Properties

Label 637.2.r.e.116.1
Level $637$
Weight $2$
Character 637.116
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(116,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.116"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,4,0,0,0,0,2,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 116.1
Root \(0.550552 + 0.147520i\) of defining polynomial
Character \(\chi\) \(=\) 637.116
Dual form 637.2.r.e.324.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.14878 + 1.24060i) q^{2} +(-0.837565 + 1.45071i) q^{3} +(2.07816 - 3.59948i) q^{4} +(0.584680 - 0.337565i) q^{5} -4.15633i q^{6} +5.35026i q^{8} +(0.0969683 + 0.167954i) q^{9} +(-0.837565 + 1.45071i) q^{10} +(-3.88083 - 2.24060i) q^{11} +(3.48119 + 6.02961i) q^{12} +(3.28726 + 1.48119i) q^{13} +1.13093i q^{15} +(-2.48119 - 4.29755i) q^{16} +(1.64363 - 2.84685i) q^{17} +(-0.416726 - 0.240597i) q^{18} +(-4.52007 + 2.60966i) q^{19} -2.80606i q^{20} +11.1187 q^{22} +(-2.38423 - 4.12960i) q^{23} +(-7.76166 - 4.48119i) q^{24} +(-2.27210 + 3.93539i) q^{25} +(-8.90115 + 0.895406i) q^{26} -5.35026 q^{27} -9.31265 q^{29} +(-1.40303 - 2.43012i) q^{30} +(-1.41813 - 0.818760i) q^{31} +(1.39614 + 0.806063i) q^{32} +(6.50089 - 3.75329i) q^{33} +8.15633i q^{34} +0.806063 q^{36} +(-1.25018 + 0.721791i) q^{37} +(6.47508 - 11.2152i) q^{38} +(-4.90207 + 3.52825i) q^{39} +(1.80606 + 3.12819i) q^{40} -7.92478i q^{41} -4.61213 q^{43} +(-16.1300 + 9.31265i) q^{44} +(0.113391 + 0.0654663i) q^{45} +(10.2463 + 5.91573i) q^{46} +(6.81481 - 3.93453i) q^{47} +8.31265 q^{48} -11.2750i q^{50} +(2.75329 + 4.76884i) q^{51} +(12.1630 - 8.75427i) q^{52} +(1.57816 - 2.73346i) q^{53} +(11.4965 - 6.63752i) q^{54} -3.02539 q^{55} -8.74306i q^{57} +(20.0108 - 11.5532i) q^{58} +(2.20334 + 1.27210i) q^{59} +(4.07077 + 2.35026i) q^{60} +(1.15633 + 2.00281i) q^{61} +4.06300 q^{62} +5.92478 q^{64} +(2.42200 - 0.243639i) q^{65} +(-9.31265 + 16.1300i) q^{66} +(-6.36551 - 3.67513i) q^{67} +(-6.83146 - 11.8324i) q^{68} +7.98778 q^{69} +7.75623i q^{71} +(-0.898598 + 0.518806i) q^{72} +(13.1152 + 7.57205i) q^{73} +(1.79090 - 3.10194i) q^{74} +(-3.80606 - 6.59230i) q^{75} +21.6932i q^{76} +(6.15633 - 13.6629i) q^{78} +(-7.33146 - 12.6985i) q^{79} +(-2.90141 - 1.67513i) q^{80} +(4.19029 - 7.25779i) q^{81} +(9.83146 + 17.0286i) q^{82} -1.45088i q^{83} -2.21933i q^{85} +(9.91043 - 5.72179i) q^{86} +(7.79995 - 13.5099i) q^{87} +(11.9878 - 20.7634i) q^{88} +(-6.74967 + 3.89692i) q^{89} -0.324869 q^{90} -19.8192 q^{92} +(2.37556 - 1.37153i) q^{93} +(-9.76234 + 16.9089i) q^{94} +(-1.76187 + 3.05164i) q^{95} +(-2.33872 + 1.35026i) q^{96} -17.9805i q^{97} -0.869067i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} + 2 q^{9} + 20 q^{12} + 16 q^{13} - 8 q^{16} + 8 q^{17} + 48 q^{22} - 6 q^{23} - 8 q^{25} - 12 q^{26} - 24 q^{27} - 28 q^{29} - 16 q^{30} + 8 q^{36} + 4 q^{38} + 8 q^{39} + 20 q^{40} - 52 q^{43}+ \cdots - 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.14878 + 1.24060i −1.51941 + 0.877235i −0.519677 + 0.854363i \(0.673948\pi\)
−0.999738 + 0.0228716i \(0.992719\pi\)
\(3\) −0.837565 + 1.45071i −0.483569 + 0.837565i −0.999822 0.0188705i \(-0.993993\pi\)
0.516253 + 0.856436i \(0.327326\pi\)
\(4\) 2.07816 3.59948i 1.03908 1.79974i
\(5\) 0.584680 0.337565i 0.261477 0.150964i −0.363531 0.931582i \(-0.618429\pi\)
0.625008 + 0.780618i \(0.285096\pi\)
\(6\) 4.15633i 1.69681i
\(7\) 0 0
\(8\) 5.35026i 1.89160i
\(9\) 0.0969683 + 0.167954i 0.0323228 + 0.0559847i
\(10\) −0.837565 + 1.45071i −0.264861 + 0.458753i
\(11\) −3.88083 2.24060i −1.17011 0.675565i −0.216407 0.976303i \(-0.569434\pi\)
−0.953707 + 0.300738i \(0.902767\pi\)
\(12\) 3.48119 + 6.02961i 1.00493 + 1.74060i
\(13\) 3.28726 + 1.48119i 0.911721 + 0.410809i
\(14\) 0 0
\(15\) 1.13093i 0.292006i
\(16\) −2.48119 4.29755i −0.620299 1.07439i
\(17\) 1.64363 2.84685i 0.398639 0.690462i −0.594920 0.803785i \(-0.702816\pi\)
0.993558 + 0.113323i \(0.0361495\pi\)
\(18\) −0.416726 0.240597i −0.0982234 0.0567093i
\(19\) −4.52007 + 2.60966i −1.03698 + 0.598698i −0.918975 0.394315i \(-0.870982\pi\)
−0.118000 + 0.993014i \(0.537648\pi\)
\(20\) 2.80606i 0.627455i
\(21\) 0 0
\(22\) 11.1187 2.37052
\(23\) −2.38423 4.12960i −0.497145 0.861081i 0.502849 0.864374i \(-0.332285\pi\)
−0.999995 + 0.00329297i \(0.998952\pi\)
\(24\) −7.76166 4.48119i −1.58434 0.914720i
\(25\) −2.27210 + 3.93539i −0.454420 + 0.787078i
\(26\) −8.90115 + 0.895406i −1.74566 + 0.175604i
\(27\) −5.35026 −1.02966
\(28\) 0 0
\(29\) −9.31265 −1.72932 −0.864658 0.502361i \(-0.832465\pi\)
−0.864658 + 0.502361i \(0.832465\pi\)
\(30\) −1.40303 2.43012i −0.256157 0.443678i
\(31\) −1.41813 0.818760i −0.254704 0.147054i 0.367212 0.930137i \(-0.380312\pi\)
−0.621916 + 0.783084i \(0.713646\pi\)
\(32\) 1.39614 + 0.806063i 0.246806 + 0.142493i
\(33\) 6.50089 3.75329i 1.13166 0.653365i
\(34\) 8.15633i 1.39880i
\(35\) 0 0
\(36\) 0.806063 0.134344
\(37\) −1.25018 + 0.721791i −0.205528 + 0.118662i −0.599231 0.800576i \(-0.704527\pi\)
0.393703 + 0.919238i \(0.371194\pi\)
\(38\) 6.47508 11.2152i 1.05040 1.81934i
\(39\) −4.90207 + 3.52825i −0.784960 + 0.564972i
\(40\) 1.80606 + 3.12819i 0.285564 + 0.494611i
\(41\) 7.92478i 1.23764i −0.785532 0.618821i \(-0.787611\pi\)
0.785532 0.618821i \(-0.212389\pi\)
\(42\) 0 0
\(43\) −4.61213 −0.703343 −0.351671 0.936124i \(-0.614387\pi\)
−0.351671 + 0.936124i \(0.614387\pi\)
\(44\) −16.1300 + 9.31265i −2.43169 + 1.40393i
\(45\) 0.113391 + 0.0654663i 0.0169033 + 0.00975914i
\(46\) 10.2463 + 5.91573i 1.51074 + 0.872227i
\(47\) 6.81481 3.93453i 0.994043 0.573911i 0.0875623 0.996159i \(-0.472092\pi\)
0.906480 + 0.422248i \(0.138759\pi\)
\(48\) 8.31265 1.19983
\(49\) 0 0
\(50\) 11.2750i 1.59453i
\(51\) 2.75329 + 4.76884i 0.385538 + 0.667772i
\(52\) 12.1630 8.75427i 1.68670 1.21400i
\(53\) 1.57816 2.73346i 0.216777 0.375469i −0.737044 0.675845i \(-0.763779\pi\)
0.953821 + 0.300376i \(0.0971121\pi\)
\(54\) 11.4965 6.63752i 1.56448 0.903252i
\(55\) −3.02539 −0.407944
\(56\) 0 0
\(57\) 8.74306i 1.15805i
\(58\) 20.0108 11.5532i 2.62755 1.51702i
\(59\) 2.20334 + 1.27210i 0.286850 + 0.165613i 0.636521 0.771260i \(-0.280373\pi\)
−0.349670 + 0.936873i \(0.613706\pi\)
\(60\) 4.07077 + 2.35026i 0.525535 + 0.303417i
\(61\) 1.15633 + 2.00281i 0.148052 + 0.256434i 0.930508 0.366273i \(-0.119366\pi\)
−0.782455 + 0.622707i \(0.786033\pi\)
\(62\) 4.06300 0.516002
\(63\) 0 0
\(64\) 5.92478 0.740597
\(65\) 2.42200 0.243639i 0.300412 0.0302197i
\(66\) −9.31265 + 16.1300i −1.14631 + 1.98546i
\(67\) −6.36551 3.67513i −0.777671 0.448989i 0.0579331 0.998320i \(-0.481549\pi\)
−0.835604 + 0.549332i \(0.814882\pi\)
\(68\) −6.83146 11.8324i −0.828436 1.43489i
\(69\) 7.98778 0.961616
\(70\) 0 0
