Properties

Label 637.2.u.j.30.1
Level $637$
Weight $2$
Character 637.30
Analytic conductor $5.086$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(30,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.30"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 30.1
Character \(\chi\) \(=\) 637.30
Dual form 637.2.u.j.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.30510 + 1.33085i) q^{2} -3.18962 q^{3} +(2.54233 - 4.40345i) q^{4} +(0.285259 + 0.164694i) q^{5} +(7.35241 - 4.24492i) q^{6} +8.21047i q^{8} +7.17371 q^{9} -0.876736 q^{10} -0.475456i q^{11} +(-8.10909 + 14.0454i) q^{12} +(-2.74029 + 2.34325i) q^{13} +(-0.909869 - 0.525313i) q^{15} +(-5.84226 - 10.1191i) q^{16} +(-0.626291 + 1.08477i) q^{17} +(-16.5361 + 9.54714i) q^{18} -3.53646i q^{19} +(1.45045 - 0.837416i) q^{20} +(0.632762 + 1.09598i) q^{22} +(0.661804 + 1.14628i) q^{23} -26.1883i q^{24} +(-2.44575 - 4.23617i) q^{25} +(3.19812 - 9.04835i) q^{26} -13.3126 q^{27} +(-2.96691 + 5.13883i) q^{29} +2.79646 q^{30} +(-4.20156 + 2.42577i) q^{31} +(12.7131 + 7.33989i) q^{32} +1.51653i q^{33} -3.33400i q^{34} +(18.2380 - 31.5891i) q^{36} +(4.04936 - 2.33790i) q^{37} +(4.70650 + 8.15190i) q^{38} +(8.74049 - 7.47409i) q^{39} +(-1.35222 + 2.34211i) q^{40} +(4.89872 + 2.82828i) q^{41} +(-2.42505 - 4.20031i) q^{43} +(-2.09365 - 1.20877i) q^{44} +(2.04636 + 1.18147i) q^{45} +(-3.05105 - 1.76153i) q^{46} +(-1.99991 - 1.15465i) q^{47} +(18.6346 + 32.2761i) q^{48} +(11.2754 + 6.50987i) q^{50} +(1.99763 - 3.46000i) q^{51} +(3.35167 + 18.0241i) q^{52} +(6.39223 + 11.0717i) q^{53} +(30.6868 - 17.7170i) q^{54} +(0.0783050 - 0.135628i) q^{55} +11.2800i q^{57} -15.7941i q^{58} +(-1.48597 - 0.857925i) q^{59} +(-4.62638 + 2.67104i) q^{60} -5.82573 q^{61} +(6.45669 - 11.1833i) q^{62} -15.7042 q^{64} +(-1.16761 + 0.217124i) q^{65} +(-2.01827 - 3.49575i) q^{66} -9.79117i q^{67} +(3.18448 + 5.51569i) q^{68} +(-2.11091 - 3.65620i) q^{69} +(10.6965 - 6.17565i) q^{71} +58.8995i q^{72} +(7.97326 - 4.60336i) q^{73} +(-6.22279 + 10.7782i) q^{74} +(7.80103 + 13.5118i) q^{75} +(-15.5726 - 8.99086i) q^{76} +(-10.2008 + 28.8609i) q^{78} +(-5.52226 + 9.56484i) q^{79} -3.84875i q^{80} +20.9409 q^{81} -15.0561 q^{82} -8.18192i q^{83} +(-0.357311 + 0.206293i) q^{85} +(11.1800 + 6.45476i) q^{86} +(9.46332 - 16.3910i) q^{87} +3.90372 q^{88} +(9.43265 - 5.44595i) q^{89} -6.28944 q^{90} +6.73011 q^{92} +(13.4014 - 7.73730i) q^{93} +6.14666 q^{94} +(0.582435 - 1.00881i) q^{95} +(-40.5499 - 23.4115i) q^{96} +(13.0900 - 7.55751i) q^{97} -3.41078i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 20 q^{4} + 56 q^{9} - 12 q^{15} - 28 q^{16} - 24 q^{18} + 8 q^{22} + 24 q^{23} + 20 q^{25} - 24 q^{29} - 48 q^{30} + 60 q^{32} + 92 q^{36} + 52 q^{39} + 12 q^{43} + 24 q^{46} + 12 q^{50} - 36 q^{53}+ \cdots + 84 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.30510 + 1.33085i −1.62995 + 0.941054i −0.645850 + 0.763465i \(0.723497\pi\)
−0.984105 + 0.177590i \(0.943170\pi\)
\(3\) −3.18962 −1.84153 −0.920765 0.390117i \(-0.872435\pi\)
−0.920765 + 0.390117i \(0.872435\pi\)
\(4\) 2.54233 4.40345i 1.27117 2.20173i
\(5\) 0.285259 + 0.164694i 0.127572 + 0.0736536i 0.562428 0.826846i \(-0.309867\pi\)
−0.434856 + 0.900500i \(0.643201\pi\)
\(6\) 7.35241 4.24492i 3.00161 1.73298i
\(7\) 0 0
\(8\) 8.21047i 2.90284i
\(9\) 7.17371 2.39124
\(10\) −0.876736 −0.277248
\(11\) 0.475456i 0.143355i −0.997428 0.0716777i \(-0.977165\pi\)
0.997428 0.0716777i \(-0.0228353\pi\)
\(12\) −8.10909 + 14.0454i −2.34089 + 4.05455i
\(13\) −2.74029 + 2.34325i −0.760019 + 0.649901i
\(14\) 0 0
\(15\) −0.909869 0.525313i −0.234927 0.135635i
\(16\) −5.84226 10.1191i −1.46056 2.52977i
\(17\) −0.626291 + 1.08477i −0.151898 + 0.263095i −0.931925 0.362651i \(-0.881872\pi\)
0.780027 + 0.625746i \(0.215205\pi\)
\(18\) −16.5361 + 9.54714i −3.89760 + 2.25028i
\(19\) 3.53646i 0.811319i −0.914024 0.405659i \(-0.867042\pi\)
0.914024 0.405659i \(-0.132958\pi\)
\(20\) 1.45045 0.837416i 0.324330 0.187252i
\(21\) 0 0
\(22\) 0.632762 + 1.09598i 0.134905 + 0.233663i
\(23\) 0.661804 + 1.14628i 0.137996 + 0.239016i 0.926738 0.375709i \(-0.122601\pi\)
−0.788742 + 0.614724i \(0.789267\pi\)
\(24\) 26.1883i 5.34567i
\(25\) −2.44575 4.23617i −0.489150 0.847233i
\(26\) 3.19812 9.04835i 0.627204 1.77453i
\(27\) −13.3126 −2.56200
\(28\) 0 0
\(29\) −2.96691 + 5.13883i −0.550941 + 0.954258i 0.447266 + 0.894401i \(0.352398\pi\)
−0.998207 + 0.0598566i \(0.980936\pi\)
\(30\) 2.79646 0.510561
\(31\) −4.20156 + 2.42577i −0.754623 + 0.435682i −0.827362 0.561669i \(-0.810159\pi\)
0.0727391 + 0.997351i \(0.476826\pi\)
\(32\) 12.7131 + 7.33989i 2.24737 + 1.29752i
\(33\) 1.51653i 0.263993i
\(34\) 3.33400i 0.571777i
\(35\) 0 0
\(36\) 18.2380 31.5891i 3.03966 5.26485i
\(37\) 4.04936 2.33790i 0.665710 0.384348i −0.128739 0.991678i \(-0.541093\pi\)
0.794449 + 0.607331i \(0.207760\pi\)
\(38\) 4.70650 + 8.15190i 0.763495 + 1.32241i
\(39\) 8.74049 7.47409i 1.39960 1.19681i
\(40\) −1.35222 + 2.34211i −0.213805 + 0.370320i
\(41\) 4.89872 + 2.82828i 0.765052 + 0.441703i 0.831107 0.556113i \(-0.187708\pi\)
−0.0660547 + 0.997816i \(0.521041\pi\)
\(42\) 0 0
\(43\) −2.42505 4.20031i −0.369817 0.640541i 0.619720 0.784823i \(-0.287246\pi\)
−0.989537 + 0.144282i \(0.953913\pi\)
\(44\) −2.09365 1.20877i −0.315629 0.182229i
\(45\) 2.04636 + 1.18147i 0.305054 + 0.176123i
\(46\) −3.05105 1.76153i −0.449853 0.259723i
\(47\) −1.99991 1.15465i −0.291717 0.168423i 0.346999 0.937865i \(-0.387201\pi\)
−0.638716 + 0.769443i \(0.720534\pi\)
\(48\) 18.6346 + 32.2761i 2.68967 + 4.65865i
\(49\) 0 0
\(50\) 11.2754 + 6.50987i 1.59459 + 0.920634i
\(51\) 1.99763 3.46000i 0.279725 0.484497i
\(52\) 3.35167 + 18.0241i 0.464793 + 2.49949i
\(53\) 6.39223 + 11.0717i 0.878040 + 1.52081i 0.853488 + 0.521112i \(0.174483\pi\)
0.0245517 + 0.999699i \(0.492184\pi\)
\(54\) 30.6868 17.7170i 4.17595 2.41098i
\(55\) 0.0783050 0.135628i 0.0105586 0.0182881i
\(56\) 0 0
\(57\) 11.2800i 1.49407i
\(58\) 15.7941i 2.07386i
\(59\) −1.48597 0.857925i −0.193457 0.111692i 0.400143 0.916453i \(-0.368960\pi\)
−0.593600 + 0.804760i \(0.702294\pi\)
\(60\) −4.62638 + 2.67104i −0.597264 + 0.344830i
\(61\) −5.82573 −0.745908 −0.372954 0.927850i \(-0.621655\pi\)
−0.372954 + 0.927850i \(0.621655\pi\)
\(62\) 6.45669 11.1833i 0.820000 1.42028i
\(63\) 0 0
\(64\) −15.7042 −1.96302
\(65\) −1.16761 + 0.217124i −0.144824 + 0.0269309i
\(66\) −2.01827 3.49575i −0.248432 0.430297i
\(67\) 9.79117i 1.19618i −0.801428 0.598091i \(-0.795926\pi\)
0.801428 0.598091i \(-0.204074\pi\)
\(68\) 3.18448 + 5.51569i 0.386175 + 0.668875i
\(69\) −2.11091 3.65620i −0.254123 0.440154i
\(70\) 0 0
