.66566 + 1.28371i 0.0985255 + 0.0474474i
\(733\) −18.1984 + 22.8201i −0.672175 + 0.842880i −0.994607 0.103712i \(-0.966928\pi\)
0.322433 + 0.946592i \(0.395499\pi\)
\(734\) −2.11445 −0.0780459
\(735\) −0.975273 1.14760i −0.0359735 0.0423298i
\(736\) 8.94328 0.329654
\(737\) −17.8605 + 22.3964i −0.657900 + 0.824981i
\(738\) 0.0584640 + 0.0281548i 0.00215209 + 0.00103639i
\(739\) 11.9930 + 52.5448i 0.441170 + 1.93289i 0.348904 + 0.937158i \(0.386554\pi\)
0.0922660 + 0.995734i \(0.470589\pi\)
\(740\) 0.635823 + 0.306196i 0.0233733 + 0.0112560i
\(741\) 3.27592 1.57760i 0.120344 0.0579545i
\(742\) 2.50997 5.42700i 0.0921439 0.199231i
\(743\) −21.0071 10.1165i −0.770676 0.371138i 0.00685992 0.999976i \(-0.497816\pi\)
−0.777536 + 0.628838i \(0.783531\pi\)
\(744\) −4.38432 5.49776i −0.160737 0.201558i
\(745\) 3.14417 1.51415i 0.115194 0.0554743i
\(746\) −0.0226005 + 0.0283401i −0.000827462 + 0.00103760i
\(747\) 4.56455 19.9986i 0.167008 0.731711i
\(748\) 1.29568 1.62474i 0.0473749 0.0594062i
\(749\) 9.60816 7.91059i 0.351074 0.289046i
\(750\) 0.254887 + 0.319618i 0.00930714 + 0.0116708i
\(751\) −12.2308 + 5.89005i −0.446309 + 0.214931i −0.643519 0.765430i \(-0.722526\pi\)
0.197210 + 0.980361i \(0.436812\pi\)
\(752\) 8.55394 37.4773i 0.311930 1.36665i
\(753\) −28.9355 −1.05447
\(754\) −0.551167 −0.0200723
\(755\) −0.395388 + 1.73231i −0.0143896 + 0.0630452i
\(756\) 12.8840 + 25.7195i 0.468585 + 0.935410i
\(757\) 7.22461 + 31.6531i 0.262583 + 1.15045i 0.918438 + 0.395565i \(0.129451\pi\)
−0.655855 + 0.754887i \(0.727692\pi\)
\(758\) −0.267859 1.17357i −0.00972907 0.0426258i
\(759\) −14.5267 18.2158i −0.527284 0.661193i
\(760\) −0.238654 0.299263i −0.00865690 0.0108554i
\(761\) −0.434967 1.90571i −0.0157675 0.0690820i 0.966432 0.256922i \(-0.0827084\pi\)
−0.982200 + 0.187840i \(0.939851\pi\)
\(762\) 0.993336 + 4.35209i 0.0359848 + 0.157659i
\(763\) −34.4957 26.6398i −1.24883 0.964424i
\(764\) 2.57966 11.3022i 0.0933288 0.408900i
\(765\) 0.0570211 0.00206160
\(766\) 4.38130 0.158303
\(767\) 0.795846 3.48683i 0.0287363 0.125902i
\(768\) 14.7464 7.10151i 0.532116 0.256254i
\(769\) −3.94374 4.94529i −0.142215 0.178332i 0.705623 0.708588i \(-0.250667\pi\)
−0.847838 + 0.530256i \(0.822096\pi\)
\(770\) 0.399705 + 0.0846921i 0.0144044 + 0.00305209i
\(771\) −10.6447 + 13.3480i −0.383360 + 0.480718i
\(772\) 1.82150 7.98051i 0.0655572 0.287225i
\(773\) −9.52337 + 11.9419i −0.342532 + 0.429521i −0.923023 0.384745i \(-0.874289\pi\)
0.580491 + 0.814267i \(0.302861\pi\)