\(71\) 7.75623i 0.920496i 0.887791 + 0.460248i \(0.152239\pi\)
−0.887791 + 0.460248i \(0.847761\pi\)
\(72\) −0.898598 + 0.518806i −0.105901 + 0.0611418i
\(73\) 13.1152 + 7.57205i 1.53502 + 0.886242i 0.999119 + 0.0419581i \(0.0133596\pi\)
0.535896 + 0.844284i \(0.319974\pi\)
\(74\) 1.79090 3.10194i 0.208188 0.360593i
\(75\) −3.80606 6.59230i −0.439486 0.761213i
\(76\) 21.6932i 2.48838i
\(77\) 0 0
\(78\) 6.15633 13.6629i 0.697067 1.54702i
\(79\) −7.33146 12.6985i −0.824853 1.42869i −0.902031 0.431670i \(-0.857924\pi\)
0.0771782 0.997017i \(-0.475409\pi\)
\(80\) −2.90141 1.67513i −0.324388 0.187285i
\(81\) 4.19029 7.25779i 0.465588 0.806422i
\(82\) 9.83146 + 17.0286i 1.08570 + 1.88049i
\(83\) 1.45088i 0.159254i −0.996825 0.0796272i \(-0.974627\pi\)
0.996825 0.0796272i \(-0.0253730\pi\)
\(84\) 0 0
\(85\) 2.21933i 0.240720i
\(86\) 9.91043 5.72179i 1.06867 0.616997i
\(87\) 7.79995 13.5099i 0.836243 1.44842i
\(88\) 11.9878 20.7634i 1.27790 2.21339i
\(89\) −6.74967 + 3.89692i −0.715463 + 0.413073i −0.813081 0.582151i \(-0.802211\pi\)
0.0976173 + 0.995224i \(0.468878\pi\)
\(90\) −0.324869 −0.0342442
\(91\) 0 0
\(92\) −19.8192 −2.06630
\(93\) 2.37556 1.37153i 0.246334 0.142221i
\(94\) −9.76234 + 16.9089i −1.00691 + 1.74402i
\(95\) −1.76187 + 3.05164i −0.180764 + 0.313092i
\(96\) −2.33872 + 1.35026i −0.238695 + 0.137811i
\(97\) 17.9805i 1.82564i −0.408360 0.912821i \(-0.633899\pi\)
0.408360 0.912821i \(-0.366101\pi\)
\(98\) 0 0
\(99\) 0.869067i 0.0873446i
\(100\) 9.44358 + 16.3568i 0.944358 + 1.63568i
\(101\) −4.66902 + 8.08698i −0.464585 + 0.804685i −0.999183 0.0404219i \(-0.987130\pi\)
0.534598 + 0.845107i \(0.320463\pi\)
\(102\) −11.8324 6.83146i −1.17159 0.676415i
\(103\) −3.11871 5.40177i −0.307296 0.532252i 0.670474 0.741933i \(-0.266091\pi\)
−0.977770 + 0.209681i \(0.932758\pi\)
\(104\) −7.92478 + 17.5877i −0.777088 + 1.72461i
\(105\) 0 0
\(106\) 7.83146i 0.760658i
\(107\) −3.62236 6.27411i −0.350187 0.606541i 0.636095 0.771611i \(-0.280549\pi\)
−0.986282 + 0.165069i \(0.947215\pi\)
\(108\) −11.1187 + 19.2582i −1.06990 + 1.85312i
\(109\) −4.15159 2.39692i −0.397650 0.229584i 0.287819 0.957685i \(-0.407070\pi\)
−0.685470 + 0.728101i \(0.740403\pi\)
\(110\) 6.50089 3.75329i 0.619836 0.357862i
\(111\) 2.41819i 0.229524i
\(112\) 0 0
\(113\) −9.34297 −0.878912 −0.439456 0.898264i \(-0.644829\pi\)
−0.439456 + 0.898264i \(0.644829\pi\)
\(114\) 10.8466 + 18.7869i 1.01588 + 1.75955i
\(115\) −2.78802 1.60966i −0.259984 0.150102i
\(116\) −19.3532 + 33.5207i −1.79690 + 3.11232i
\(117\) 0.0699872 + 0.695737i 0.00647032 + 0.0643209i
\(118\) −6.31265 −0.581127
\(119\) 0 0
\(120\) −6.05079 −0.552359
\(121\) 4.54055 + 7.86447i 0.412777 + 0.714951i
\(122\) −4.96937 2.86907i −0.449906 0.259753i
\(123\) 11.4965 + 6.63752i 1.03661 + 0.598485i
\(124\) −5.89422 + 3.40303i −0.529317 + 0.305601i
\(125\) 6.44358i 0.576332i
\(126\) 0 0
\(127\) −1.38058 −0.122507 −0.0612533 0.998122i \(-0.519510\pi\)
−0.0612533 + 0.998122i \(0.519510\pi\)
\(128\) −15.5233 + 8.96239i −1.37208 + 0.792171i
\(129\) 3.86296 6.69084i 0.340114 0.589096i
\(130\) −4.90207 + 3.52825i −0.429940 + 0.309448i
\(131\) −6.24965 10.8247i −0.546034 0.945759i −0.998541 0.0539980i \(-0.982804\pi\)
0.452507 0.891761i \(-0.350530\pi\)
\(132\) 31.1998i 2.71560i
\(133\) 0 0
\(134\) 18.2374 1.57547
\(135\) −3.12819 + 1.80606i −0.269232 + 0.155441i
\(136\) 15.2314 + 8.79384i 1.30608 + 0.754066i
\(137\) −2.77661 1.60308i −0.237222 0.136960i 0.376677 0.926345i \(-0.377067\pi\)
−0.613899 + 0.789384i \(0.710400\pi\)
\(138\) −17.1640 + 9.90962i −1.46109 + 0.843563i
\(139\) −0.249646 −0.0211747 −0.0105874 0.999944i \(-0.503370\pi\)
−0.0105874 + 0.999944i \(0.503370\pi\)
\(140\) 0 0
\(141\) 13.1817i 1.11010i
\(142\) −9.62236 16.6664i −0.807491 1.39861i
\(143\) −9.43852 13.1137i −0.789289 1.09662i
\(144\) 0.481194 0.833453i 0.0400995 0.0694544i
\(145\) −5.44492 + 3.14363i −0.452176 + 0.261064i
\(146\) −37.5755 −3.10977
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) −3.49241 + 2.01634i −0.286109 + 0.165185i −0.636186 0.771536i \(-0.719489\pi\)
0.350077 + 0.936721i \(0.386156\pi\)
\(150\) 16.3568 + 9.44358i 1.33552 + 0.771065i
\(151\) −1.35931 0.784795i −0.110619 0.0638657i 0.443670 0.896190i \(-0.353676\pi\)
−0.554289 + 0.832325i \(0.687010\pi\)
\(152\) −13.9624 24.1836i −1.13250 1.96155i
\(153\) 0.637519 0.0515404
\(154\) 0 0
\(155\) −1.10554 −0.0887991
\(156\) 2.51257 + 24.9772i 0.201166 + 1.99978i
\(157\) −1.44969 + 2.51094i −0.115698 + 0.200395i −0.918059 0.396445i \(-0.870244\pi\)
0.802361 + 0.596840i \(0.203577\pi\)
\(158\) 31.5073 + 18.1908i 2.50659 + 1.44718i
\(159\) 2.64363 + 4.57890i 0.209653 + 0.363130i
\(160\) 1.08840 0.0860453
\(161\) 0 0
\(162\) 20.7938i 1.63372i
\(163\) 14.9606 8.63752i 1.17181 0.676543i 0.217702 0.976015i \(-0.430144\pi\)
0.954105 + 0.299473i \(0.0968107\pi\)
\(164\) −28.5251 16.4690i −2.22744 1.28601i
\(165\) 2.53396 4.38895i 0.197269 0.341680i
\(166\) 1.79995 + 3.11761i 0.139704 + 0.241974i
\(167\) 16.2931i 1.26080i 0.776270 + 0.630400i \(0.217109\pi\)
−0.776270 + 0.630400i \(0.782891\pi\)
\(168\) 0 0
\(169\) 8.61213 + 9.73813i 0.662471 + 0.749087i
\(170\) 2.75329 + 4.76884i 0.211168 + 0.365754i
\(171\) −0.876607 0.506109i −0.0670358 0.0387032i
\(172\) −9.58475 + 16.6013i −0.730830 + 1.26584i
\(173\) −1.08721 1.88311i −0.0826592 0.143170i 0.821732 0.569874i \(-0.193008\pi\)
−0.904391 + 0.426704i \(0.859675\pi\)
\(174\) 38.7064i 2.93432i
\(175\) 0 0
\(176\) 22.2374i 1.67621i
\(177\) −3.69088 + 2.13093i −0.277424 + 0.160171i
\(178\) 9.66902 16.7472i 0.724724 1.25526i
\(179\) 0.275746 0.477607i 0.0206102 0.0356980i −0.855536 0.517743i \(-0.826772\pi\)
0.876147 + 0.482045i \(0.160106\pi\)
\(180\) 0.471290 0.272099i 0.0351278 0.0202811i
\(181\) 0.511511 0.0380203 0.0190102 0.999819i \(-0.493949\pi\)
0.0190102 + 0.999819i \(0.493949\pi\)
\(182\) 0 0
\(183\) −3.87399 −0.286374
\(184\) 22.0944 12.7562i 1.62882 0.940402i
\(185\) −0.487304 + 0.844035i −0.0358273 + 0.0620547i
\(186\) −3.40303 + 5.89422i −0.249522 + 0.432185i
\(187\) −12.7573 + 7.36542i −0.932905 + 0.538613i
\(188\) 32.7064i 2.38536i
\(189\) 0 0
\(190\) 8.74306i 0.634288i
\(191\) 8.27210 + 14.3277i 0.598548 + 1.03672i 0.993036 + 0.117814i \(0.0375888\pi\)
−0.394488 + 0.918901i \(0.629078\pi\)
\(192\) −4.96239 + 8.59511i −0.358130 + 0.620299i
\(193\) −6.41802 3.70545i −0.461979 0.266724i 0.250897 0.968014i \(-0.419275\pi\)
−0.712876 + 0.701290i \(0.752608\pi\)
\(194\) 22.3065 + 38.6361i 1.60152 + 2.77391i
\(195\) −1.67513 + 3.71767i −0.119959 + 0.266228i
\(196\) 0 0
\(197\) 7.14903i 0.509347i 0.967027 + 0.254674i \(0.0819681\pi\)
−0.967027 + 0.254674i \(0.918032\pi\)
\(198\) 1.07816 + 1.86743i 0.0766217 + 0.132713i