\(71\) 10.6965 6.17565i 1.26945 0.732915i 0.294562 0.955632i \(-0.404826\pi\)
0.974883 + 0.222718i \(0.0714928\pi\)
\(72\) 58.8995i 6.94138i
\(73\) 7.97326 4.60336i 0.933200 0.538783i 0.0453775 0.998970i \(-0.485551\pi\)
0.887822 + 0.460187i \(0.152218\pi\)
\(74\) −6.22279 + 10.7782i −0.723384 + 1.25294i
\(75\) 7.80103 + 13.5118i 0.900785 + 1.56021i
\(76\) −15.5726 8.99086i −1.78630 1.03132i
\(77\) 0 0
\(78\) −10.2008 + 28.8609i −1.15501 + 3.26785i
\(79\) −5.52226 + 9.56484i −0.621303 + 1.07613i 0.367941 + 0.929849i \(0.380063\pi\)
−0.989243 + 0.146279i \(0.953270\pi\)
\(80\) 3.84875i 0.430303i
\(81\) 20.9409 2.32677
\(82\) −15.0561 −1.66267
\(83\) 8.18192i 0.898083i −0.893511 0.449041i \(-0.851766\pi\)
0.893511 0.449041i \(-0.148234\pi\)
\(84\) 0 0
\(85\) −0.357311 + 0.206293i −0.0387558 + 0.0223757i
\(86\) 11.1800 + 6.45476i 1.20557 + 0.696035i
\(87\) 9.46332 16.3910i 1.01457 1.75729i
\(88\) 3.90372 0.416138
\(89\) 9.43265 5.44595i 0.999859 0.577269i 0.0916527 0.995791i \(-0.470785\pi\)
0.908207 + 0.418522i \(0.137452\pi\)
\(90\) −6.28944 −0.662966
\(91\) 0 0
\(92\) 6.73011 0.701662
\(93\) 13.4014 7.73730i 1.38966 0.802321i
\(94\) 6.14666 0.633979
\(95\) 0.582435 1.00881i 0.0597565 0.103501i
\(96\) −40.5499 23.4115i −4.13861 2.38942i
\(97\) 13.0900 7.55751i 1.32909 0.767349i 0.343928 0.938996i \(-0.388242\pi\)
0.985158 + 0.171647i \(0.0549089\pi\)
\(98\) 0 0
\(99\) 3.41078i 0.342796i
\(100\) −24.8717 −2.48717
\(101\) 2.62563 0.261259 0.130630 0.991431i \(-0.458300\pi\)
0.130630 + 0.991431i \(0.458300\pi\)
\(102\) 10.6342i 1.05294i
\(103\) 6.88087 11.9180i 0.677992 1.17432i −0.297593 0.954693i \(-0.596184\pi\)
0.975585 0.219624i \(-0.0704830\pi\)
\(104\) −19.2392 22.4991i −1.88656 2.20621i
\(105\) 0 0
\(106\) −29.4695 17.0142i −2.86233 1.65257i
\(107\) −5.78003 10.0113i −0.558777 0.967830i −0.997599 0.0692558i \(-0.977938\pi\)
0.438822 0.898574i \(-0.355396\pi\)
\(108\) −33.8450 + 58.6212i −3.25673 + 5.64083i
\(109\) 2.89099 1.66911i 0.276907 0.159872i −0.355116 0.934822i \(-0.615558\pi\)
0.632022 + 0.774950i \(0.282225\pi\)
\(110\) 0.416849i 0.0397450i
\(111\) −12.9159 + 7.45701i −1.22593 + 0.707788i
\(112\) 0 0
\(113\) −4.04779 7.01097i −0.380784 0.659537i 0.610391 0.792100i \(-0.291012\pi\)
−0.991174 + 0.132564i \(0.957679\pi\)
\(114\) −15.0120 26.0015i −1.40600 2.43526i
\(115\) 0.435982i 0.0406555i
\(116\) 15.0857 + 26.1293i 1.40068 + 2.42604i
\(117\) −19.6580 + 16.8098i −1.81738 + 1.55407i
\(118\) 4.56708 0.420434
\(119\) 0 0
\(120\) 4.31307 7.47046i 0.393728 0.681957i
\(121\) 10.7739 0.979449
\(122\) 13.4289 7.75318i 1.21580 0.701940i
\(123\) −15.6251 9.02115i −1.40887 0.813410i
\(124\) 24.6685i 2.21530i
\(125\) 3.25815i 0.291418i
\(126\) 0 0
\(127\) −2.80212 + 4.85342i −0.248648 + 0.430671i −0.963151 0.268961i \(-0.913320\pi\)
0.714503 + 0.699633i \(0.246653\pi\)
\(128\) 10.7737 6.22017i 0.952265 0.549791i
\(129\) 7.73500 + 13.3974i 0.681028 + 1.17958i
\(130\) 2.40251 2.05441i 0.210714 0.180184i
\(131\) 2.95143 5.11203i 0.257868 0.446640i −0.707803 0.706410i \(-0.750313\pi\)
0.965671 + 0.259770i \(0.0836467\pi\)
\(132\) 6.67795 + 3.85552i 0.581241 + 0.335580i
\(133\) 0 0
\(134\) 13.0306 + 22.5697i 1.12567 + 1.94972i
\(135\) −3.79753 2.19250i −0.326839 0.188701i
\(136\) −8.90646 5.14215i −0.763723 0.440936i
\(137\) −17.0289 9.83163i −1.45488 0.839973i −0.456123 0.889917i \(-0.650762\pi\)
−0.998752 + 0.0499439i \(0.984096\pi\)
\(138\) 9.73171 + 5.61861i 0.828419 + 0.478288i
\(139\) −5.42353 9.39384i −0.460018 0.796775i 0.538943 0.842342i \(-0.318824\pi\)
−0.998961 + 0.0455674i \(0.985490\pi\)
\(140\) 0 0
\(141\) 6.37895 + 3.68289i 0.537205 + 0.310155i
\(142\) −16.4377 + 28.4710i −1.37943 + 2.38923i
\(143\) 1.11411 + 1.30289i 0.0931668 + 0.108953i
\(144\) −41.9106 72.5914i −3.49255 6.04928i
\(145\) −1.69267 + 0.977266i −0.140569 + 0.0811575i
\(146\) −12.2528 + 21.2225i −1.01405 + 1.75638i
\(147\) 0 0
\(148\) 23.7749i 1.95428i
\(149\) 1.09142i 0.0894123i 0.999000 + 0.0447061i \(0.0142351\pi\)
−0.999000 + 0.0447061i \(0.985765\pi\)
\(150\) −35.9644 20.7640i −2.93648 1.69538i
\(151\) 9.38756 5.41991i 0.763949 0.441066i −0.0667628 0.997769i \(-0.521267\pi\)
0.830712 + 0.556703i \(0.187934\pi\)
\(152\) 29.0360 2.35513
\(153\) −4.49283 + 7.78181i −0.363224 + 0.629122i
\(154\) 0 0
\(155\) −1.59804 −0.128358
\(156\) −10.6906 57.4900i −0.855931 4.60288i
\(157\) 6.35834 + 11.0130i 0.507450 + 0.878930i 0.999963 + 0.00862444i \(0.00274528\pi\)
−0.492512 + 0.870305i \(0.663921\pi\)
\(158\) 29.3972i 2.33872i
\(159\) −20.3888 35.3145i −1.61694 2.80062i
\(160\) 2.41768 + 4.18754i 0.191134 + 0.331054i
\(161\) 0 0
\(162\) −48.2710 + 27.8693i −3.79253 + 2.18962i
\(163\) 0.377572i 0.0295737i −0.999891 0.0147869i \(-0.995293\pi\)
0.999891 0.0147869i \(-0.00470698\pi\)
\(164\) 24.9084 14.3809i 1.94502 1.12296i
\(165\) −0.249763 + 0.432603i −0.0194441 + 0.0336781i
\(166\) 10.8889 + 18.8602i 0.845145 + 1.46383i
\(167\) 13.2407 + 7.64452i 1.02460 + 0.591551i 0.915432 0.402473i \(-0.131849\pi\)
0.109164 + 0.994024i \(0.465183\pi\)
\(168\) 0 0
\(169\) 2.01834 12.8424i 0.155257 0.987874i
\(170\) 0.549092 0.951055i 0.0421134 0.0729426i
\(171\) 25.3695i 1.94005i
\(172\) −24.6611 −1.88039
\(173\) 2.29597 0.174559 0.0872797 0.996184i \(-0.472183\pi\)
0.0872797 + 0.996184i \(0.472183\pi\)
\(174\) 50.3771i 3.81908i
\(175\) 0 0
\(176\) −4.81118 + 2.77774i −0.362656 + 0.209380i
\(177\) 4.73968 + 2.73646i 0.356256 + 0.205685i
\(178\) −14.4955 + 25.1069i −1.08648 + 1.88184i
\(179\) −20.9969 −1.56939 −0.784693 0.619885i \(-0.787179\pi\)
−0.784693 + 0.619885i \(0.787179\pi\)
\(180\) 10.4051 6.00738i 0.775549 0.447764i
\(181\) 15.3035 1.13750 0.568750 0.822511i \(-0.307427\pi\)
0.568750 + 0.822511i \(0.307427\pi\)
\(182\) 0 0
\(183\) 18.5819 1.37361
\(184\) −9.41149 + 5.43372i −0.693824 + 0.400580i
\(185\) 1.54015 0.113234
\(186\) −20.5944 + 35.6706i −1.51006 + 2.61549i
\(187\) 0.515760 + 0.297774i 0.0377161 + 0.0217754i
\(188\) −10.1689 + 5.87100i −0.741641 + 0.428187i
\(189\) 0 0
\(190\) 3.10054i 0.224937i
\(191\) 13.4772 0.975174 0.487587 0.873074i \(-0.337877\pi\)
0.487587 + 0.873074i \(0.337877\pi\)
\(192\) 50.0905 3.61497
\(193\) 9.46693i 0.681444i 0.940164 + 0.340722i \(0.110672\pi\)
−0.940164 + 0.340722i \(0.889328\pi\)
\(194\) −20.1158 + 34.8417i −1.44423 + 2.50149i
\(195\) 3.72424 0.692544i 0.266699 0.0495941i
\(196\) 0 0
\(197\) 1.18502 + 0.684169i 0.0844289 + 0.0487450i 0.541620 0.840623i \(-0.317811\pi\)
−0.457191 + 0.889368i \(0.651144\pi\)
\(198\) 4.53925 + 7.86221i 0.322590 + 0.558743i
\(199\) 5.79370 10.0350i 0.410705 0.711361i −0.584262 0.811565i \(-0.698616\pi\)
