Properties

Label 637.2.u.a
Level 637637
Weight 22
Character orbit 637.u
Analytic conductor 5.0865.086
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(30,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.30"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 2, names="a")
 
Level: N N == 637=7213 637 = 7^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 637.u (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-3,2,1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.086470608765.08647060876
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ62)q2+q3+(ζ6+1)q4+(ζ6+1)q5+(ζ62)q6+(2ζ6+1)q82q93q10+(6ζ6+3)q11+(ζ6+1)q12++(12ζ66)q99+O(q100) q + (\zeta_{6} - 2) q^{2} + q^{3} + ( - \zeta_{6} + 1) q^{4} + (\zeta_{6} + 1) q^{5} + (\zeta_{6} - 2) q^{6} + ( - 2 \zeta_{6} + 1) q^{8} - 2 q^{9} - 3 q^{10} + ( - 6 \zeta_{6} + 3) q^{11} + ( - \zeta_{6} + 1) q^{12}+ \cdots + (12 \zeta_{6} - 6) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q2+2q3+q4+3q53q64q96q10+q12+2q13+3q15+5q16+6q17+6q18+3q20+9q222q25+3q2610q273q29++9q97+O(q100) 2 q - 3 q^{2} + 2 q^{3} + q^{4} + 3 q^{5} - 3 q^{6} - 4 q^{9} - 6 q^{10} + q^{12} + 2 q^{13} + 3 q^{15} + 5 q^{16} + 6 q^{17} + 6 q^{18} + 3 q^{20} + 9 q^{22} - 2 q^{25} + 3 q^{26} - 10 q^{27} - 3 q^{29}+ \cdots + 9 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/637Z)×\left(\mathbb{Z}/637\mathbb{Z}\right)^\times.

nn 197197 248248
χ(n)\chi(n) ζ6\zeta_{6} 1+ζ6-1 + \zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
30.1
0.500000 + 0.866025i
0.500000 0.866025i
−1.50000 + 0.866025i 1.00000 0.500000 0.866025i 1.50000 + 0.866025i −1.50000 + 0.866025i 0 1.73205i −2.00000 −3.00000
361.1 −1.50000 0.866025i 1.00000 0.500000 + 0.866025i 1.50000 0.866025i −1.50000 0.866025i 0 1.73205i −2.00000 −3.00000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.u even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.u.a 2
7.b odd 2 1 91.2.u.a yes 2
7.c even 3 1 637.2.k.b 2
7.c even 3 1 637.2.q.b 2
7.d odd 6 1 91.2.k.a 2
7.d odd 6 1 637.2.q.c 2
13.e even 6 1 637.2.k.b 2
21.c even 2 1 819.2.do.c 2
21.g even 6 1 819.2.bm.a 2
91.k even 6 1 637.2.q.b 2
91.l odd 6 1 637.2.q.c 2
91.p odd 6 1 91.2.u.a yes 2
91.t odd 6 1 91.2.k.a 2
91.u even 6 1 inner 637.2.u.a 2
91.w even 12 2 8281.2.a.s 2
91.ba even 12 2 1183.2.e.e 4
91.bc even 12 2 1183.2.e.e 4
91.bd odd 12 2 8281.2.a.w 2
273.u even 6 1 819.2.bm.a 2
273.y even 6 1 819.2.do.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.k.a 2 7.d odd 6 1
91.2.k.a 2 91.t odd 6 1
91.2.u.a yes 2 7.b odd 2 1
91.2.u.a yes 2 91.p odd 6 1
637.2.k.b 2 7.c even 3 1
637.2.k.b 2 13.e even 6 1
637.2.q.b 2 7.c even 3 1
637.2.q.b 2 91.k even 6 1
637.2.q.c 2 7.d odd 6 1
637.2.q.c 2 91.l odd 6 1
637.2.u.a 2 1.a even 1 1 trivial
637.2.u.a 2 91.u even 6 1 inner
819.2.bm.a 2 21.g even 6 1
819.2.bm.a 2 273.u even 6 1
819.2.do.c 2 21.c even 2 1
819.2.do.c 2 273.y even 6 1
1183.2.e.e 4 91.ba even 12 2
1183.2.e.e 4 91.bc even 12 2
8281.2.a.s 2 91.w even 12 2
8281.2.a.w 2 91.bd odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(637,[χ])S_{2}^{\mathrm{new}}(637, [\chi]):

T22+3T2+3 T_{2}^{2} + 3T_{2} + 3 Copy content Toggle raw display
T31 T_{3} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
33 (T1)2 (T - 1)^{2} Copy content Toggle raw display
55 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+27 T^{2} + 27 Copy content Toggle raw display
1313 T22T+13 T^{2} - 2T + 13 Copy content Toggle raw display
1717 T26T+36 T^{2} - 6T + 36 Copy content Toggle raw display
1919 T2+3 T^{2} + 3 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+3T+9 T^{2} + 3T + 9 Copy content Toggle raw display
3131 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T29T+27 T^{2} - 9T + 27 Copy content Toggle raw display
4343 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
4747 T215T+75 T^{2} - 15T + 75 Copy content Toggle raw display
5353 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
5959 T26T+12 T^{2} - 6T + 12 Copy content Toggle raw display
6161 (T+7)2 (T + 7)^{2} Copy content Toggle raw display
6767 T2+75 T^{2} + 75 Copy content Toggle raw display
7171 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
7373 T215T+75 T^{2} - 15T + 75 Copy content Toggle raw display
7979 T25T+25 T^{2} - 5T + 25 Copy content Toggle raw display
8383 T2+12 T^{2} + 12 Copy content Toggle raw display
8989 T212T+48 T^{2} - 12T + 48 Copy content Toggle raw display
9797 T29T+27 T^{2} - 9T + 27 Copy content Toggle raw display
show more
show less