\(199\) −2.55031 + 4.41726i −0.180787 + 0.313131i −0.942149 0.335195i \(-0.891198\pi\)
0.761362 + 0.648327i \(0.224531\pi\)
\(200\) −21.0554 12.1563i −1.48884 0.859582i
\(201\) 10.6631 6.15633i 0.752115 0.434234i
\(202\) 23.1695i 1.63020i
\(203\) 0 0
\(204\) 22.8872 1.60242
\(205\) −2.67513 4.63346i −0.186839 0.323615i
\(206\) 13.4028 + 7.73813i 0.933820 + 0.539141i
\(207\) 0.462389 0.800881i 0.0321382 0.0556650i
\(208\) −1.79081 17.8023i −0.124170 1.23437i
\(209\) 23.3888 1.61784
\(210\) 0 0
\(211\) 0.193937 0.0133511 0.00667557 0.999978i \(-0.497875\pi\)
0.00667557 + 0.999978i \(0.497875\pi\)
\(212\) −6.55936 11.3611i −0.450498 0.780286i
\(213\) −11.2520 6.49635i −0.770975 0.445123i
\(214\) 15.5673 + 8.98778i 1.06416 + 0.614392i
\(215\) −2.69662 + 1.55689i −0.183908 + 0.106179i
\(216\) 28.6253i 1.94771i
\(217\) 0 0
\(218\) 11.8945 0.805594
\(219\) −21.9696 + 12.6842i −1.48457 + 0.857117i
\(220\) −6.28726 + 10.8898i −0.423887 + 0.734194i
\(221\) 9.61977 6.92379i 0.647096 0.465745i
\(222\) 3.00000 + 5.19615i 0.201347 + 0.348743i
\(223\) 5.83875i 0.390992i 0.980705 + 0.195496i \(0.0626316\pi\)
−0.980705 + 0.195496i \(0.937368\pi\)
\(224\) 0 0
\(225\) −0.881286 −0.0587524
\(226\) 20.0760 11.5909i 1.33543 0.771012i
\(227\) 3.19334 + 1.84367i 0.211949 + 0.122369i 0.602217 0.798332i \(-0.294284\pi\)
−0.390268 + 0.920701i \(0.627618\pi\)
\(228\) −31.4705 18.1695i −2.08418 1.20330i
\(229\) −4.89913 + 2.82852i −0.323744 + 0.186914i −0.653060 0.757306i \(-0.726515\pi\)
0.329316 + 0.944220i \(0.393182\pi\)
\(230\) 7.98778 0.526699
\(231\) 0 0
\(232\) 49.8251i 3.27118i
\(233\) 5.16291 + 8.94243i 0.338234 + 0.585838i 0.984101 0.177612i \(-0.0568373\pi\)
−0.645867 + 0.763450i \(0.723504\pi\)
\(234\) −1.01352 1.40816i −0.0662556 0.0920542i
\(235\) 2.65633 4.60089i 0.173280 0.300129i
\(236\) 9.15780 5.28726i 0.596122 0.344171i
\(237\) 24.5623 1.59549
\(238\) 0 0
\(239\) 22.2882i 1.44170i −0.693089 0.720852i \(-0.743751\pi\)
0.693089 0.720852i \(-0.256249\pi\)
\(240\) 4.86024 2.80606i 0.313727 0.181131i
\(241\) −25.4840 14.7132i −1.64157 0.947762i −0.980275 0.197637i \(-0.936673\pi\)
−0.661296 0.750125i \(-0.729993\pi\)
\(242\) −19.5133 11.2660i −1.25436 0.724205i
\(243\) −1.00611 1.74263i −0.0645419 0.111790i
\(244\) 9.61213 0.615353
\(245\) 0 0
\(246\) −32.9380 −2.10005
\(247\) −18.7241 + 1.88354i −1.19138 + 0.119847i
\(248\) 4.38058 7.58739i 0.278167 0.481799i
\(249\) 2.10480 + 1.21520i 0.133386 + 0.0770105i
\(250\) −7.99389 13.8458i −0.505578 0.875687i
\(251\) −21.5247 −1.35863 −0.679313 0.733849i \(-0.737722\pi\)
−0.679313 + 0.733849i \(0.737722\pi\)
\(252\) 0 0
\(253\) 21.3684i 1.34342i
\(254\) 2.96656 1.71274i 0.186138 0.107467i
\(255\) 3.21959 + 1.85883i 0.201619 + 0.116405i
\(256\) 16.3127 28.2543i 1.01954 1.76590i
\(257\) −0.330979 0.573272i −0.0206459 0.0357597i 0.855518 0.517773i \(-0.173239\pi\)
−0.876164 + 0.482014i \(0.839906\pi\)
\(258\) 19.1695i 1.19344i
\(259\) 0 0
\(260\) 4.15633 9.22425i 0.257764 0.572064i
\(261\) −0.903032 1.56410i −0.0558963 0.0968152i
\(262\) 26.8582 + 15.5066i 1.65930 + 0.958000i
\(263\) −2.59332 + 4.49176i −0.159911 + 0.276974i −0.934836 0.355079i \(-0.884454\pi\)
0.774925 + 0.632053i \(0.217787\pi\)
\(264\) 20.0811 + 34.7815i 1.23591 + 2.14065i
\(265\) 2.13093i 0.130902i
\(266\) 0 0
\(267\) 13.0557i 0.798996i
\(268\) −26.4571 + 15.2750i −1.61613 + 0.933072i
\(269\) −13.6253 + 23.5997i −0.830749 + 1.43890i 0.0666957 + 0.997773i \(0.478754\pi\)
−0.897445 + 0.441127i \(0.854579\pi\)
\(270\) 4.48119 7.76166i 0.272717 0.472359i
\(271\) −16.2476 + 9.38058i −0.986974 + 0.569830i −0.904368 0.426753i \(-0.859657\pi\)
−0.0826055 + 0.996582i \(0.526324\pi\)
\(272\) −16.3127 −0.989100
\(273\) 0 0
\(274\) 7.95509 0.480585
\(275\) 17.6353 10.1817i 1.06345 0.613981i
\(276\) 16.5999 28.7519i 0.999197 1.73066i
\(277\) 7.71203 13.3576i 0.463371 0.802583i −0.535755 0.844373i \(-0.679973\pi\)
0.999126 + 0.0417908i \(0.0133063\pi\)
\(278\) 0.536434 0.309711i 0.0321732 0.0185752i
\(279\) 0.317575i 0.0190127i
\(280\) 0 0
\(281\) 24.8446i 1.48211i −0.671446 0.741053i \(-0.734327\pi\)
0.671446 0.741053i \(-0.265673\pi\)
\(282\) −16.3532 28.3246i −0.973819 1.68670i
\(283\) 11.4436 19.8209i 0.680250 1.17823i −0.294654 0.955604i \(-0.595204\pi\)
0.974904 0.222624i \(-0.0714623\pi\)
\(284\) 27.9184 + 16.1187i 1.65665 + 0.956470i
\(285\) −2.95135 5.11190i −0.174823 0.302803i
\(286\) 36.5501 + 16.4690i 2.16125 + 0.973831i
\(287\) 0 0
\(288\) 0.312650i 0.0184231i
\(289\) 3.09697 + 5.36411i 0.182175 + 0.315536i
\(290\) 7.79995 13.5099i 0.458029 0.793330i
\(291\) 26.0844 + 15.0598i 1.52909 + 0.882823i
\(292\) 54.5110 31.4719i 3.19001 1.84175i
\(293\) 25.2193i 1.47333i 0.676258 + 0.736664i \(0.263600\pi\)
−0.676258 + 0.736664i \(0.736400\pi\)
\(294\) 0 0
\(295\) 1.71767 0.100006
\(296\) −3.86177 6.68879i −0.224461 0.388778i
\(297\) 20.7634 + 11.9878i 1.20482 + 0.695602i
\(298\) 5.00294 8.66535i 0.289813 0.501970i
\(299\) −1.72082 17.1066i −0.0995179 0.989298i
\(300\) −31.6385 −1.82665
\(301\) 0 0
\(302\) 3.89446 0.224101
\(303\) −7.82122 13.5468i −0.449317 0.778241i
\(304\) 22.4304 + 12.9502i 1.28647 + 0.742743i
\(305\) 1.35216 + 0.780671i 0.0774245 + 0.0447011i
\(306\) −1.36989 + 0.790905i −0.0783112 + 0.0452130i
\(307\) 7.24965i 0.413759i 0.978366 + 0.206880i \(0.0663308\pi\)
−0.978366 + 0.206880i \(0.933669\pi\)
\(308\) 0 0
\(309\) 10.4485 0.594395
\(310\) 2.37556 1.37153i 0.134923 0.0778977i
\(311\) −10.1199 + 17.5282i −0.573847 + 0.993932i 0.422319 + 0.906447i \(0.361216\pi\)
−0.996166 + 0.0874846i \(0.972117\pi\)
\(312\) −18.8770 26.2274i −1.06870 1.48483i
\(313\) 16.5684 + 28.6973i 0.936502 + 1.62207i 0.771934 + 0.635703i \(0.219290\pi\)
0.164568 + 0.986366i \(0.447377\pi\)
\(314\) 7.19394i 0.405977i
\(315\) 0 0
\(316\) −60.9438 −3.42836
\(317\) 14.7338 8.50659i 0.827535 0.477778i −0.0254730 0.999676i \(-0.508109\pi\)
0.853008 + 0.521898i \(0.174776\pi\)
\(318\) −11.3611 6.55936i −0.637101 0.367830i
\(319\) 36.1408 + 20.8659i 2.02350 + 1.16827i
\(320\) 3.46410 2.00000i 0.193649 0.111803i
\(321\) 12.1359 0.677357
\(322\) 0 0
\(323\) 17.1573i 0.954657i
\(324\) −17.4162 30.1658i −0.967567 1.67588i
\(325\) −13.2981 + 9.57122i −0.737643 + 0.530916i
\(326\) −21.4314 + 37.1202i −1.18697 + 2.05590i
\(327\) 6.95446 4.01516i 0.384582 0.222039i
\(328\) 42.3996 2.34113
\(329\) 0 0
\(330\) 12.5745i 0.692204i
\(331\) −9.38458 + 5.41819i −0.515823 + 0.297811i −0.735224 0.677824i \(-0.762923\pi\)
0.219401 + 0.975635i \(0.429590\pi\)
\(332\) −5.22241 3.01516i −0.286617 0.165478i
\(333\) −0.242456 0.139982i −0.0132865 0.00767095i
\(334\) −20.2132 35.0103i −1.10602 1.91568i
\(335\) −4.96239 −0.271124
\(336\) 0 0