0.994967 + 0.100204i \(0.0319494\pi\)
\(200\) 34.7809 20.0808i 2.45938 1.41993i
\(201\) 31.2302i 2.20281i
\(202\) −6.05234 + 3.49432i −0.425841 + 0.245859i
\(203\) 0 0
\(204\) −10.1573 17.5930i −0.711154 1.23175i
\(205\) 0.931604 + 1.61358i 0.0650660 + 0.112698i
\(206\) 36.6297i 2.55211i
\(207\) 4.74759 + 8.22306i 0.329980 + 0.571542i
\(208\) 39.7210 + 14.0393i 2.75416 + 0.973452i
\(209\) −1.68143 −0.116307
\(210\) 0 0
\(211\) 2.79738 4.84521i 0.192580 0.333558i −0.753525 0.657420i \(-0.771648\pi\)
0.946104 + 0.323862i \(0.104981\pi\)
\(212\) 65.0047 4.46454
\(213\) −34.1179 + 19.6980i −2.33772 + 1.34968i
\(214\) 26.6471 + 15.3847i 1.82156 + 1.05168i
\(215\) 1.59757i 0.108953i
\(216\) 109.302i 7.43709i
\(217\) 0 0
\(218\) −4.44269 + 7.69496i −0.300897 + 0.521168i
\(219\) −25.4317 + 14.6830i −1.71852 + 0.992185i
\(220\) −0.398155 0.689624i −0.0268436 0.0464945i
\(221\) −0.825667 4.44013i −0.0555404 0.298676i
\(222\) 19.8484 34.3784i 1.33213 2.30732i
\(223\) 12.2239 + 7.05747i 0.818573 + 0.472603i 0.849924 0.526905i \(-0.176648\pi\)
−0.0313511 + 0.999508i \(0.509981\pi\)
\(224\) 0 0
\(225\) −17.5451 30.3890i −1.16967 2.02593i
\(226\) 18.6611 + 10.7740i 1.24132 + 0.716676i
\(227\) −20.3410 11.7439i −1.35008 0.779469i −0.361819 0.932248i \(-0.617844\pi\)
−0.988260 + 0.152780i \(0.951177\pi\)
\(228\) 49.6708 + 28.6775i 3.28953 + 1.89921i
\(229\) −19.8075 11.4358i −1.30891 0.755702i −0.326999 0.945025i \(-0.606037\pi\)
−0.981915 + 0.189323i \(0.939371\pi\)
\(230\) −0.580227 1.00498i −0.0382590 0.0662666i
\(231\) 0 0
\(232\) −42.1923 24.3597i −2.77006 1.59929i
\(233\) −0.483750 + 0.837879i −0.0316915 + 0.0548913i −0.881436 0.472303i \(-0.843423\pi\)
0.849745 + 0.527194i \(0.176756\pi\)
\(234\) 22.9424 64.9102i 1.49979 4.24331i
\(235\) −0.380328 0.658747i −0.0248099 0.0429719i
\(236\) −7.55566 + 4.36226i −0.491832 + 0.283959i
\(237\) 17.6139 30.5082i 1.14415 1.98172i
\(238\) 0 0
\(239\) 1.96824i 0.127315i −0.997972 0.0636574i \(-0.979723\pi\)
0.997972 0.0636574i \(-0.0202765\pi\)
\(240\) 12.2761i 0.792417i
\(241\) 1.88984 + 1.09110i 0.121735 + 0.0702839i 0.559631 0.828742i \(-0.310943\pi\)
−0.437896 + 0.899026i \(0.644276\pi\)
\(242\) −24.8350 + 14.3385i −1.59646 + 0.921715i
\(243\) −26.8561 −1.72282
\(244\) −14.8109 + 25.6533i −0.948174 + 1.64229i
\(245\) 0 0
\(246\) 48.0233 3.06185
\(247\) 8.28681 + 9.69091i 0.527277 + 0.616618i
\(248\) −19.9167 34.4968i −1.26471 2.19055i
\(249\) 26.0973i 1.65385i
\(250\) 4.33612 + 7.51037i 0.274240 + 0.474998i
\(251\) 12.5057 + 21.6606i 0.789355 + 1.36720i 0.926363 + 0.376633i \(0.122918\pi\)
−0.137008 + 0.990570i \(0.543749\pi\)
\(252\) 0 0
\(253\) 0.545005 0.314659i 0.0342642 0.0197824i
\(254\) 14.9168i 0.935966i
\(255\) 1.13969 0.657998i 0.0713699 0.0412055i
\(256\) −0.852070 + 1.47583i −0.0532544 + 0.0922393i
\(257\) 1.16560 + 2.01887i 0.0727080 + 0.125934i 0.900087 0.435710i \(-0.143503\pi\)
−0.827379 + 0.561644i \(0.810169\pi\)
\(258\) −35.6599 20.5883i −2.22009 1.28177i
\(259\) 0 0
\(260\) −2.01237 + 5.69353i −0.124802 + 0.353097i
\(261\) −21.2837 + 36.8645i −1.31743 + 2.28185i
\(262\) 15.7117i 0.970671i
\(263\) 3.87270 0.238801 0.119400 0.992846i \(-0.461903\pi\)
0.119400 + 0.992846i \(0.461903\pi\)
\(264\) −12.4514 −0.766331
\(265\) 4.21106i 0.258683i
\(266\) 0 0
\(267\) −30.0866 + 17.3705i −1.84127 + 1.06306i
\(268\) −43.1149 24.8924i −2.63366 1.52055i
\(269\) −7.52413 + 13.0322i −0.458754 + 0.794586i −0.998895 0.0469888i \(-0.985037\pi\)
0.540141 + 0.841574i \(0.318371\pi\)
\(270\) 11.6716 0.710310
\(271\) 11.5962 6.69507i 0.704419 0.406696i −0.104572 0.994517i \(-0.533347\pi\)
0.808991 + 0.587821i \(0.200014\pi\)
\(272\) 14.6358 0.887427
\(273\) 0 0
\(274\) 52.3378 3.16184
\(275\) −2.01411 + 1.16285i −0.121455 + 0.0701223i
\(276\) −21.4665 −1.29213
\(277\) 4.18657 7.25135i 0.251547 0.435692i −0.712405 0.701768i \(-0.752394\pi\)
0.963952 + 0.266077i \(0.0857275\pi\)
\(278\) 25.0036 + 14.4358i 1.49962 + 0.865804i
\(279\) −30.1408 + 17.4018i −1.80448 + 1.04182i
\(280\) 0 0
\(281\) 17.7474i 1.05872i −0.848397 0.529360i \(-0.822432\pi\)
0.848397 0.529360i \(-0.177568\pi\)
\(282\) −19.6055 −1.16749
\(283\) 21.7772 1.29452 0.647261 0.762269i \(-0.275915\pi\)
0.647261 + 0.762269i \(0.275915\pi\)
\(284\) 62.8022i 3.72663i
\(285\) −1.85775 + 3.21771i −0.110044 + 0.190601i
\(286\) −4.30209 1.52057i −0.254388 0.0899130i
\(287\) 0 0
\(288\) 91.1997 + 52.6542i 5.37400 + 3.10268i
\(289\) 7.71552 + 13.3637i 0.453854 + 0.786098i
\(290\) 2.60119 4.50540i 0.152747 0.264566i
\(291\) −41.7521 + 24.1056i −2.44755 + 1.41310i
\(292\) 46.8132i 2.73953i
\(293\) 23.8412 13.7648i 1.39282 0.804145i 0.399194 0.916867i \(-0.369290\pi\)
0.993627 + 0.112721i \(0.0359567\pi\)
\(294\) 0 0
\(295\) −0.282591 0.489462i −0.0164531 0.0284976i
\(296\) 19.1952 + 33.2471i 1.11570 + 1.93245i
\(297\) 6.32954i 0.367277i
\(298\) −1.45251 2.51583i −0.0841418 0.145738i
\(299\) −4.49955 1.59036i −0.260216 0.0919728i
\(300\) 79.3313 4.58019
\(301\) 0 0
\(302\) −14.4262 + 24.9869i −0.830135 + 1.43784i
\(303\) −8.37476 −0.481117
\(304\) −35.7857 + 20.6609i −2.05245 + 1.18498i
\(305\) −1.66184 0.959465i −0.0951568 0.0549388i
\(306\) 23.9172i 1.36725i
\(307\) 26.1419i 1.49200i 0.665946 + 0.746000i \(0.268028\pi\)
−0.665946 + 0.746000i \(0.731972\pi\)
\(308\) 0 0
\(309\) −21.9474 + 38.0140i −1.24854 + 2.16254i
\(310\) 3.68366 2.12676i 0.209218 0.120792i
\(311\) −1.21810 2.10981i −0.0690720 0.119636i 0.829421 0.558624i \(-0.188671\pi\)
−0.898493 + 0.438988i \(0.855337\pi\)
\(312\) 61.3658 + 71.7635i 3.47416 + 4.06281i
\(313\) 8.12125 14.0664i 0.459040 0.795081i −0.539870 0.841748i \(-0.681527\pi\)
0.998910 + 0.0466674i \(0.0148601\pi\)
\(314\) −29.3132 16.9240i −1.65424 0.955077i
\(315\) 0 0
\(316\) 28.0789 + 48.6340i 1.57956 + 2.73588i
\(317\) −23.0444 13.3047i −1.29430 0.747266i −0.314888 0.949129i \(-0.601967\pi\)
−0.979414 + 0.201863i \(0.935300\pi\)
\(318\) 93.9966 + 54.2690i 5.27107 + 3.04325i
\(319\) 2.44329 + 1.41063i 0.136798 + 0.0789803i
\(320\) −4.47976 2.58639i −0.250426 0.144584i
\(321\) 18.4361 + 31.9323i 1.02900 + 1.78229i
\(322\) 0 0
\(323\) 3.83624 + 2.21485i 0.213454 + 0.123238i
\(324\) 53.2389 92.2124i 2.95771 5.12291i
\(325\) 16.6285 + 5.87730i 0.922381 + 0.326014i
\(326\) 0.502492 + 0.870343i 0.0278305 + 0.0482038i
\(327\) −9.22117 + 5.32385i −0.509932 + 0.294409i
\(328\) −23.2215 + 40.2208i −1.28219 + 2.22082i
\(329\) 0 0
\(330\) 1.32959i 0.0731917i
\(331\) 16.6976i 0.917785i −0.888492 0.458892i \(-0.848246\pi\)
0.888492 0.458892i \(-0.151754\pi\)
\(332\) −36.0287 20.8012i −1.97733 1.14161i
\(333\) 29.0489 16.7714i 1.59187 0.919066i
\(334\) −40.6949 −2.22673
\(335\) 1.61255 2.79302i 0.0881031 0.152599i
\(336\) 0 0
\(337\) −23.6180 −1.28655 −0.643276 0.765634i \(-0.722425\pi\)
−0.643276 + 0.765634i \(0.722425\pi\)
\(338\) 12.4388 + 32.2891i 0.676581 + 1.75630i
\(339\) 12.9109 + 22.3624i 0.701225 + 1.21456i
\(340\) 2.09787i 0.113773i
\(341\) 1.15335 + 1.99766i 0.0624573 + 0.108179i
\(342\) 33.7631 + 58.4793i 1.82570 + 3.16220i
\(343\) 0 0
\(344\) 34.4865 19.9108i 1.85939 1.07352i
\(345\) 1.39062i 0.0748684i
\(346\) −5.29245 + 3.05560i −0.284524 + 0.164270i
\(347\) 7.45040 12.9045i 0.399958 0.692748i −0.593762 0.804641i \(-0.702358\pi\)
0.993720 + 0.111893i \(0.0356913\pi\)
\(348\) −48.1178 83.3426i −2.57939 4.46763i
\(349\) −18.8539 10.8853i −1.00923 0.582677i −0.0982611 0.995161i \(-0.531328\pi\)
−0.910965 + 0.412484i \(0.864661\pi\)
\(350\) 0 0
\(351\) 36.4802 31.1947i 1.94717 1.66505i
\(352\) 3.48979 6.04450i 0.186007 0.322173i
\(353\) 26.4436i 1.40745i −0.710472 0.703725i \(-0.751519\pi\)
0.710472 0.703725i \(-0.248481\pi\)
\(354\) −14.5673 −0.774242
\(355\) 4.06838 0.215927
\(356\) 55.3817i 2.93522i
\(357\) 0 0
\(358\) 48.4001 27.9438i 2.55803 1.47688i
\(359\) −19.5600 11.2930i −1.03234 0.596021i −0.114685 0.993402i \(-0.536586\pi\)
−0.917654 + 0.397381i \(0.869919\pi\)
\(360\) −9.70042 + 16.8016i −0.511257 + 0.885523i
\(361\) 6.49347 0.341762
\(362\) −35.2761 + 20.3667i −1.85407 + 1.07045i
\(363\) −34.3648 −1.80369
\(364\) 0 0
\(365\) 3.03259 0.158733
\(366\) −42.8332 + 24.7297i −2.23893 + 1.29264i
\(367\) 8.71276 0.454802 0.227401 0.973801i \(-0.426977\pi\)
0.227401 + 0.973801i \(0.426977\pi\)
\(368\) 7.73286 13.3937i 0.403103 0.698195i
\(369\) 35.1420 + 20.2892i 1.82942 + 1.05622i
\(370\) −3.55021 + 2.04972i −0.184567 + 0.106560i
\(371\) 0 0
\(372\) 78.6832i 4.07954i
\(373\) −17.0503 −0.882830 −0.441415 0.897303i \(-0.645523\pi\)
−0.441415 + 0.897303i \(0.645523\pi\)
\(374\) −1.58517 −0.0819673
\(375\) 10.3923i 0.536655i
\(376\) 9.48020 16.4202i 0.488904 0.846807i
\(377\) −3.91140 21.0341i −0.201448 1.08331i
\(378\) 0 0
\(379\) 7.09232 + 4.09475i 0.364308 + 0.210333i 0.670969 0.741486i \(-0.265878\pi\)
−0.306661 + 0.951819i \(0.599212\pi\)
\(380\) −2.96149 5.12945i −0.151921 0.263135i
\(381\) 8.93772 15.4806i 0.457893 0.793094i
\(382\) −31.0663 + 17.9361i −1.58949 + 0.917692i
\(383\) 14.5796i 0.744980i 0.928036 + 0.372490i \(0.121496\pi\)
−0.928036 + 0.372490i \(0.878504\pi\)
\(384\) −34.3639 + 19.8400i −1.75363 + 1.01246i
\(385\) 0 0
\(386\) −12.5991 21.8222i −0.641276 1.11072i
\(387\) −17.3966 30.1318i −0.884318 1.53168i
\(388\) 76.8548i 3.90171i
\(389\) 4.96404 + 8.59798i 0.251687 + 0.435935i 0.963990 0.265937i \(-0.0856813\pi\)
−0.712303 + 0.701872i \(0.752348\pi\)
\(390\) −7.66310 + 6.55280i −0.388036 + 0.331814i
\(391\) −1.65793 −0.0838450
\(392\) 0 0
\(393\) −9.41397 + 16.3055i −0.474872 + 0.822502i
\(394\) −3.64211 −0.183487
\(395\) −3.15055 + 1.81897i −0.158521 + 0.0915224i
\(396\) −15.0192 8.67135i −0.754744 0.435752i
\(397\) 15.2826i 0.767013i −0.923538 0.383506i \(-0.874716\pi\)
0.923538 0.383506i \(-0.125284\pi\)
\(398\) 30.8422i 1.54598i
\(399\) 0 0
\(400\) −28.5774 + 49.4975i −1.42887 + 2.47488i
\(401\) 10.8597 6.26986i 0.542308 0.313102i −0.203706 0.979032i \(-0.565299\pi\)
0.746014 + 0.665931i \(0.231965\pi\)
\(402\) −41.5627 71.9887i −2.07296 3.59047i
\(403\) 5.82929 16.4926i 0.290377 0.821556i
\(404\) 6.67522 11.5618i 0.332104 0.575222i
\(405\) 5.97359 + 3.44886i 0.296830 + 0.171375i
\(406\) 0 0
\(407\) −1.11157 1.92529i −0.0550983 0.0954331i
\(408\) 28.4083 + 16.4015i 1.40642 + 0.811996i
\(409\) −21.1905 12.2344i −1.04780 0.604950i −0.125770 0.992059i \(-0.540140\pi\)
−0.922034 + 0.387110i \(0.873474\pi\)
\(410\) −4.29488 2.47965i −0.212109 0.122461i
\(411\) 54.3157 + 31.3592i 2.67920 + 1.54684i
\(412\) −34.9869 60.5991i −1.72368 2.98551i
\(413\) 0 0
\(414\) −21.8874 12.6367i −1.07570 0.621059i
\(415\) 1.34752 2.33397i 0.0661470 0.114570i
\(416\) −52.0366 + 9.67650i −2.55131 + 0.474429i
\(417\) 17.2990 + 29.9628i 0.847137 + 1.46729i
\(418\) 3.87587 2.23773i 0.189575 0.109451i
\(419\) 7.17785 12.4324i 0.350661 0.607362i −0.635705 0.771932i \(-0.719290\pi\)
0.986365 + 0.164570i \(0.0526237\pi\)
\(420\) 0 0
\(421\) 20.6225i 1.00508i −0.864555 0.502539i \(-0.832399\pi\)
0.864555 0.502539i \(-0.167601\pi\)
\(422\) 14.8916i 0.724912i
\(423\) −14.3467 8.28310i −0.697563 0.402738i
\(424\) −90.9036 + 52.4832i −4.41467 + 2.54881i
\(425\) 6.12701 0.297204
\(426\) 52.4302 90.8118i 2.54025 4.39985i
\(427\) 0 0
\(428\) −58.7791 −2.84119
\(429\) −3.55360 4.15572i −0.171570 0.200640i
\(430\) 2.12613 + 3.68256i 0.102531 + 0.177589i
\(431\) 13.8304i 0.666188i 0.942894 + 0.333094i \(0.108093\pi\)
−0.942894 + 0.333094i \(0.891907\pi\)
\(432\) 77.7754 + 134.711i 3.74197 + 6.48128i
\(433\) −8.06097 13.9620i −0.387386 0.670972i 0.604711 0.796445i \(-0.293288\pi\)
−0.992097 + 0.125473i \(0.959955\pi\)
\(434\) 0 0
\(435\) 5.39900 3.11711i 0.258862 0.149454i
\(436\) 16.9738i 0.812897i
\(437\) 4.05376 2.34044i 0.193918 0.111959i
\(438\) 39.0818 67.6917i 1.86740 3.23443i
\(439\) −4.81164 8.33400i −0.229647 0.397760i 0.728057 0.685517i \(-0.240424\pi\)
−0.957703 + 0.287757i \(0.907090\pi\)
\(440\) 1.11357 + 0.642921i 0.0530874 + 0.0306500i
\(441\) 0 0
\(442\) 7.81241 + 9.13613i 0.371598 + 0.434561i
\(443\) 2.27061 3.93281i 0.107880 0.186853i −0.807031 0.590509i \(-0.798927\pi\)
0.914911 + 0.403655i \(0.132260\pi\)
\(444\) 75.8329i 3.59887i
\(445\) 3.58767 0.170072
\(446\) −37.5698 −1.77898
\(447\) 3.48121i 0.164655i
\(448\) 0 0
\(449\) −8.25996 + 4.76889i −0.389812 + 0.225058i −0.682079 0.731279i \(-0.738924\pi\)
0.292267 + 0.956337i \(0.405590\pi\)
\(450\) 80.8865 + 46.6999i 3.81303 + 2.20145i
\(451\) 1.34472 2.32913i 0.0633205 0.109674i
\(452\) −41.1633 −1.93616
\(453\) −29.9428 + 17.2875i −1.40684 + 0.812237i
\(454\) 62.5175 2.93409
\(455\) 0 0
\(456\) −92.6139 −4.33704
\(457\) 23.1927 13.3903i 1.08491 0.626372i 0.152692 0.988274i \(-0.451206\pi\)
0.932216 + 0.361902i \(0.117872\pi\)
\(458\) 60.8776 2.84463
\(459\) 8.33754 14.4410i 0.389163 0.674050i
\(460\) 1.91982 + 1.10841i 0.0895123 + 0.0516799i
\(461\) −8.87870 + 5.12612i −0.413522 + 0.238747i −0.692302 0.721608i \(-0.743403\pi\)
0.278780 + 0.960355i \(0.410070\pi\)
\(462\) 0 0
\(463\) 8.39526i 0.390161i 0.980787 + 0.195080i \(0.0624968\pi\)
−0.980787 + 0.195080i \(0.937503\pi\)
\(464\) 69.3338 3.21874
\(465\) 5.09716 0.236375
\(466\) 2.57520i 0.119294i
\(467\) −5.46029 + 9.45750i −0.252672 + 0.437641i −0.964261 0.264956i \(-0.914643\pi\)
0.711589 + 0.702596i \(0.247976\pi\)