\(337\) −2.96968 −0.161769 −0.0808845 0.996723i \(-0.525774\pi\)
−0.0808845 + 0.996723i \(0.525774\pi\)
\(338\) −30.5866 10.2409i −1.66369 0.557032i
\(339\) 7.82535 13.5539i 0.425014 0.736147i
\(340\) −7.98844 4.61213i −0.433234 0.250128i
\(341\) 3.66902 + 6.35493i 0.198689 + 0.344139i
\(342\) 2.51151 0.135807
\(343\) 0 0
\(344\) 24.6761i 1.33045i
\(345\) 4.67030 2.69640i 0.251440 0.145169i
\(346\) 4.67235 + 2.69758i 0.251187 + 0.145023i
\(347\) −15.3684 + 26.6188i −0.825017 + 1.42897i 0.0768897 + 0.997040i \(0.475501\pi\)
−0.901906 + 0.431931i \(0.857832\pi\)
\(348\) −32.4191 56.1516i −1.73785 3.01004i
\(349\) 2.00492i 0.107321i 0.998559 + 0.0536606i \(0.0170889\pi\)
−0.998559 + 0.0536606i \(0.982911\pi\)
\(350\) 0 0
\(351\) −17.5877 7.92478i −0.938761 0.422993i
\(352\) −3.61213 6.25639i −0.192527 0.333467i
\(353\) 14.9429 + 8.62729i 0.795330 + 0.459184i 0.841836 0.539734i \(-0.181475\pi\)
−0.0465055 + 0.998918i \(0.514809\pi\)
\(354\) 5.28726 9.15780i 0.281015 0.486732i
\(355\) 2.61824 + 4.53492i 0.138962 + 0.240688i
\(356\) 32.3938i 1.71687i
\(357\) 0 0
\(358\) 1.36836i 0.0723201i
\(359\) −6.15441 + 3.55325i −0.324817 + 0.187533i −0.653538 0.756894i \(-0.726716\pi\)
0.328721 + 0.944427i \(0.393383\pi\)
\(360\) −0.350262 + 0.606671i −0.0184604 + 0.0319744i
\(361\) 4.12070 7.13726i 0.216879 0.375645i
\(362\) −1.09912 + 0.634580i −0.0577687 + 0.0333528i
\(363\) −15.2120 −0.798425
\(364\) 0 0
\(365\) 10.2243 0.535162
\(366\) 8.32435 4.80606i 0.435121 0.251217i
\(367\) 13.6314 23.6103i 0.711554 1.23245i −0.252720 0.967539i \(-0.581325\pi\)
0.964274 0.264908i \(-0.0853415\pi\)
\(368\) −11.8315 + 20.4927i −0.616757 + 1.06825i
\(369\) 1.33100 0.768452i 0.0692890 0.0400040i
\(370\) 2.41819i 0.125716i
\(371\) 0 0
\(372\) 11.4010i 0.591117i
\(373\) 2.95945 + 5.12592i 0.153234 + 0.265410i 0.932415 0.361390i \(-0.117698\pi\)
−0.779180 + 0.626800i \(0.784364\pi\)
\(374\) 18.2750 31.6533i 0.944980 1.63675i
\(375\) −9.34774 5.39692i −0.482715 0.278696i
\(376\) 21.0508 + 36.4610i 1.08561 + 1.88033i
\(377\) −30.6131 13.7938i −1.57665 0.710419i
\(378\) 0 0
\(379\) 28.9706i 1.48812i 0.668112 + 0.744061i \(0.267103\pi\)
−0.668112 + 0.744061i \(0.732897\pi\)
\(380\) 7.32288 + 12.6836i 0.375656 + 0.650655i
\(381\) 1.15633 2.00281i 0.0592403 0.102607i
\(382\) −35.5498 20.5247i −1.81889 1.05013i
\(383\) −20.1128 + 11.6121i −1.02772 + 0.593352i −0.916329 0.400425i \(-0.868862\pi\)
−0.111386 + 0.993777i \(0.535529\pi\)
\(384\) 30.0263i 1.53228i
\(385\) 0 0
\(386\) 18.3879 0.935918
\(387\) −0.447230 0.774625i −0.0227340 0.0393764i
\(388\) −64.7205 37.3664i −3.28568 1.89699i
\(389\) 8.06594 13.9706i 0.408960 0.708339i −0.585814 0.810446i \(-0.699225\pi\)
0.994773 + 0.102107i \(0.0325584\pi\)
\(390\) −1.01264 10.0666i −0.0512772 0.509742i
\(391\) −15.6751 −0.792725
\(392\) 0 0
\(393\) 20.9380 1.05618
\(394\) −8.86907 15.3617i −0.446817 0.773910i
\(395\) −8.57312 4.94969i −0.431360 0.249046i
\(396\) −3.12819 1.80606i −0.157198 0.0907581i
\(397\) 20.8329 12.0279i 1.04557 0.603661i 0.124165 0.992262i \(-0.460375\pi\)
0.921406 + 0.388601i \(0.127041\pi\)
\(398\) 12.6556i 0.634369i
\(399\) 0 0
\(400\) 22.5501 1.12750
\(401\) 2.40387 1.38787i 0.120043 0.0693071i −0.438776 0.898596i \(-0.644588\pi\)
0.558819 + 0.829289i \(0.311255\pi\)
\(402\) −15.2750 + 26.4571i −0.761850 + 1.31956i
\(403\) −3.44903 4.79201i −0.171808 0.238707i
\(404\) 19.4060 + 33.6121i 0.965483 + 1.67227i
\(405\) 5.65799i 0.281148i
\(406\) 0 0
\(407\) 6.46898 0.320655
\(408\) −25.5146 + 14.7308i −1.26316 + 0.729285i
\(409\) −17.4339 10.0655i −0.862051 0.497705i 0.00264770 0.999996i \(-0.499157\pi\)
−0.864699 + 0.502291i \(0.832491\pi\)
\(410\) 11.4965 + 6.63752i 0.567773 + 0.327804i
\(411\) 4.65119 2.68536i 0.229426 0.132459i
\(412\) −25.9248 −1.27722
\(413\) 0 0
\(414\) 2.29455i 0.112771i
\(415\) −0.489766 0.848300i −0.0240417 0.0416414i
\(416\) 3.39554 + 4.71770i 0.166480 + 0.231304i
\(417\) 0.209095 0.362163i 0.0102394 0.0177352i
\(418\) −50.2574 + 29.0161i −2.45817 + 1.41922i
\(419\) −0.385503 −0.0188331 −0.00941654 0.999956i \(-0.502997\pi\)
−0.00941654 + 0.999956i \(0.502997\pi\)
\(420\) 0 0
\(421\) 15.6810i 0.764246i −0.924112 0.382123i \(-0.875193\pi\)
0.924112 0.382123i \(-0.124807\pi\)
\(422\) −0.416726 + 0.240597i −0.0202859 + 0.0117121i
\(423\) 1.32164 + 0.763050i 0.0642604 + 0.0371008i
\(424\) 14.6247 + 8.44358i 0.710239 + 0.410057i
\(425\) 7.46898 + 12.9366i 0.362299 + 0.627519i
\(426\) 32.2374 1.56191
\(427\) 0 0
\(428\) −30.1114 −1.45549
\(429\) 26.9295 2.70895i 1.30017 0.130790i
\(430\) 3.86296 6.69084i 0.186288 0.322661i
\(431\) 1.33100 + 0.768452i 0.0641119 + 0.0370150i 0.531713 0.846924i \(-0.321548\pi\)
−0.467601 + 0.883939i \(0.654882\pi\)
\(432\) 13.2750 + 22.9930i 0.638696 + 1.10625i
\(433\) 26.0362 1.25122 0.625610 0.780136i \(-0.284850\pi\)
0.625610 + 0.780136i \(0.284850\pi\)
\(434\) 0 0
\(435\) 10.5320i 0.504970i
\(436\) −17.2554 + 9.96239i −0.826382 + 0.477112i
\(437\) 21.5537 + 12.4441i 1.03106 + 0.595280i
\(438\) 31.4719 54.5110i 1.50379 2.60463i
\(439\) 9.56230 + 16.5624i 0.456384 + 0.790479i 0.998767 0.0496519i \(-0.0158112\pi\)
−0.542383 + 0.840131i \(0.682478\pi\)
\(440\) 16.1866i 0.771668i
\(441\) 0 0
\(442\) −12.0811 + 26.8119i −0.574639 + 1.27531i
\(443\) 6.30900 + 10.9275i 0.299750 + 0.519182i 0.976079 0.217418i \(-0.0697635\pi\)
−0.676329 + 0.736600i \(0.736430\pi\)
\(444\) −8.70424 5.02539i −0.413085 0.238495i
\(445\) −2.63093 + 4.55691i −0.124718 + 0.216018i
\(446\) −7.24354 12.5462i −0.342991 0.594079i
\(447\) 6.75528i 0.319514i
\(448\) 0 0
\(449\) 1.02302i 0.0482794i −0.999709 0.0241397i \(-0.992315\pi\)
0.999709 0.0241397i \(-0.00768466\pi\)
\(450\) 1.89369 1.09332i 0.0892693 0.0515397i
\(451\) −17.7562 + 30.7547i −0.836108 + 1.44818i
\(452\) −19.4162 + 33.6299i −0.913261 + 1.58182i
\(453\) 2.27701 1.31464i 0.106983 0.0617669i
\(454\) −9.14903 −0.429385
\(455\) 0 0
\(456\) 46.7777 2.19056
\(457\) −24.7094 + 14.2660i −1.15586 + 0.667335i −0.950308 0.311312i \(-0.899232\pi\)
−0.205550 + 0.978647i \(0.565898\pi\)
\(458\) 7.01810 12.1557i 0.327934 0.567999i
\(459\) −8.79384 + 15.2314i −0.410462 + 0.710940i
\(460\) −11.5879 + 6.69029i −0.540290 + 0.311936i
\(461\) 25.3503i 1.18068i −0.807155 0.590340i \(-0.798994\pi\)
0.807155 0.590340i \(-0.201006\pi\)
\(462\) 0 0
\(463\) 39.6810i 1.84413i 0.387032 + 0.922066i \(0.373500\pi\)
−0.387032 + 0.922066i \(0.626500\pi\)
\(464\) 23.1065 + 40.0216i 1.07269 + 1.85796i
\(465\) 0.925962 1.60381i 0.0429405 0.0743751i
\(466\) −22.1879 12.8102i −1.02783 0.593421i
\(467\) 0.975792 + 1.69012i 0.0451543 + 0.0782095i 0.887719 0.460385i \(-0.152289\pi\)
−0.842565 + 0.538595i \(0.818955\pi\)
\(468\) 2.64974 + 1.19394i 0.122484 + 0.0551897i