\(468\) 24.0439 + 129.299i 1.11143 + 5.97686i
\(469\) 0 0
\(470\) 1.75339 + 1.01232i 0.0808779 + 0.0466949i
\(471\) −20.2807 35.1272i −0.934485 1.61858i
\(472\) 7.04397 12.2005i 0.324225 0.561574i
\(473\) −1.99706 + 1.15300i −0.0918250 + 0.0530152i
\(474\) 93.7662i 4.30682i
\(475\) −14.9810 + 8.64930i −0.687376 + 0.396857i
\(476\) 0 0
\(477\) 45.8560 + 79.4249i 2.09960 + 3.63662i
\(478\) 2.61944 + 4.53700i 0.119810 + 0.207517i
\(479\) 28.3667i 1.29611i 0.761595 + 0.648053i \(0.224417\pi\)
−0.761595 + 0.648053i \(0.775583\pi\)
\(480\) −7.71148 13.3567i −0.351979 0.609646i
\(481\) −5.61812 + 15.8952i −0.256164 + 0.724757i
\(482\) −5.80837 −0.264564
\(483\) 0 0
\(484\) 27.3910 47.4425i 1.24504 2.15648i
\(485\) 4.97872 0.226072
\(486\) 61.9060 35.7415i 2.80811 1.62127i
\(487\) 27.1818 + 15.6934i 1.23172 + 0.711136i 0.967389 0.253295i \(-0.0815144\pi\)
0.264335 + 0.964431i \(0.414848\pi\)
\(488\) 47.8320i 2.16525i
\(489\) 1.20431i 0.0544609i
\(490\) 0 0
\(491\) −11.3251 + 19.6156i −0.511093 + 0.885239i 0.488824 + 0.872382i \(0.337426\pi\)
−0.999917 + 0.0128567i \(0.995907\pi\)
\(492\) −79.4484 + 45.8696i −3.58181 + 2.06796i
\(493\) −3.71630 6.43681i −0.167374 0.289900i
\(494\) −31.9991 11.3100i −1.43971 0.508862i
\(495\) 0.561737 0.972957i 0.0252482 0.0437311i
\(496\) 49.0932 + 28.3440i 2.20435 + 1.27268i
\(497\) 0 0
\(498\) −34.7316 60.1569i −1.55636 2.69570i
\(499\) 11.5703 + 6.68014i 0.517960 + 0.299044i 0.736100 0.676873i \(-0.236666\pi\)
−0.218140 + 0.975918i \(0.569999\pi\)
\(500\) −14.3471 8.28331i −0.641622 0.370441i
\(501\) −42.2329 24.3832i −1.88683 1.08936i
\(502\) −57.6540 33.2866i −2.57322 1.48565i
\(503\) 1.18389 + 2.05056i 0.0527871 + 0.0914299i 0.891212 0.453588i \(-0.149856\pi\)
−0.838424 + 0.545018i \(0.816523\pi\)
\(504\) 0 0
\(505\) 0.748984 + 0.432426i 0.0333293 + 0.0192427i
\(506\) −0.837528 + 1.45064i −0.0372327 + 0.0644889i
\(507\) −6.43776 + 40.9623i −0.285911 + 1.81920i
\(508\) 14.2479 + 24.6780i 0.632147 + 1.09491i
\(509\) 9.30452 5.37197i 0.412416 0.238108i −0.279412 0.960171i \(-0.590139\pi\)
0.691827 + 0.722063i \(0.256806\pi\)
\(510\) −1.75140 + 3.03351i −0.0775532 + 0.134326i
\(511\) 0 0
\(512\) 20.3448i 0.899120i
\(513\) 47.0793i 2.07860i
\(514\) −5.37365 3.10248i −0.237021 0.136844i
\(515\) 3.92566 2.26648i 0.172985 0.0998731i
\(516\) 78.6598 3.46280
\(517\) −0.548984 + 0.950868i −0.0241443 + 0.0418191i
\(518\) 0 0
\(519\) −7.32328 −0.321456
\(520\) −1.78269 9.58665i −0.0781761 0.420402i
\(521\) −5.82202 10.0840i −0.255067 0.441790i 0.709846 0.704357i \(-0.248764\pi\)
−0.964914 + 0.262567i \(0.915431\pi\)
\(522\) 113.302i 4.95909i
\(523\) −16.2553 28.1549i −0.710793 1.23113i −0.964560 0.263864i \(-0.915003\pi\)
0.253767 0.967265i \(-0.418330\pi\)
\(524\) −15.0071 25.9930i −0.655587 1.13551i
\(525\) 0 0
\(526\) −8.92696 + 5.15398i −0.389234 + 0.224724i
\(527\) 6.07696i 0.264717i
\(528\) 15.3459 8.85994i 0.667843 0.385579i
\(529\) 10.6240 18.4014i 0.461914 0.800059i
\(530\) −5.60429 9.70692i −0.243435 0.421642i
\(531\) −10.6599 6.15450i −0.462600 0.267082i
\(532\) 0 0
\(533\) −20.0513 + 3.72864i −0.868517 + 0.161506i
\(534\) 46.2352 80.0817i 2.00079 3.46547i
\(535\) 3.80776i 0.164624i
\(536\) 80.3902 3.47233
\(537\) 66.9724 2.89007
\(538\) 40.0540i 1.72685i
\(539\) 0 0
\(540\) −19.3092 + 11.1482i −0.830934 + 0.479740i
\(541\) 20.0972 + 11.6031i 0.864048 + 0.498858i 0.865366 0.501141i \(-0.167086\pi\)
−0.00131774 + 0.999999i \(0.500419\pi\)
\(542\) −17.8203 + 30.8656i −0.765447 + 1.32579i
\(543\) −48.8124 −2.09474
\(544\) −15.9242 + 9.19382i −0.682743 + 0.394182i
\(545\) 1.09957 0.0471006
\(546\) 0 0
\(547\) −17.4876 −0.747714 −0.373857 0.927486i \(-0.621965\pi\)
−0.373857 + 0.927486i \(0.621965\pi\)
\(548\) −86.5862 + 49.9906i −3.69878 + 2.13549i
\(549\) −41.7921 −1.78364
\(550\) 3.09516 5.36097i 0.131978 0.228592i
\(551\) 18.1733 + 10.4923i 0.774207 + 0.446989i
\(552\) 30.0191 17.3315i 1.27770 0.737679i
\(553\) 0 0
\(554\) 22.2868i 0.946876i
\(555\) −4.91251 −0.208525
\(556\) −55.1537 −2.33904
\(557\) 31.1727i 1.32083i 0.750900 + 0.660415i \(0.229620\pi\)
−0.750900 + 0.660415i \(0.770380\pi\)
\(558\) 46.3184 80.2258i 1.96081 3.39623i
\(559\) 16.4877 + 5.82755i 0.697356 + 0.246479i
\(560\) 0 0
\(561\) −1.64508 0.949787i −0.0694553 0.0401000i
\(562\) 23.6192 + 40.9096i 0.996314 + 1.72567i
\(563\) −10.7537 + 18.6259i −0.453213 + 0.784988i −0.998584 0.0532069i \(-0.983056\pi\)
0.545370 + 0.838195i \(0.316389\pi\)
\(564\) 32.4349 18.7263i 1.36575 0.788519i
\(565\) 2.66659i 0.112184i
\(566\) −50.1987 + 28.9823i −2.11001 + 1.21822i
\(567\) 0 0
\(568\) 50.7050 + 87.8236i 2.12753 + 3.68500i
\(569\) 4.39588 + 7.61389i 0.184285 + 0.319191i 0.943335 0.331841i \(-0.107670\pi\)
−0.759050 + 0.651032i \(0.774336\pi\)
\(570\) 9.88955i 0.414228i
\(571\) 9.76184 + 16.9080i 0.408520 + 0.707578i 0.994724 0.102586i \(-0.0327115\pi\)
−0.586204 + 0.810164i \(0.699378\pi\)
\(572\) 8.56964 1.59357i 0.358315 0.0666306i
\(573\) −42.9871 −1.79581
\(574\) 0 0
\(575\) 3.23722 5.60702i 0.135001 0.233829i
\(576\) −112.657 −4.69405
\(577\) 26.5530 15.3304i 1.10542 0.638212i 0.167778 0.985825i \(-0.446341\pi\)
0.937638 + 0.347612i \(0.113007\pi\)
\(578\) −35.5701 20.5364i −1.47952 0.854203i
\(579\) 30.1959i 1.25490i
\(580\) 9.93815i 0.412659i
\(581\) 0 0
\(582\) 64.1620 111.132i 2.65960 4.60656i
\(583\) 5.26409 3.03922i 0.218016 0.125872i
\(584\) 37.7958 + 65.4643i 1.56400 + 2.70893i
\(585\) −8.37611 + 1.55758i −0.346309 + 0.0643981i
\(586\) −36.6377 + 63.4583i −1.51349 + 2.62144i
\(587\) −2.24386 1.29550i −0.0926142 0.0534708i 0.452978 0.891522i \(-0.350362\pi\)
−0.545592 + 0.838051i \(0.683695\pi\)
\(588\) 0 0
\(589\) 8.57864 + 14.8586i 0.353477 + 0.612240i
\(590\) 1.30280 + 0.752173i 0.0536355 + 0.0309665i
\(591\) −3.77976 2.18224i −0.155478 0.0897655i
\(592\) −47.3148 27.3172i −1.94462 1.12273i
\(593\) 15.3406 + 8.85689i 0.629962 + 0.363709i 0.780737 0.624859i \(-0.214844\pi\)
−0.150775 + 0.988568i \(0.548177\pi\)
\(594\) −8.42368 14.5902i −0.345628 0.598645i
\(595\) 0 0
\(596\) 4.80600 + 2.77474i 0.196861 + 0.113658i
\(597\) −18.4797 + 32.0078i −0.756325 + 1.30999i
\(598\) 12.4885 2.32230i 0.510691 0.0949658i
\(599\) −17.3049 29.9729i −0.707057 1.22466i −0.965944 0.258752i \(-0.916689\pi\)
0.258886 0.965908i \(-0.416644\pi\)
\(600\) −110.938 + 64.0502i −4.52903 + 2.61484i
\(601\) −18.9080 + 32.7496i −0.771272 + 1.33588i 0.165594 + 0.986194i \(0.447046\pi\)
−0.936866 + 0.349688i \(0.886287\pi\)
\(602\) 0 0
\(603\) 70.2390i 2.86035i
\(604\) 55.1169i 2.24267i
\(605\) 3.07336 + 1.77441i 0.124950 + 0.0721399i
\(606\) 19.3047 11.1456i 0.784199 0.452758i
\(607\) −39.1728 −1.58998 −0.794988 0.606625i \(-0.792523\pi\)
−0.794988 + 0.606625i \(0.792523\pi\)
\(608\) 25.9572 44.9592i 1.05270 1.82334i
\(609\) 0 0
\(610\) 5.10762 0.206802
\(611\) 8.18595 1.52222i 0.331168 0.0615825i
\(612\) 22.8445 + 39.5679i 0.923436 + 1.59944i
\(613\) 21.4325i 0.865649i 0.901478 + 0.432825i \(0.142483\pi\)
−0.901478 + 0.432825i \(0.857517\pi\)
\(614\) −34.7911 60.2599i −1.40405 2.43189i
\(615\) −2.97147 5.14673i −0.119821 0.207536i
\(616\) 0 0
\(617\) 32.2102 18.5966i 1.29673 0.748669i 0.316895 0.948461i \(-0.397360\pi\)
0.979838 + 0.199792i \(0.0640265\pi\)
\(618\) 116.835i 4.69979i
\(619\) −26.6037 + 15.3597i −1.06929 + 0.617357i −0.927988 0.372609i \(-0.878463\pi\)
−0.141305 + 0.989966i \(0.545130\pi\)
\(620\) −4.06276 + 7.03691i −0.163164 + 0.282609i
\(621\) −8.81030 15.2599i −0.353545 0.612358i
\(622\) 5.61569 + 3.24222i 0.225169 + 0.130001i
\(623\) 0 0
\(624\) −126.695 44.7802i −5.07187 1.79264i
\(625\) −11.6922 + 20.2514i −0.467686 + 0.810056i
\(626\) 43.2327i 1.72793i
\(627\) 5.36313 0.214183
\(628\) 64.6601 2.58022
\(629\) 5.85682i 0.233527i
\(630\) 0 0
\(631\) −12.1022 + 6.98719i −0.481779 + 0.278155i −0.721158 0.692771i \(-0.756390\pi\)
0.239378 + 0.970926i \(0.423056\pi\)
\(632\) −78.5318 45.3404i −3.12383 1.80354i
\(633\) −8.92260 + 15.4544i −0.354642 + 0.614257i
\(634\) 70.8263 2.81287
\(635\) −1.59866 + 0.922988i −0.0634409 + 0.0366276i
\(636\) −207.341 −8.22159
\(637\) 0 0
\(638\) −7.50938 −0.297299
\(639\) 76.7338 44.3023i 3.03554 1.75257i
\(640\) 4.09771 0.161976
\(641\) −14.5449 + 25.1925i −0.574489 + 0.995045i 0.421608 + 0.906778i \(0.361466\pi\)
−0.996097 + 0.0882663i \(0.971867\pi\)
\(642\) −84.9944 49.0715i −3.35446 1.93670i
\(643\) 11.7654 6.79275i 0.463982 0.267880i −0.249735 0.968314i \(-0.580344\pi\)
0.713717 + 0.700434i \(0.247010\pi\)
\(644\) 0 0
\(645\) 5.09564i 0.200641i
\(646\) −11.7906 −0.463893
\(647\) −30.1526 −1.18542 −0.592710 0.805416i \(-0.701942\pi\)
−0.592710 + 0.805416i \(0.701942\pi\)
\(648\) 171.935i 6.75425i
\(649\) −0.407905 + 0.706513i −0.0160117 + 0.0277331i
\(650\) −46.1521 + 8.58224i −1.81024 + 0.336623i
\(651\) 0 0
\(652\) −1.66262 0.959914i −0.0651132 0.0375931i
\(653\) −13.0045 22.5245i −0.508906 0.881451i −0.999947 0.0103145i \(-0.996717\pi\)
0.491041 0.871137i \(-0.336617\pi\)
\(654\) 14.1705 24.5440i 0.554111 0.959748i
\(655\) 1.68385 0.972169i 0.0657933 0.0379858i
\(656\) 66.0941i 2.58054i
\(657\) 57.1978 33.0232i 2.23150 1.28836i
\(658\) 0 0
\(659\) −6.75204 11.6949i −0.263022 0.455568i 0.704021 0.710179i \(-0.251386\pi\)
−0.967044 + 0.254611i \(0.918053\pi\)
\(660\) 1.26996 + 2.19964i 0.0494333 + 0.0856210i
\(661\) 43.3094i 1.68454i −0.539056 0.842270i \(-0.681219\pi\)
0.539056 0.842270i \(-0.318781\pi\)
\(662\) 22.2221 + 38.4898i 0.863686 + 1.49595i
\(663\) 2.63357 + 14.1624i 0.102279 + 0.550021i
\(664\) 67.1775 2.60699
\(665\) 0 0
\(666\) −44.6405 + 77.3195i −1.72978 + 2.99607i
\(667\) −7.85404 −0.304110
\(668\) 67.3246 38.8699i 2.60487 1.50392i
\(669\) −38.9897 22.5107i −1.50743 0.870314i
\(670\) 8.58427i 0.331639i
\(671\) 2.76988i 0.106930i
\(672\) 0 0
\(673\) −5.58760 + 9.67801i −0.215386 + 0.373060i −0.953392 0.301735i \(-0.902434\pi\)
0.738006 + 0.674794i \(0.235768\pi\)
\(674\) 54.4418 31.4320i 2.09702 1.21072i
\(675\) 32.5592 + 56.3942i 1.25320 + 2.17061i
\(676\) −51.4194 41.5373i −1.97767 1.59759i
\(677\) 0.948300 1.64250i 0.0364461 0.0631265i −0.847227 0.531231i \(-0.821730\pi\)
0.883673 + 0.468105i \(0.155063\pi\)
\(678\) −59.5220 34.3650i −2.28593 1.31978i
\(679\) 0 0
\(680\) −1.69377 2.93369i −0.0649530 0.112502i
\(681\) 64.8801 + 37.4586i 2.48621 + 1.43542i
\(682\) −5.31717 3.06987i −0.203605 0.117551i
\(683\) 33.9929 + 19.6258i 1.30070 + 0.750961i 0.980525 0.196396i \(-0.0629237\pi\)
0.320179 + 0.947357i \(0.396257\pi\)
\(684\) −111.713 64.4978i −4.27147 2.46613i
\(685\) −3.23843 5.60912i −0.123734 0.214314i
\(686\) 0 0
\(687\) 63.1784 + 36.4760i 2.41040 + 1.39165i
\(688\) −28.3355 + 49.0786i −1.08028 + 1.87110i
\(689\) −43.4602 15.3609i −1.65570 0.585205i
\(690\) 1.85071 + 3.20552i 0.0704552 + 0.122032i
\(691\) 11.2115 6.47294i 0.426504 0.246242i −0.271352 0.962480i \(-0.587471\pi\)
0.697856 + 0.716238i \(0.254137\pi\)
\(692\) 5.83712 10.1102i 0.221894 0.384332i
\(693\) 0 0
\(694\) 39.6615i 1.50553i
\(695\) 3.57290i 0.135528i
\(696\) 134.577 + 77.6984i 5.10115 + 2.94515i
\(697\) −6.13605 + 3.54265i −0.232420 + 0.134188i
\(698\) 57.9469 2.19332
\(699\) 1.54298 2.67252i 0.0583609 0.101084i
\(700\) 0 0
\(701\) 37.5032 1.41647 0.708237 0.705974i \(-0.249491\pi\)
0.708237 + 0.705974i \(0.249491\pi\)
\(702\) −42.5752 + 120.457i −1.60690 + 4.54635i
\(703\) −8.26787 14.3204i −0.311829 0.540103i
\(704\) 7.46665i 0.281410i
\(705\) 1.21310 + 2.10116i 0.0456881 + 0.0791341i
\(706\) 35.1925 + 60.9552i 1.32449 + 2.29408i
\(707\) 0 0
\(708\) 24.0997 13.9140i 0.905723 0.522919i
\(709\) 11.6762i 0.438509i 0.975668 + 0.219255i \(0.0703625\pi\)
−0.975668 + 0.219255i \(0.929637\pi\)
\(710\) −9.37803 + 5.41441i −0.351951 + 0.203199i
\(711\) −39.6151 + 68.6153i −1.48568 + 2.57328i
\(712\) 44.7138 + 77.4466i 1.67572 + 2.90243i
\(713\) −5.56122 3.21077i −0.208269 0.120244i
\(714\) 0 0
\(715\) 0.103233 + 0.555148i 0.00386069 + 0.0207614i
\(716\) −53.3812 + 92.4590i −1.99495 + 3.45536i
\(717\) 6.27795i 0.234454i
\(718\) 60.1172 2.24355
\(719\) 26.8073 0.999742 0.499871 0.866100i \(-0.333381\pi\)
0.499871 + 0.866100i \(0.333381\pi\)
\(720\) 27.6098i 1.02896i
\(721\) 0 0
\(722\) −14.9681 + 8.64185i −0.557056 + 0.321616i
\(723\) −6.02788 3.48020i −0.224179 0.129430i
\(724\) 38.9066 67.3882i 1.44595 2.50446i
\(725\) 29.0253 1.07797
\(726\) 79.2145 45.7345i 2.93993 1.69737i
\(727\) −14.1968 −0.526532 −0.263266 0.964723i \(-0.584800\pi\)
−0.263266 + 0.964723i \(0.584800\pi\)
\(728\) 0 0
\(729\) 22.8380 0.845851
\(730\) −6.99044 + 4.03593i −0.258728 + 0.149377i
\(731\) 6.07515 0.224697
\(732\) 47.2414 81.8245i 1.74609 3.02432i
\(733\) −0.226967 0.131039i −0.00838322 0.00484005i 0.495803 0.868435i \(-0.334874\pi\)
−0.504186 + 0.863595i \(0.668207\pi\)
\(734\) −20.0838 + 11.5954i −0.741307 + 0.427994i
\(735\) 0 0
\(736\) 19.4303i 0.716209i
\(737\) −4.65527 −0.171479
\(738\) −108.008 −3.97583
\(739\) 16.2783i 0.598808i −0.954127 0.299404i \(-0.903212\pi\)
0.954127 0.299404i \(-0.0967878\pi\)
\(740\) 3.91559 6.78199i 0.143940 0.249311i
\(741\) −26.4318 30.9104i −0.970997 1.13552i
\(742\) 0 0
\(743\) −1.03251 0.596118i −0.0378790 0.0218695i 0.480941 0.876753i \(-0.340295\pi\)
−0.518820 + 0.854884i \(0.673628\pi\)
\(744\) 63.5269 + 110.032i 2.32901 + 4.03396i