\(469\) 0 0
\(470\) 13.1817i 0.608027i
\(471\) −2.42842 4.20615i −0.111896 0.193809i
\(472\) −6.80606 + 11.7884i −0.313274 + 0.542607i
\(473\) 17.8989 + 10.3339i 0.822991 + 0.475154i
\(474\) −52.7789 + 30.4719i −2.42422 + 1.39962i
\(475\) 23.7177i 1.08824i
\(476\) 0 0
\(477\) 0.612127 0.0280274
\(478\) 27.6507 + 47.8924i 1.26471 + 2.19055i
\(479\) 22.6351 + 13.0684i 1.03423 + 0.597111i 0.918192 0.396135i \(-0.129649\pi\)
0.116034 + 0.993245i \(0.462982\pi\)
\(480\) −0.911603 + 1.57894i −0.0416088 + 0.0720686i
\(481\) −5.17878 + 0.520956i −0.236132 + 0.0237535i
\(482\) 73.0127 3.32564
\(483\) 0 0
\(484\) 37.7440 1.71564
\(485\) −6.06959 10.5128i −0.275606 0.477363i
\(486\) 4.32381 + 2.49635i 0.196132 + 0.113237i
\(487\) −18.1540 10.4812i −0.822634 0.474948i 0.0286896 0.999588i \(-0.490867\pi\)
−0.851324 + 0.524640i \(0.824200\pi\)
\(488\) −10.7156 + 6.18664i −0.485071 + 0.280056i
\(489\) 28.9380i 1.30862i
\(490\) 0 0
\(491\) 2.95651 0.133425 0.0667127 0.997772i \(-0.478749\pi\)
0.0667127 + 0.997772i \(0.478749\pi\)
\(492\) 47.7833 27.5877i 2.15424 1.24375i
\(493\) −15.3065 + 26.5117i −0.689372 + 1.19403i
\(494\) 37.8971 27.2763i 1.70507 1.22722i
\(495\) −0.293367 0.508127i −0.0131859 0.0228386i
\(496\) 8.12601i 0.364869i
\(497\) 0 0
\(498\) −6.03032 −0.270225
\(499\) 2.47205 1.42724i 0.110664 0.0638920i −0.443646 0.896202i \(-0.646315\pi\)
0.554311 + 0.832310i \(0.312982\pi\)
\(500\) 23.1936 + 13.3908i 1.03725 + 0.598855i
\(501\) −23.6366 13.6466i −1.05600 0.609684i
\(502\) 46.2518 26.7035i 2.06432 1.19183i
\(503\) 23.8641 1.06405 0.532025 0.846729i \(-0.321431\pi\)
0.532025 + 0.846729i \(0.321431\pi\)
\(504\) 0 0
\(505\) 6.30440i 0.280542i
\(506\) −26.5095 45.9158i −1.17849 2.04121i
\(507\) −21.3404 + 4.33734i −0.947760 + 0.192628i
\(508\) −2.86907 + 4.96937i −0.127294 + 0.220480i
\(509\) 9.69506 5.59745i 0.429726 0.248102i −0.269504 0.962999i \(-0.586860\pi\)
0.699230 + 0.714897i \(0.253526\pi\)
\(510\) −9.22425 −0.408457
\(511\) 0 0
\(512\) 45.1002i 1.99316i
\(513\) 24.1836 13.9624i 1.06773 0.616455i
\(514\) 1.42240 + 0.821222i 0.0627393 + 0.0362226i
\(515\) −3.64690 2.10554i −0.160702 0.0927812i
\(516\) −16.0557 27.8093i −0.706813 1.22424i
\(517\) −35.2628 −1.55086
\(518\) 0 0
\(519\) 3.64244 0.159886
\(520\) 1.30353 + 12.9583i 0.0571637 + 0.568259i
\(521\) 13.2447 22.9405i 0.580262 1.00504i −0.415186 0.909736i \(-0.636284\pi\)
0.995448 0.0953065i \(-0.0303831\pi\)
\(522\) 3.88083 + 2.24060i 0.169859 + 0.0980683i
\(523\) 6.47627 + 11.2172i 0.283188 + 0.490495i 0.972168 0.234285i \(-0.0752748\pi\)
−0.688981 + 0.724780i \(0.741941\pi\)
\(524\) −51.9511 −2.26950
\(525\) 0 0
\(526\) 12.8691i 0.561118i
\(527\) −4.66177 + 2.69147i −0.203070 + 0.117242i
\(528\) −32.2600 18.6253i −1.40393 0.810562i
\(529\) 0.130933 0.226782i 0.00569272 0.00986008i
\(530\) 2.64363 + 4.57890i 0.114832 + 0.198895i
\(531\) 0.493413i 0.0214123i
\(532\) 0 0
\(533\) 11.7381 26.0508i 0.508435 1.12838i
\(534\) 16.1969 + 28.0538i 0.700907 + 1.21401i
\(535\) −4.23585 2.44557i −0.183132 0.105731i
\(536\) 19.6629 34.0572i 0.849308 1.47105i
\(537\) 0.461911 + 0.800053i 0.0199329 + 0.0345249i
\(538\) 67.6140i 2.91505i
\(539\) 0 0
\(540\) 15.0132i 0.646064i
\(541\) −24.3295 + 14.0467i −1.04601 + 0.603913i −0.921529 0.388309i \(-0.873059\pi\)
−0.124479 + 0.992222i \(0.539726\pi\)
\(542\) 23.2750 40.3136i 0.999749 1.73162i
\(543\) −0.428424 + 0.742053i −0.0183854 + 0.0318445i
\(544\) 4.58948 2.64974i 0.196772 0.113607i
\(545\) −3.23647 −0.138635
\(546\) 0 0
\(547\) 14.8192 0.633625 0.316812 0.948488i \(-0.397387\pi\)
0.316812 + 0.948488i \(0.397387\pi\)
\(548\) −11.5405 + 6.66291i −0.492986 + 0.284625i
\(549\) −0.224254 + 0.388419i −0.00957092 + 0.0165773i
\(550\) −25.2628 + 43.7565i −1.07721 + 1.86578i
\(551\) 42.0938 24.3029i 1.79326 1.03534i
\(552\) 42.7367i 1.81900i
\(553\) 0 0
\(554\) 38.2701i 1.62594i
\(555\) −0.816297 1.41387i −0.0346499 0.0600154i
\(556\) −0.518806 + 0.898598i −0.0220023 + 0.0381090i
\(557\) −15.9244 9.19394i −0.674737 0.389560i 0.123132 0.992390i \(-0.460706\pi\)
−0.797869 + 0.602831i \(0.794039\pi\)
\(558\) 0.393983 + 0.682398i 0.0166786 + 0.0288882i
\(559\) −15.1612 6.83146i −0.641253 0.288940i
\(560\) 0 0
\(561\) 24.6761i 1.04183i
\(562\) 30.8222 + 53.3856i 1.30016 + 2.25193i
\(563\) −7.66784 + 13.2811i −0.323161 + 0.559731i −0.981138 0.193307i \(-0.938079\pi\)
0.657978 + 0.753037i \(0.271412\pi\)
\(564\) 47.4474 + 27.3938i 1.99789 + 1.15349i
\(565\) −5.46265 + 3.15386i −0.229815 + 0.132684i
\(566\) 56.7875i 2.38696i
\(567\) 0 0
\(568\) −41.4979 −1.74121
\(569\) 0.661250 + 1.14532i 0.0277210 + 0.0480142i 0.879553 0.475801i \(-0.157842\pi\)
−0.851832 + 0.523815i \(0.824508\pi\)
\(570\) 12.6836 + 7.32288i 0.531258 + 0.306722i
\(571\) −18.9587 + 32.8375i −0.793399 + 1.37421i 0.130452 + 0.991455i \(0.458357\pi\)
−0.923851 + 0.382752i \(0.874976\pi\)
\(572\) −66.8173 + 6.72144i −2.79377 + 0.281038i
\(573\) −27.7137 −1.15776
\(574\) 0 0
\(575\) 21.6688 0.903651
\(576\) 0.574515 + 0.995090i 0.0239381 + 0.0414621i
\(577\) −11.1394 6.43136i −0.463741 0.267741i 0.249875 0.968278i \(-0.419611\pi\)
−0.713616 + 0.700537i \(0.752944\pi\)
\(578\) −13.3094 7.68418i −0.553598 0.319620i
\(579\) 10.7510 6.20711i 0.446798 0.257959i
\(580\) 26.1319i 1.08507i
\(581\) 0 0
\(582\) −74.7328 −3.09777
\(583\) −12.2492 + 7.07205i −0.507308 + 0.292895i
\(584\) −40.5125 + 70.1697i −1.67642 + 2.90364i
\(585\) 0.275777 + 0.383159i 0.0114020 + 0.0158417i
\(586\) −31.2870 54.1907i −1.29246 2.23860i
\(587\) 31.0240i 1.28050i 0.768168 + 0.640248i \(0.221169\pi\)
−0.768168 + 0.640248i \(0.778831\pi\)
\(588\) 0 0
\(589\) 8.54675 0.352163
\(590\) −3.69088 + 2.13093i −0.151951 + 0.0877291i
\(591\) −10.3711 5.98778i −0.426612 0.246304i
\(592\) 6.20388 + 3.58181i 0.254978 + 0.147211i
\(593\) −9.88295 + 5.70593i −0.405844 + 0.234314i −0.689003 0.724759i \(-0.741951\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(594\) −59.4880 −2.44082
\(595\) 0 0
\(596\) 16.7612i 0.686564i
\(597\) −4.27210 7.39949i −0.174845 0.302841i
\(598\) 24.9200 + 34.6233i 1.01906 + 1.41585i
\(599\) −3.68664 + 6.38545i −0.150632 + 0.260902i −0.931460 0.363844i \(-0.881464\pi\)
0.780828 + 0.624746i \(0.214798\pi\)
\(600\) 35.2705 20.3634i 1.43991 0.831334i
\(601\) 17.2144 0.702190 0.351095 0.936340i \(-0.385809\pi\)
0.351095 + 0.936340i \(0.385809\pi\)
\(602\) 0 0
\(603\) 1.42548i 0.0580502i
\(604\) −5.64972 + 3.26187i −0.229884 + 0.132723i
\(605\) 5.30954 + 3.06547i 0.215864 + 0.124629i
\(606\) 33.6121 + 19.4060i 1.36540 + 0.788314i
\(607\) −16.2132 28.0821i −0.658074 1.13982i −0.981114 0.193433i \(-0.938038\pi\)
0.323039 0.946386i \(-0.395295\pi\)
\(608\) −8.41422 −0.341242
\(609\) 0 0
\(610\) −3.87399 −0.156853
\(611\) 28.2299 2.83977i 1.14206 0.114885i
\(612\) 1.32487 2.29474i 0.0535547 0.0927594i
\(613\) −30.9163 17.8496i −1.24870 0.720937i −0.277849 0.960625i \(-0.589622\pi\)
−0.970850 + 0.239688i \(0.922955\pi\)
\(614\) −8.99389 15.5779i −0.362964 0.628672i
\(615\) 8.96239 0.361398
\(616\) 0 0
\(617\) 20.3733i 0.820198i −0.912041 0.410099i \(-0.865494\pi\)
0.912041 0.410099i \(-0.134506\pi\)
\(618\) −22.4515 + 12.9624i −0.903132 + 0.521424i
\(619\) 34.6512 + 20.0059i 1.39275 + 0.804104i 0.993619 0.112790i \(-0.0359787\pi\)
0.399130 + 0.916894i \(0.369312\pi\)
\(620\) −2.29749 + 3.97937i −0.0922695 + 0.159815i
\(621\) 12.7562 + 22.0944i 0.511890 + 0.886620i
\(622\) 50.2189i 2.01359i
\(623\) 0 0
\(624\) 27.3258 + 12.3127i 1.09391 + 0.492900i
\(625\) −9.18536 15.9095i −0.367415 0.636381i
\(626\) −71.2036 41.1094i −2.84587 1.64306i
\(627\) −19.5897 + 33.9303i −0.782336 + 1.35505i
\(628\) 6.02539 + 10.4363i 0.240439 + 0.416453i
\(629\) 4.74543i 0.189213i
\(630\) 0 0
\(631\) 16.3879i 0.652391i −0.945302 0.326195i \(-0.894233\pi\)
0.945302 0.326195i \(-0.105767\pi\)
\(632\) 67.9401 39.2252i 2.70251 1.56030i
\(633\) −0.162435 + 0.281345i −0.00645619 + 0.0111825i
\(634\) −21.1065 + 36.5575i −0.838246 + 1.45188i
\(635\) −0.807198 + 0.466036i −0.0320327 + 0.0184941i
\(636\) 21.9756 0.871388
\(637\) 0 0
\(638\) −103.545 −4.09937
\(639\) −1.30269 + 0.752109i −0.0515336 + 0.0297530i
\(640\) −6.05079 + 10.4803i −0.239178 + 0.414269i
\(641\) −4.11942 + 7.13505i −0.162707 + 0.281817i −0.935839 0.352428i \(-0.885356\pi\)
0.773131 + 0.634246i \(0.218689\pi\)
\(642\) −26.0773 + 15.0557i −1.02919 + 0.594201i
\(643\) 30.4847i 1.20220i 0.799174 + 0.601100i \(0.205271\pi\)
−0.799174 + 0.601100i \(0.794729\pi\)
\(644\) 0 0
\(645\) 5.21600i 0.205380i
\(646\) −21.2853 36.8672i −0.837458 1.45052i
\(647\) 14.4194 24.9751i 0.566884 0.981872i −0.429988 0.902835i \(-0.641482\pi\)
0.996872 0.0790373i \(-0.0251846\pi\)
\(648\) 38.8311 + 22.4191i 1.52543 + 0.880707i
\(649\) −5.70052 9.87360i −0.223765 0.387573i
\(650\) 16.7005 37.0640i 0.655048 1.45377i
\(651\) 0 0
\(652\) 71.8007i 2.81193i
\(653\) −10.7259 18.5778i −0.419738 0.727007i 0.576175 0.817326i \(-0.304545\pi\)
−0.995913 + 0.0903194i \(0.971211\pi\)
\(654\) −9.96239 + 17.2554i −0.389560 + 0.674738i
\(655\) −7.30809 4.21933i −0.285551 0.164863i
\(656\) −34.0572 + 19.6629i −1.32971 + 0.767708i
\(657\) 2.93700i 0.114583i
\(658\) 0 0
\(659\) −50.6589 −1.97339 −0.986696 0.162575i \(-0.948020\pi\)
−0.986696 + 0.162575i \(0.948020\pi\)
\(660\) −10.5320 18.2419i −0.409957 0.710066i
\(661\) 13.4647 + 7.77385i 0.523717 + 0.302368i 0.738454 0.674304i \(-0.235556\pi\)
−0.214737 + 0.976672i \(0.568890\pi\)
\(662\) 13.4436 23.2850i 0.522500 0.904996i
\(663\) 1.98720 + 19.7546i 0.0771765 + 0.767204i
\(664\) 7.76257 0.301246
\(665\) 0 0
\(666\) 0.694644 0.0269169
\(667\) 22.2035 + 38.4575i 0.859722 + 1.48908i
\(668\) 58.6469 + 33.8598i 2.26912 + 1.31007i
\(669\) −8.47031 4.89034i −0.327481 0.189071i
\(670\) 10.6631 6.15633i 0.411950 0.237840i
\(671\) 10.3634i 0.400076i
\(672\) 0 0
\(673\) 26.8700 1.03576 0.517882 0.855452i \(-0.326721\pi\)
0.517882 + 0.855452i \(0.326721\pi\)
\(674\) 6.38119 3.68418i 0.245794 0.141909i
\(675\) 12.1563 21.0554i 0.467897 0.810422i
\(676\) 52.9497 10.7618i 2.03653 0.413915i
\(677\) −8.18783 14.1817i −0.314684 0.545048i 0.664686 0.747122i \(-0.268565\pi\)
−0.979370 + 0.202074i \(0.935232\pi\)
\(678\) 38.8324i 1.49135i
\(679\) 0 0
\(680\) 11.8740 0.455347
\(681\) −5.34926 + 3.08840i −0.204984 + 0.118348i
\(682\) −15.7678 9.10356i −0.603781 0.348593i
\(683\) 13.6821 + 7.89938i 0.523532 + 0.302262i 0.738379 0.674386i \(-0.235592\pi\)
−0.214846 + 0.976648i \(0.568925\pi\)
\(684\) −3.64346 + 2.10356i −0.139311 + 0.0804314i
\(685\) −2.16457 −0.0827041
\(686\) 0 0
\(687\) 9.47627i 0.361542i
\(688\) 11.4436 + 19.8209i 0.436283 + 0.755663i
\(689\) 9.23661 6.64801i 0.351887 0.253269i
\(690\) −6.69029 + 11.5879i −0.254695 + 0.441145i
\(691\) −6.55423 + 3.78409i −0.249335 + 0.143953i −0.619460 0.785029i \(-0.712648\pi\)
0.370125 + 0.928982i \(0.379315\pi\)
\(692\) −9.03761 −0.343558
\(693\) 0 0
\(694\) 76.2638i 2.89493i
\(695\) −0.145963 + 0.0842720i −0.00553671 + 0.00319662i
\(696\) 72.2816 + 41.7318i 2.73983 + 1.58184i
\(697\) −22.5606 13.0254i −0.854545 0.493372i
\(698\) −2.48730 4.30814i −0.0941458 0.163065i
\(699\) −17.2971 −0.654237
\(700\) 0 0
\(701\) −32.6629 −1.23366 −0.616831 0.787096i \(-0.711584\pi\)
−0.616831 + 0.787096i \(0.711584\pi\)
\(702\) 47.6235 4.79066i 1.79743 0.180812i
\(703\) 3.76727 6.52510i 0.142085 0.246099i
\(704\) −22.9930 13.2750i −0.866583 0.500322i
\(705\) 4.44969 + 7.70709i 0.167585 + 0.290266i
\(706\) −42.8119 −1.61125
\(707\) 0 0
\(708\) 17.7137i 0.665722i
\(709\) 21.6692 12.5107i 0.813803 0.469850i −0.0344715 0.999406i \(-0.510975\pi\)
0.848275 + 0.529556i \(0.177641\pi\)
\(710\) −11.2520 6.49635i −0.422281 0.243804i
\(711\) 1.42184 2.46269i 0.0533231 0.0923583i
\(712\) −20.8496 36.1125i −0.781370 1.35337i
\(713\) 7.80843i 0.292428i
\(714\) 0 0
\(715\) −9.94525 4.48119i −0.371931 0.167587i
\(716\) −1.14609 1.98509i −0.0428314 0.0741862i
\(717\) 32.3336 + 18.6678i 1.20752 + 0.697163i
\(718\) 8.81630 15.2703i 0.329021 0.569882i
\(719\) −0.925962 1.60381i −0.0345326 0.0598121i 0.848243 0.529608i \(-0.177661\pi\)
−0.882775 + 0.469796i \(0.844328\pi\)
\(720\) 0.649738i 0.0242143i
\(721\) 0 0
\(722\) 20.4485i 0.761015i
\(723\) 42.6891 24.6466i 1.58763 0.916616i
\(724\) 1.06300 1.84118i 0.0395062 0.0684268i
\(725\) 21.1593 36.6489i 0.785835 1.36111i
\(726\) 32.6873 18.8720i 1.21314 0.700406i
\(727\) −10.8265 −0.401534 −0.200767 0.979639i \(-0.564343\pi\)
−0.200767 + 0.979639i \(0.564343\pi\)
\(728\) 0 0
\(729\) 28.5125 1.05602
\(730\) −21.9696 + 12.6842i −0.813133 + 0.469463i
\(731\) −7.58062 + 13.1300i −0.280380 + 0.485632i
\(732\) −8.05079 + 13.9444i −0.297566 + 0.515399i
\(733\) 20.2879 11.7132i 0.749350 0.432638i −0.0761088 0.997100i \(-0.524250\pi\)
0.825459 + 0.564462i \(0.190916\pi\)
\(734\) 67.6444i 2.49680i
\(735\) 0 0
\(736\) 7.68735i 0.283359i
\(737\) 16.4690 + 28.5251i 0.606643 + 1.05074i
\(738\) −1.90668 + 3.30246i −0.0701858 + 0.121565i
\(739\) −0.416726 0.240597i −0.0153295 0.00885051i 0.492316 0.870417i \(-0.336151\pi\)
−0.507645 + 0.861566i \(0.669484\pi\)
\(740\) 2.02539 + 3.50808i 0.0744549 + 0.128960i
\(741\) 12.9502 28.7407i 0.475736 1.05582i
\(742\) 0 0
\(743\) 13.7889i 0.505866i −0.967484 0.252933i \(-0.918605\pi\)
0.967484 0.252933i \(-0.0813953\pi\)
\(744\) 7.33804 + 12.7099i 0.269026 + 0.465966i
\(745\) −1.36130 + 2.35783i −0.0498740 + 0.0863843i
\(746\) −12.7184 7.34297i −0.465653 0.268845i