\(745\) −0.179750 + 0.311336i −0.00658553 + 0.0114065i
\(746\) 39.3027 22.6914i 1.43897 0.830792i
\(747\) 58.6947i 2.14753i
\(748\) 2.62247 1.51408i 0.0958869 0.0553603i
\(749\) 0 0
\(750\) −13.8306 23.9553i −0.505022 0.874723i
\(751\) 2.57029 + 4.45188i 0.0937913 + 0.162451i 0.909104 0.416570i \(-0.136768\pi\)
−0.815312 + 0.579022i \(0.803435\pi\)
\(752\) 26.9830i 0.983968i
\(753\) −39.8886 69.0891i −1.45362 2.51775i
\(754\) 37.0095 + 43.2803i 1.34780 + 1.57617i
\(755\) 3.57052 0.129944
\(756\) 0 0
\(757\) −7.40225 + 12.8211i −0.269039 + 0.465990i −0.968614 0.248570i \(-0.920040\pi\)
0.699575 + 0.714560i \(0.253373\pi\)
\(758\) −21.7980 −0.791740
\(759\) −1.73836 + 1.00364i −0.0630985 + 0.0364299i
\(760\) 8.28278 + 4.78207i 0.300448 + 0.173464i
\(761\) 18.9564i 0.687170i −0.939122 0.343585i \(-0.888359\pi\)
0.939122 0.343585i \(-0.111641\pi\)
\(762\) 47.5791i 1.72361i
\(763\) 0 0
\(764\) 34.2635 59.3461i 1.23961 2.14707i
\(765\) −2.56324 + 1.47989i −0.0926742 + 0.0535055i
\(766\) −19.4032 33.6074i −0.701067 1.21428i
\(767\) 6.08231 1.13104i 0.219620 0.0408395i
\(768\) 2.71778 4.70734i 0.0980696 0.169862i
\(769\) 36.8803 + 21.2928i 1.32994 + 0.767839i 0.985290 0.170893i \(-0.0546653\pi\)
0.344647 + 0.938732i \(0.387999\pi\)
\(770\) 0 0
\(771\) −3.71782 6.43945i −0.133894 0.231911i
\(772\) 41.6872 + 24.0681i 1.50035 + 0.866230i
\(773\) −13.7119 7.91657i −0.493183 0.284739i 0.232711 0.972546i \(-0.425240\pi\)
−0.725894 + 0.687807i \(0.758574\pi\)
\(774\) 80.2019 + 46.3046i 2.88280 + 1.66438i
\(775\) 20.5519 + 11.8657i 0.738248 + 0.426228i
\(776\) 62.0507 + 107.475i 2.22749 + 3.85813i
\(777\) 0 0
\(778\) −22.8853 13.2128i −0.820477 0.473702i
\(779\) 10.0021 17.3241i 0.358362 0.620701i
\(780\) 6.41869 18.1602i 0.229826 0.650240i
\(781\) −2.93625 5.08573i −0.105067 0.181982i
\(782\) 3.82170 2.20646i 0.136664 0.0789027i
\(783\) 39.4971 68.4110i 1.41151 2.44481i
\(784\) 0 0
\(785\) 4.18873i 0.149502i
\(786\) 50.1144i 1.78752i
\(787\) 44.4043 + 25.6368i 1.58284 + 0.913854i 0.994442 + 0.105284i \(0.0335751\pi\)
0.588400 + 0.808570i \(0.299758\pi\)
\(788\) 6.02541 3.47877i 0.214646 0.123926i
\(789\) −12.3524 −0.439759
\(790\) 4.84156 8.38583i 0.172255 0.298355i
\(791\) 0 0
\(792\) 28.0041 0.995084
\(793\) 15.9642 13.6511i 0.566904 0.484766i
\(794\) 20.3389 + 35.2280i 0.721801 + 1.25020i
\(795\) 13.4317i 0.476373i
\(796\) −29.4590 51.0246i −1.04415 1.80852i
\(797\) −25.8457 44.7660i −0.915501 1.58569i −0.806166 0.591689i \(-0.798461\pi\)
−0.109335 0.994005i \(-0.534872\pi\)
\(798\) 0 0
\(799\) 2.50505 1.44629i 0.0886223 0.0511661i
\(800\) 71.8062i 2.53873i
\(801\) 67.6671 39.0676i 2.39090 1.38039i
\(802\) −16.6885 + 28.9053i −0.589291 + 1.02068i
\(803\) −2.18870 3.79094i −0.0772375 0.133779i
\(804\) 137.521 + 79.3975i 4.84997 + 2.80013i
\(805\) 0 0
\(806\) 8.51213 + 45.7751i 0.299827 + 1.61236i
\(807\) 23.9991 41.5677i 0.844810 1.46325i
\(808\) 21.5576i 0.758395i
\(809\) −7.70987 −0.271065 −0.135532 0.990773i \(-0.543274\pi\)
−0.135532 + 0.990773i \(0.543274\pi\)
\(810\) −18.3597 −0.645093
\(811\) 27.3184i 0.959278i 0.877466 + 0.479639i \(0.159232\pi\)
−0.877466 + 0.479639i \(0.840768\pi\)
\(812\) 0 0
\(813\) −36.9875 + 21.3548i −1.29721 + 0.748944i
\(814\) 5.12455 + 2.95866i 0.179616 + 0.103701i
\(815\) 0.0621840 0.107706i 0.00217821 0.00377277i
\(816\) −46.6828 −1.63422
\(817\) −14.8542 + 8.57608i −0.519683 + 0.300039i
\(818\) 65.1285 2.27716
\(819\) 0 0
\(820\) 9.47379 0.330839
\(821\) −32.6900 + 18.8736i −1.14089 + 0.658693i −0.946651 0.322261i \(-0.895557\pi\)
−0.194239 + 0.980954i \(0.562224\pi\)
\(822\) −166.938 −5.82263
\(823\) 12.6192 21.8571i 0.439877 0.761889i −0.557803 0.829974i \(-0.688355\pi\)
0.997680 + 0.0680843i \(0.0216887\pi\)
\(824\) 97.8525 + 56.4952i 3.40885 + 1.96810i
\(825\) 6.42426 3.70905i 0.223664 0.129132i
\(826\) 0 0
\(827\) 14.9309i 0.519198i −0.965717 0.259599i \(-0.916410\pi\)
0.965717 0.259599i \(-0.0835903\pi\)
\(828\) 48.2798 1.67784
\(829\) 15.5499 0.540069 0.270034 0.962851i \(-0.412965\pi\)
0.270034 + 0.962851i \(0.412965\pi\)
\(830\) 7.17338i 0.248992i
\(831\) −13.3536 + 23.1291i −0.463231 + 0.802339i
\(832\) 43.0340 36.7989i 1.49193 1.27577i
\(833\) 0 0
\(834\) −79.7521 46.0449i −2.76159 1.59441i
\(835\) 2.51802 + 4.36134i 0.0871397 + 0.150930i
\(836\) −4.27476 + 7.40410i −0.147846 + 0.256076i
\(837\) 55.9335 32.2932i 1.93334 1.11622i
\(838\) 38.2106i 1.31996i
\(839\) −49.3577 + 28.4967i −1.70402 + 0.983814i −0.762413 + 0.647091i \(0.775985\pi\)
−0.941604 + 0.336723i \(0.890681\pi\)
\(840\) 0 0
\(841\) −3.10508 5.37815i −0.107072 0.185454i
\(842\) 27.4455 + 47.5369i 0.945833 + 1.63823i
\(843\) 56.6075i 1.94967i
\(844\) −14.2238 24.6363i −0.489602 0.848016i
\(845\) 2.69082 3.33099i 0.0925669 0.114590i
\(846\) 44.0943 1.51599
\(847\) 0 0
\(848\) 74.6901 129.367i 2.56487 4.44248i
\(849\) −69.4612 −2.38390
\(850\) −14.1234 + 8.15415i −0.484428 + 0.279685i
\(851\) 5.35976 + 3.09446i 0.183730 + 0.106077i
\(852\) 200.316i 6.86270i
\(853\) 53.4201i 1.82907i −0.404509 0.914534i \(-0.632557\pi\)
0.404509 0.914534i \(-0.367443\pi\)
\(854\) 0 0
\(855\) 4.17822 7.23688i 0.142892 0.247496i
\(856\) 82.1976 47.4568i 2.80946 1.62204i
\(857\) 16.3257 + 28.2770i 0.557676 + 0.965924i 0.997690 + 0.0679326i \(0.0216403\pi\)
−0.440014 + 0.897991i \(0.645026\pi\)
\(858\) 13.7221 + 4.85004i 0.468464 + 0.165578i
\(859\) −17.3823 + 30.1071i −0.593078 + 1.02724i 0.400737 + 0.916193i \(0.368754\pi\)
−0.993815 + 0.111048i \(0.964579\pi\)
\(860\) −7.03481 4.06155i −0.239885 0.138498i
\(861\) 0 0
\(862\) −18.4062 31.8805i −0.626919 1.08586i
\(863\) −20.2059 11.6659i −0.687818 0.397112i 0.114976 0.993368i \(-0.463321\pi\)
−0.802794 + 0.596256i \(0.796654\pi\)
\(864\) −169.243 97.7127i −5.75777 3.32425i
\(865\) 0.654946 + 0.378133i 0.0222688 + 0.0128569i
\(866\) 37.1627 + 21.4559i 1.26284 + 0.729102i
\(867\) −24.6096 42.6251i −0.835786 1.44762i
\(868\) 0 0
\(869\) 4.54766 + 2.62559i 0.154269 + 0.0890671i
\(870\) −8.29683 + 14.3705i −0.281289 + 0.487207i
\(871\) 22.9432 + 26.8306i 0.777400 + 0.909121i
\(872\) 13.7042 + 23.7364i 0.464083 + 0.803816i
\(873\) 93.9037 54.2153i 3.17816 1.83491i
\(874\) −6.22956 + 10.7899i −0.210718 + 0.364974i
\(875\) 0 0
\(876\) 149.316i 5.04493i
\(877\) 4.91107i 0.165835i −0.996556 0.0829175i \(-0.973576\pi\)
0.996556 0.0829175i \(-0.0264238\pi\)
\(878\) 22.1826 + 12.8072i 0.748628 + 0.432220i
\(879\) −76.0446 + 43.9044i −2.56492 + 1.48086i
\(880\) −1.82991 −0.0616863
\(881\) 4.78761 8.29238i 0.161299 0.279378i −0.774036 0.633142i \(-0.781765\pi\)
0.935335 + 0.353764i \(0.115098\pi\)
\(882\) 0 0
\(883\) 16.6962 0.561871 0.280935 0.959727i \(-0.409355\pi\)