\(747\) 0.243681 0.140689i 0.00891581 0.00514754i
\(748\) 61.2262i 2.23865i
\(749\) 0 0
\(750\) 26.7816 0.977927
\(751\) −13.2308 22.9165i −0.482800 0.836235i 0.517005 0.855983i \(-0.327047\pi\)
−0.999805 + 0.0197480i \(0.993714\pi\)
\(752\) −33.8177 19.5247i −1.23321 0.711992i
\(753\) 18.0283 31.2260i 0.656989 1.13794i
\(754\) 82.8933 8.33860i 3.01880 0.303674i
\(755\) −1.05968 −0.0385657
\(756\) 0 0
\(757\) −21.1114 −0.767308 −0.383654 0.923477i \(-0.625334\pi\)
−0.383654 + 0.923477i \(0.625334\pi\)
\(758\) −35.9409 62.2514i −1.30543 2.26107i
\(759\) −30.9992 17.8974i −1.12520 0.649634i
\(760\) −16.3271 9.42644i −0.592245 0.341933i
\(761\) −24.7031 + 14.2623i −0.895487 + 0.517010i −0.875733 0.482795i \(-0.839621\pi\)
−0.0197536 + 0.999805i \(0.506288\pi\)
\(762\) 5.73813i 0.207871i
\(763\) 0 0
\(764\) 68.7631 2.48776
\(765\) 0.372745 0.215205i 0.0134766 0.00778074i
\(766\) 28.8119 49.9037i 1.04102 1.80310i
\(767\) 5.35872 + 7.44529i 0.193492 + 0.268834i
\(768\) 27.3258 + 47.3297i 0.986036 + 1.70786i
\(769\) 25.8388i 0.931769i −0.884845 0.465885i \(-0.845736\pi\)
0.884845 0.465885i \(-0.154264\pi\)
\(770\) 0 0
\(771\) 1.10886 0.0399348
\(772\) −26.6754 + 15.4010i −0.960069 + 0.554296i
\(773\) 23.7300 + 13.7005i 0.853509 + 0.492774i 0.861833 0.507192i \(-0.169316\pi\)
−0.00832435 + 0.999965i \(0.502650\pi\)
\(774\) 1.92200 + 1.10966i 0.0690847 + 0.0398861i
\(775\) 6.44428 3.72061i 0.231485 0.133648i
\(776\) 96.2003 3.45339
\(777\) 0 0
\(778\) 40.0263i 1.43501i
\(779\) 20.6810 + 35.8206i 0.740974 + 1.28340i
\(780\) 9.90048 + 13.7555i 0.354494 + 0.492527i
\(781\) 17.3786 30.1006i 0.621855 1.07708i
\(782\) 33.6824 19.4465i 1.20448 0.695406i
\(783\) 49.8251 1.78060
\(784\) 0 0
\(785\) 1.95746i 0.0698649i
\(786\) −44.9910 + 25.9756i −1.60478 + 0.926518i
\(787\) −26.8676 15.5120i −0.957725 0.552943i −0.0622528 0.998060i \(-0.519828\pi\)
−0.895472 + 0.445118i \(0.853162\pi\)
\(788\) 25.7328 + 14.8568i 0.916694 + 0.529253i
\(789\) −4.34415 7.52429i −0.154656 0.267872i
\(790\) 24.5623 0.873887
\(791\) 0 0
\(792\) 4.64974 0.165221
\(793\) 0.834582 + 8.29651i 0.0296369 + 0.294618i
\(794\) −29.8434 + 51.6904i −1.05910 + 1.83442i
\(795\) 3.09136 + 1.78480i 0.109639 + 0.0633002i
\(796\) 10.5999 + 18.3596i 0.375704 + 0.650738i
\(797\) −16.1378 −0.571629 −0.285815 0.958285i \(-0.592264\pi\)
−0.285815 + 0.958285i \(0.592264\pi\)
\(798\) 0 0
\(799\) 25.8677i 0.915132i
\(800\) −6.34435 + 3.66291i −0.224307 + 0.129503i
\(801\) −1.30901 0.755756i −0.0462515 0.0267033i
\(802\) −3.44358 + 5.96446i −0.121597 + 0.210612i
\(803\) −33.9318 58.7717i −1.19743 2.07401i
\(804\) 51.1754i 1.80482i
\(805\) 0 0
\(806\) 13.3561 + 6.01810i 0.470450 + 0.211978i
\(807\) −22.8242 39.5326i −0.803449 1.39161i
\(808\) −43.2675 24.9805i −1.52214 0.878810i
\(809\) 5.17513 8.96359i 0.181948 0.315143i −0.760596 0.649226i \(-0.775093\pi\)
0.942544 + 0.334083i \(0.108426\pi\)
\(810\) 7.01928 + 12.1578i 0.246632 + 0.427180i
\(811\) 46.3752i 1.62845i −0.580547 0.814227i \(-0.697161\pi\)
0.580547 0.814227i \(-0.302839\pi\)
\(812\) 0 0
\(813\) 31.4274i 1.10221i
\(814\) −13.9004 + 8.02539i −0.487208 + 0.281290i
\(815\) 5.83146 10.1004i 0.204267 0.353801i
\(816\) 13.6629 23.6649i 0.478298 0.828436i
\(817\) 20.8471 12.0361i 0.729349 0.421090i
\(818\) 49.9488 1.74642
\(819\) 0 0
\(820\) −22.2374 −0.776565
\(821\) −48.0980 + 27.7694i −1.67863 + 0.969159i −0.716098 + 0.698000i \(0.754074\pi\)
−0.962534 + 0.271159i \(0.912593\pi\)
\(822\) −6.66291 + 11.5405i −0.232396 + 0.402521i
\(823\) −10.4162 + 18.0414i −0.363086 + 0.628884i −0.988467 0.151436i \(-0.951610\pi\)
0.625381 + 0.780320i \(0.284944\pi\)
\(824\) 28.9009 16.6859i 1.00681 0.581282i
\(825\) 34.1114i 1.18761i
\(826\) 0 0
\(827\) 2.47295i 0.0859927i 0.999075 + 0.0429964i \(0.0136904\pi\)
−0.999075 + 0.0429964i \(0.986310\pi\)
\(828\) −1.92184 3.32872i −0.0667885 0.115681i
\(829\) −17.2811 + 29.9318i −0.600199 + 1.03958i 0.392591 + 0.919713i \(0.371579\pi\)
−0.992791 + 0.119862i \(0.961755\pi\)
\(830\) 2.10480 + 1.21520i 0.0730585 + 0.0421804i
\(831\) 12.9187 + 22.3758i 0.448144 + 0.776208i
\(832\) 19.4763 + 8.77575i 0.675218 + 0.304244i
\(833\) 0 0
\(834\) 1.03761i 0.0359295i
\(835\) 5.50000 + 9.52628i 0.190335 + 0.329670i
\(836\) 48.6058 84.1877i 1.68107 2.91169i
\(837\) 7.58739 + 4.38058i 0.262258 + 0.151415i
\(838\) 0.828361 0.478255i 0.0286153 0.0165210i
\(839\) 39.9149i 1.37802i −0.724754 0.689008i \(-0.758046\pi\)
0.724754 0.689008i \(-0.241954\pi\)
\(840\) 0 0
\(841\) 57.7255 1.99053
\(842\) 19.4538 + 33.6950i 0.670423 + 1.16121i
\(843\) 36.0423 + 20.8090i 1.24136 + 0.716700i
\(844\) 0.403032 0.698071i 0.0138729 0.0240286i
\(845\) 8.32260 + 2.78654i 0.286306 + 0.0958599i
\(846\) −3.78655 −0.130184
\(847\) 0 0
\(848\) −15.6629 −0.537867
\(849\) 19.1695 + 33.2025i 0.657896 + 1.13951i
\(850\) −32.0983 18.5320i −1.10096 0.635642i
\(851\) 5.96142 + 3.44183i 0.204355 + 0.117984i
\(852\) −46.7670 + 27.0010i −1.60221 + 0.925037i
\(853\) 32.6507i 1.11794i −0.829188 0.558969i \(-0.811197\pi\)
0.829188 0.558969i \(-0.188803\pi\)
\(854\) 0 0
\(855\) −0.683380 −0.0233711
\(856\) 33.5681 19.3806i 1.14734 0.662415i
\(857\) −3.81828 + 6.61346i −0.130430 + 0.225911i −0.923842 0.382773i \(-0.874969\pi\)
0.793412 + 0.608684i \(0.208302\pi\)
\(858\) −54.5047 + 39.2296i −1.86076 + 1.33928i
\(859\) 4.48119 + 7.76166i 0.152896 + 0.264824i 0.932291 0.361709i \(-0.117807\pi\)
−0.779395 + 0.626533i \(0.784473\pi\)
\(860\) 12.9419i 0.441316i
\(861\) 0 0
\(862\) −3.81336 −0.129883
\(863\) 40.5318 23.4010i 1.37972 0.796581i 0.387593 0.921830i \(-0.373306\pi\)
0.992125 + 0.125250i \(0.0399732\pi\)
\(864\) −7.46973 4.31265i −0.254125 0.146719i
\(865\) −1.27134 0.734010i −0.0432270 0.0249571i
\(866\) −55.9460 + 32.3004i −1.90112 + 1.09761i
\(867\) −10.3757 −0.352376
\(868\) 0 0
\(869\) 65.7074i 2.22897i
\(870\) 13.0659 + 22.6309i 0.442977 + 0.767259i
\(871\) −15.4815 21.5097i −0.524571 0.728827i
\(872\) 12.8242 22.2121i 0.434281 0.752197i
\(873\) 3.01989 1.74354i 0.102208 0.0590098i
\(874\) −61.7523 −2.08880
\(875\) 0 0
\(876\) 105.439i 3.56246i
\(877\) −8.95522 + 5.17030i −0.302396 + 0.174589i −0.643519 0.765430i \(-0.722526\pi\)
0.341123 + 0.940019i \(0.389193\pi\)
\(878\) −41.0945 23.7259i −1.38687 0.800711i
\(879\) −36.5858 21.1228i −1.23401 0.712456i
\(880\) 7.50659 + 13.0018i 0.253047 + 0.438290i
\(881\) −15.1538 −0.510543 −0.255272 0.966869i \(-0.582165\pi\)
−0.255272 + 0.966869i \(0.582165\pi\)
\(882\) 0 0
\(883\) 51.5983 1.73642 0.868211 0.496196i \(-0.165270\pi\)
0.868211 + 0.496196i \(0.165270\pi\)
\(884\) −4.93063 49.0150i −0.165835 1.64855i
\(885\) −1.43866 + 2.49183i −0.0483600 + 0.0837619i
\(886\) −27.1133 15.6539i −0.910889 0.525902i