0.280935 + 0.959727i \(0.409355\pi\)
\(884\) −21.6510 7.65252i −0.728203 0.257382i
\(885\) 0.901359 + 1.56120i 0.0302988 + 0.0524791i
\(886\) 12.0874i 0.406083i
\(887\) 15.3095 + 26.5169i 0.514043 + 0.890349i 0.999867 + 0.0162923i \(0.00518623\pi\)
−0.485824 + 0.874057i \(0.661480\pi\)
\(888\) −61.2256 106.046i −2.05460 3.55867i
\(889\) 0 0
\(890\) −8.26994 + 4.77465i −0.277209 + 0.160047i
\(891\) 9.95650i 0.333555i
\(892\) 62.1545 35.8849i 2.08109 1.20152i
\(893\) −4.08336 + 7.07259i −0.136644 + 0.236675i
\(894\) 4.63297 + 8.02454i 0.154950 + 0.268381i
\(895\) −5.98957 3.45808i −0.200209 0.115591i
\(896\) 0 0
\(897\) 14.3519 + 5.07264i 0.479195 + 0.169371i
\(898\) 12.6934 21.9856i 0.423584 0.733668i
\(899\) 28.7882i 0.960139i
\(900\) −178.422 −5.94740
\(901\) −16.0136 −0.533490
\(902\) 7.15851i 0.238352i
\(903\) 0 0
\(904\) 57.5634 33.2342i 1.91453 1.10535i
\(905\) 4.36546 + 2.52040i 0.145113 + 0.0837809i
\(906\) 46.0142 79.6989i 1.52872 2.64782i
\(907\) 36.6539 1.21707 0.608537 0.793526i \(-0.291757\pi\)
0.608537 + 0.793526i \(0.291757\pi\)
\(908\) −103.427 + 59.7137i −3.43235 + 1.98167i
\(909\) 18.8355 0.624733
\(910\) 0 0
\(911\) −32.6958 −1.08326 −0.541630 0.840617i \(-0.682192\pi\)
−0.541630 + 0.840617i \(0.682192\pi\)
\(912\) 114.143 65.9005i 3.77965 2.18218i
\(913\) −3.89015 −0.128745
\(914\) −35.6410 + 61.7321i −1.17890 + 2.04192i
\(915\) 5.30065 + 3.06033i 0.175234 + 0.101171i
\(916\) −100.714 + 58.1475i −3.32770 + 1.92125i
\(917\) 0 0
\(918\) 44.3841i 1.46489i
\(919\) 23.7652 0.783940 0.391970 0.919978i \(-0.371794\pi\)
0.391970 + 0.919978i \(0.371794\pi\)
\(920\) −3.57962 −0.118016
\(921\) 83.3830i 2.74756i
\(922\) 13.6442 23.6325i 0.449348 0.778294i
\(923\) −14.8405 + 41.9877i −0.488480 + 1.38204i
\(924\) 0 0
\(925\) −19.8074 11.4358i −0.651264 0.376008i
\(926\) −11.1729 19.3519i −0.367163 0.635944i
\(927\) 49.3613 85.4963i 1.62124 2.80807i
\(928\) −75.4369 + 43.5535i −2.47634 + 1.42971i
\(929\) 19.7776i 0.648882i −0.945906 0.324441i \(-0.894824\pi\)
0.945906 0.324441i \(-0.105176\pi\)
\(930\) −11.7495 + 6.78357i −0.385281 + 0.222442i
\(931\) 0 0
\(932\) 2.45971 + 4.26034i 0.0805704 + 0.139552i
\(933\) 3.88528 + 6.72950i 0.127198 + 0.220314i
\(934\) 29.0673i 0.951113i
\(935\) 0.0980834 + 0.169885i 0.00320767 + 0.00555585i
\(936\) −138.016 161.402i −4.51121 5.27558i
\(937\) −37.9416 −1.23950 −0.619749 0.784800i \(-0.712765\pi\)
−0.619749 + 0.784800i \(0.712765\pi\)
\(938\) 0 0
\(939\) −25.9037 + 44.8666i −0.845336 + 1.46417i
\(940\) −3.86768 −0.126150
\(941\) −7.66127 + 4.42324i −0.249750 + 0.144193i −0.619650 0.784878i \(-0.712725\pi\)
0.369900 + 0.929072i \(0.379392\pi\)
\(942\) 93.4982 + 53.9812i 3.04634 + 1.75880i
\(943\) 7.48707i 0.243812i
\(944\) 20.0489i 0.652535i
\(945\) 0 0
\(946\) 3.06896 5.31559i 0.0997804 0.172825i
\(947\) 16.7975 9.69803i 0.545845 0.315144i −0.201600 0.979468i \(-0.564614\pi\)
0.747444 + 0.664324i \(0.231281\pi\)
\(948\) −89.5610 155.124i −2.90881 5.03820i
\(949\) −11.0622 + 31.2979i −0.359094 + 1.01597i
\(950\) 23.0219 39.8750i 0.746928 1.29372i
\(951\) 73.5030 + 42.4370i 2.38350 + 1.37611i
\(952\) 0 0
\(953\) −16.9408 29.3423i −0.548767 0.950492i −0.998359 0.0572580i \(-0.981764\pi\)
0.449593 0.893234i \(-0.351569\pi\)
\(954\) −211.406 122.055i −6.84451 3.95168i
\(955\) 3.84449 + 2.21961i 0.124405 + 0.0718251i
\(956\) −8.66705 5.00392i −0.280312 0.161838i
\(957\) −7.79318 4.49939i −0.251918 0.145445i
\(958\) −37.7518 65.3881i −1.21971 2.11259i
\(959\) 0 0
\(960\) 14.2888 + 8.24962i 0.461168 + 0.266255i
\(961\) −3.73126 + 6.46273i −0.120363 + 0.208475i
\(962\) −8.20377 44.1169i −0.264500 1.42239i
\(963\) −41.4642 71.8182i −1.33617 2.31431i
\(964\) 9.60921 5.54788i 0.309492 0.178685i
\(965\) −1.55915 + 2.70053i −0.0501908 + 0.0869330i
\(966\) 0 0
\(967\) 0.359435i 0.0115586i −0.999983 0.00577932i \(-0.998160\pi\)
0.999983 0.00577932i \(-0.00183962\pi\)
\(968\) 88.4592i 2.84319i
\(969\) −12.2362 7.06455i −0.393082 0.226946i
\(970\) −11.4765 + 6.62594i −0.368487 + 0.212746i
\(971\) −19.4769 −0.625045 −0.312523 0.949910i \(-0.601174\pi\)
−0.312523 + 0.949910i \(0.601174\pi\)
\(972\) −68.2771 + 118.259i −2.18999 + 3.79317i
\(973\) 0 0
\(974\) −83.5424 −2.67687
\(975\) −53.0386 18.7464i −1.69859 0.600365i
\(976\) 34.0354 + 58.9511i 1.08945 + 1.88698i
\(977\) 59.2434i 1.89536i 0.319217 + 0.947682i \(0.396580\pi\)
−0.319217 + 0.947682i \(0.603420\pi\)
\(978\) −1.60276 2.77607i −0.0512507 0.0887688i
\(979\) −2.58931 4.48481i −0.0827546 0.143335i
\(980\) 0 0
\(981\) 20.7391 11.9737i 0.662149 0.382292i
\(982\) 60.2879i 1.92387i
\(983\) −18.7045 + 10.7991i −0.596582 + 0.344437i −0.767696 0.640814i \(-0.778597\pi\)
0.171113 + 0.985251i \(0.445264\pi\)
\(984\) 74.0679 128.289i 2.36120 4.08972i
\(985\) 0.225358 + 0.390331i 0.00718049 + 0.0124370i
\(986\) 17.1329 + 9.89168i 0.545622 + 0.315015i
\(987\) 0 0
\(988\) 63.7413 11.8530i 2.02788 0.377095i
\(989\) 3.20981 5.55956i 0.102066 0.176784i
\(990\) 2.99035i 0.0950397i
\(991\) 3.73559 0.118665 0.0593325 0.998238i \(-0.481103\pi\)
0.0593325 + 0.998238i \(0.481103\pi\)
\(992\) −71.2196 −2.26122
\(993\) 53.2592i 1.69013i
\(994\) 0 0
\(995\) 3.30541 1.90838i 0.104789 0.0604997i
\(996\) 114.918 + 66.3480i 3.64132 + 2.10232i
\(997\) −5.67223 + 9.82459i −0.179641 + 0.311148i −0.941758 0.336292i \(-0.890827\pi\)
0.762116 + 0.647440i \(0.224160\pi\)
\(998\) −35.5611 −1.12567
\(999\) −53.9073 + 31.1234i −1.70555 + 0.984700i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.u.j.30.1 32
7.2 even 3 637.2.q.j.589.16 yes 32
7.3 odd 6 637.2.k.j.459.1 32
7.4 even 3 637.2.k.j.459.2 32
7.5 odd 6 637.2.q.j.589.15 yes 32
7.6 odd 2 inner 637.2.u.j.30.2 32
13.10 even 6 637.2.k.j.569.16 32
91.10 odd 6 inner 637.2.u.j.361.2 32
91.19 even 12 8281.2.a.cx.1.2 32
91.23 even 6 637.2.q.j.491.16 yes 32
91.33 even 12 8281.2.a.cx.1.32 32
91.58 odd 12 8281.2.a.cx.1.1 32
91.62 odd 6 637.2.k.j.569.15 32
91.72 odd 12 8281.2.a.cx.1.31 32
91.75 odd 6 637.2.q.j.491.15 32
91.88 even 6 inner 637.2.u.j.361.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.k.j.459.1 32 7.3 odd 6
637.2.k.j.459.2 32 7.4 even 3
637.2.k.j.569.15 32 91.62 odd 6
637.2.k.j.569.16 32 13.10 even 6
637.2.q.j.491.15 32 91.75 odd 6
637.2.q.j.491.16 yes 32 91.23 even 6
637.2.q.j.589.15 yes 32 7.5 odd 6
637.2.q.j.589.16 yes 32 7.2 even 3
637.2.u.j.30.1 32 1.1 even 1 trivial
637.2.u.j.30.2 32 7.6 odd 2 inner
637.2.u.j.361.1 32 91.88 even 6 inner
637.2.u.j.361.2 32 91.10 odd 6 inner
8281.2.a.cx.1.1 32 91.58 odd 12
8281.2.a.cx.1.2 32 91.19 even 12
8281.2.a.cx.1.31 32 91.72 odd 12
8281.2.a.cx.1.32 32 91.33 even 12