\(887\) −2.09332 3.62574i −0.0702868 0.121740i 0.828740 0.559634i \(-0.189058\pi\)
−0.899027 + 0.437893i \(0.855725\pi\)
\(888\) 12.9380 0.434169
\(889\) 0 0
\(890\) 13.0557i 0.437628i
\(891\) −32.5236 + 18.7775i −1.08958 + 0.629070i
\(892\) 21.0165 + 12.1339i 0.703684 + 0.406272i
\(893\) −20.5356 + 35.5687i −0.687199 + 1.19026i
\(894\) 8.38058 + 14.5156i 0.280288 + 0.485474i
\(895\) 0.372330i 0.0124456i
\(896\) 0 0
\(897\) 26.2579 + 11.8315i 0.876726 + 0.395041i
\(898\) 1.26916 + 2.19825i 0.0423524 + 0.0733565i
\(899\) 13.2066 + 7.62482i 0.440464 + 0.254302i
\(900\) −1.83146 + 3.17217i −0.0610485 + 0.105739i
\(901\) −5.18783 8.98558i −0.172832 0.299353i
\(902\) 88.1133i 2.93385i
\(903\) 0 0
\(904\) 49.9873i 1.66255i
\(905\) 0.299071 0.172669i 0.00994145 0.00573970i
\(906\) −3.26187 + 5.64972i −0.108368 + 0.187699i
\(907\) −4.80242 + 8.31803i −0.159462 + 0.276196i −0.934675 0.355504i \(-0.884309\pi\)
0.775213 + 0.631700i \(0.217642\pi\)
\(908\) 13.2726 7.66291i 0.440465 0.254303i
\(909\) −1.81099 −0.0600667
\(910\) 0 0
\(911\) −1.82653 −0.0605157 −0.0302578 0.999542i \(-0.509633\pi\)
−0.0302578 + 0.999542i \(0.509633\pi\)
\(912\) −37.5738 + 21.6932i −1.24419 + 0.718335i
\(913\) −3.25083 + 5.63060i −0.107587 + 0.186346i
\(914\) 35.3967 61.3089i 1.17082 2.02792i
\(915\) −2.26505 + 1.30773i −0.0748802 + 0.0432321i
\(916\) 23.5125i 0.776874i
\(917\) 0 0
\(918\) 43.6385i 1.44028i
\(919\) −7.89209 13.6695i −0.260336 0.450915i 0.705995 0.708217i \(-0.250500\pi\)
−0.966331 + 0.257301i \(0.917167\pi\)
\(920\) 8.61213 14.9166i 0.283933 0.491787i
\(921\) −10.5171 6.07205i −0.346550 0.200081i
\(922\) 31.4495 + 54.4721i 1.03573 + 1.79394i
\(923\) −11.4885 + 25.4967i −0.378148 + 0.839235i
\(924\) 0 0
\(925\) 6.55993i 0.215689i
\(926\) −49.2281 85.2657i −1.61774 2.80200i
\(927\) 0.604833 1.04760i 0.0198653 0.0344077i
\(928\) −13.0018 7.50659i −0.426805 0.246416i
\(929\) 14.5502 8.40057i 0.477377 0.275614i −0.241946 0.970290i \(-0.577786\pi\)
0.719323 + 0.694676i \(0.244452\pi\)
\(930\) 4.59498i 0.150675i
\(931\) 0 0
\(932\) 42.9175 1.40581
\(933\) −16.9522 29.3620i −0.554989 0.961268i
\(934\) −4.19352 2.42113i −0.137216 0.0792218i
\(935\) −4.97262 + 8.61284i −0.162622 + 0.281670i
\(936\) −3.72237 + 0.374450i −0.121670 + 0.0122393i
\(937\) −38.3004 −1.25122 −0.625610 0.780136i \(-0.715150\pi\)
−0.625610 + 0.780136i \(0.715150\pi\)
\(938\) 0 0
\(939\) −55.5085 −1.81145
\(940\) −11.0406 19.1228i −0.360103 0.623717i
\(941\) −39.1873 22.6248i −1.27747 0.737548i −0.301088 0.953596i \(-0.597350\pi\)
−0.976383 + 0.216048i \(0.930683\pi\)
\(942\) 10.4363 + 6.02539i 0.340033 + 0.196318i
\(943\) −32.7262 + 18.8945i −1.06571 + 0.615288i
\(944\) 12.6253i 0.410919i
\(945\) 0 0
\(946\) −51.2809 −1.66729
\(947\) 4.10212 2.36836i 0.133301 0.0769614i −0.431867 0.901938i \(-0.642145\pi\)
0.565168 + 0.824976i \(0.308812\pi\)
\(948\) 51.0444 88.4116i 1.65785 2.87147i
\(949\) 31.8973 + 44.3174i 1.03543 + 1.43860i
\(950\) 29.4241 + 50.9640i 0.954643 + 1.65349i
\(951\) 28.4993i 0.924153i
\(952\) 0 0
\(953\) −44.8007 −1.45124 −0.725618 0.688098i \(-0.758446\pi\)
−0.725618 + 0.688098i \(0.758446\pi\)
\(954\) −1.31532 + 0.759403i −0.0425852 + 0.0245866i
\(955\) 9.67307 + 5.58475i 0.313013 + 0.180718i
\(956\) −80.2260 46.3185i −2.59470 1.49805i
\(957\) −60.5406 + 34.9531i −1.95700 + 1.12987i
\(958\) −64.8505 −2.09522
\(959\) 0 0
\(960\) 6.70052i 0.216258i
\(961\) −14.1593 24.5246i −0.456750 0.791115i
\(962\) 10.4817 7.54419i 0.337945 0.243235i
\(963\) 0.702508 1.21678i 0.0226380 0.0392102i
\(964\) −105.920 + 61.1529i −3.41145 + 1.96960i
\(965\) −5.00332 −0.161063
\(966\) 0 0
\(967\) 40.6843i 1.30832i 0.756356 + 0.654160i \(0.226978\pi\)
−0.756356 + 0.654160i \(0.773022\pi\)
\(968\) −42.0769 + 24.2931i −1.35240 + 0.780811i
\(969\) −24.8902 14.3703i −0.799587 0.461642i
\(970\) 26.0844 + 15.0598i 0.837520 + 0.483542i
\(971\) 20.7054 + 35.8629i 0.664469 + 1.15089i 0.979429 + 0.201790i \(0.0646758\pi\)
−0.314959 + 0.949105i \(0.601991\pi\)
\(972\) −8.36344 −0.268257
\(973\) 0 0
\(974\) 52.0118 1.66656
\(975\) −2.74704 27.3081i −0.0879757 0.874559i
\(976\) 5.73813 9.93874i 0.183673 0.318131i
\(977\) 43.8271 + 25.3036i 1.40215 + 0.809534i 0.994613 0.103653i \(-0.0330532\pi\)
0.407540 + 0.913187i \(0.366387\pi\)
\(978\) −35.9003 62.1812i −1.14797 1.98834i
\(979\) 34.9257 1.11623
\(980\) 0 0
\(981\) 0.929702i 0.0296831i
\(982\) −6.35288 + 3.66784i −0.202729 + 0.117045i
\(983\) −21.2567 12.2726i −0.677984 0.391434i 0.121111 0.992639i \(-0.461354\pi\)
−0.799095 + 0.601205i \(0.794688\pi\)
\(984\) −35.5125 + 61.5094i −1.13210 + 1.96085i
\(985\) 2.41327 + 4.17990i 0.0768930 + 0.133183i
\(986\) 75.9570i 2.41896i
\(987\) 0 0
\(988\) −32.1319 + 71.3112i −1.02225 + 2.26871i
\(989\) 10.9964 + 19.0462i 0.349664 + 0.605635i
\(990\) 1.26076 + 0.727901i 0.0400696 + 0.0231342i
\(991\) 15.8271 27.4133i 0.502764 0.870814i −0.497230 0.867619i \(-0.665650\pi\)
0.999995 0.00319506i \(-0.00101702\pi\)
\(992\) −1.31994 2.28621i −0.0419083 0.0725873i
\(993\) 18.1524i 0.576048i
\(994\) 0 0
\(995\) 3.44358i 0.109169i
\(996\) 8.74822 5.05079i 0.277198 0.160040i
\(997\) 14.5926 25.2751i 0.462153 0.800472i −0.536915 0.843636i \(-0.680411\pi\)
0.999068 + 0.0431642i \(0.0137439\pi\)
\(998\) −3.54126 + 6.13364i −0.112097 + 0.194157i
\(999\) 6.68879 3.86177i 0.211624 0.122181i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.r.e.116.1 12
7.2 even 3 inner 637.2.r.e.324.6 12
7.3 odd 6 637.2.c.d.246.1 6
7.4 even 3 91.2.c.a.64.1 6
7.5 odd 6 637.2.r.d.324.6 12
7.6 odd 2 637.2.r.d.116.1 12
13.12 even 2 inner 637.2.r.e.116.6 12
21.11 odd 6 819.2.c.b.64.6 6
28.11 odd 6 1456.2.k.c.337.2 6
91.12 odd 6 637.2.r.d.324.1 12
91.18 odd 12 1183.2.a.h.1.1 3
91.25 even 6 91.2.c.a.64.6 yes 6
91.31 even 12 8281.2.a.be.1.1 3
91.38 odd 6 637.2.c.d.246.6 6
91.51 even 6 inner 637.2.r.e.324.1 12
91.60 odd 12 1183.2.a.j.1.3 3
91.73 even 12 8281.2.a.bi.1.3 3
91.90 odd 2 637.2.r.d.116.6 12
273.116 odd 6 819.2.c.b.64.1 6
364.207 odd 6 1456.2.k.c.337.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.c.a.64.1 6 7.4 even 3
91.2.c.a.64.6 yes 6 91.25 even 6
637.2.c.d.246.1 6 7.3 odd 6
637.2.c.d.246.6 6 91.38 odd 6
637.2.r.d.116.1 12 7.6 odd 2
637.2.r.d.116.6 12 91.90 odd 2
637.2.r.d.324.1 12 91.12 odd 6
637.2.r.d.324.6 12 7.5 odd 6
637.2.r.e.116.1 12 1.1 even 1 trivial
637.2.r.e.116.6 12 13.12 even 2 inner
637.2.r.e.324.1 12 91.51 even 6 inner
637.2.r.e.324.6 12 7.2 even 3 inner
819.2.c.b.64.1 6 273.116 odd 6
819.2.c.b.64.6 6 21.11 odd 6
1183.2.a.h.1.1 3 91.18 odd 12
1183.2.a.j.1.3 3 91.60 odd 12
1456.2.k.c.337.1 6 364.207 odd 6
1456.2.k.c.337.2 6 28.11 odd 6
8281.2.a.be.1.1 3 91.31 even 12
8281.2.a.bi.1.3 3 91.73 even 12