Properties

Label 637.2.r.d.324.3
Level $637$
Weight $2$
Character 637.324
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(116,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.116"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,4,0,0,0,0,2,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 324.3
Root \(1.98293 - 0.531325i\) of defining polynomial
Character \(\chi\) \(=\) 637.324
Dual form 637.2.r.d.116.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.596598 - 0.344446i) q^{2} +(-1.10716 - 1.91766i) q^{3} +(-0.762714 - 1.32106i) q^{4} +(2.78368 + 1.60716i) q^{5} +1.52543i q^{6} +2.42864i q^{8} +(-0.951606 + 1.64823i) q^{9} +(-1.10716 - 1.91766i) q^{10} +(-2.32865 + 1.34445i) q^{11} +(-1.68889 + 2.92525i) q^{12} +(-3.59210 - 0.311108i) q^{13} -7.11753i q^{15} +(-0.688892 + 1.19320i) q^{16} +(-1.79605 - 3.11085i) q^{17} +(1.13545 - 0.655554i) q^{18} +(-7.40120 - 4.27309i) q^{19} -4.90321i q^{20} +1.85236 q^{22} +(-1.64050 + 2.84143i) q^{23} +(4.65730 - 2.68889i) q^{24} +(2.66593 + 4.61752i) q^{25} +(2.03588 + 1.42289i) q^{26} -2.42864 q^{27} +2.05086 q^{29} +(-2.45161 + 4.24631i) q^{30} +(-5.05459 + 2.91827i) q^{31} +(5.02851 - 2.90321i) q^{32} +(5.15637 + 2.97703i) q^{33} +2.47457i q^{34} +2.90321 q^{36} +(3.40636 + 1.96666i) q^{37} +(2.94370 + 5.09863i) q^{38} +(3.38044 + 7.23287i) q^{39} +(-3.90321 + 6.76056i) q^{40} -0.755569i q^{41} -8.80642 q^{43} +(3.55219 + 2.05086i) q^{44} +(-5.29794 + 3.05877i) q^{45} +(1.95744 - 1.13013i) q^{46} +(-1.63027 - 0.941234i) q^{47} +3.05086 q^{48} -3.67307i q^{50} +(-3.97703 + 6.88842i) q^{51} +(2.32876 + 4.98267i) q^{52} +(-1.26271 - 2.18708i) q^{53} +(1.44892 + 0.836535i) q^{54} -8.64296 q^{55} +18.9240i q^{57} +(-1.22354 - 0.706409i) q^{58} +(6.34957 - 3.66593i) q^{59} +(-9.40268 + 5.42864i) q^{60} +(4.52543 - 7.83827i) q^{61} +4.02074 q^{62} -1.24443 q^{64} +(-9.49928 - 6.63911i) q^{65} +(-2.05086 - 3.55219i) q^{66} +(0.371213 - 0.214320i) q^{67} +(-2.73975 + 4.74538i) q^{68} +7.26517 q^{69} +8.98418i q^{71} +(-4.00296 - 2.31111i) q^{72} +(5.01481 - 2.89530i) q^{73} +(-1.35482 - 2.34661i) q^{74} +(5.90321 - 10.2247i) q^{75} +13.0366i q^{76} +(0.474572 - 5.47949i) q^{78} +(2.23975 - 3.87936i) q^{79} +(-3.83531 + 2.21432i) q^{80} +(5.54371 + 9.60199i) q^{81} +(-0.260253 + 0.450771i) q^{82} +10.8272i q^{83} -11.5462i q^{85} +(5.25390 + 3.03334i) q^{86} +(-2.27062 - 3.93284i) q^{87} +(-3.26517 - 5.65545i) q^{88} +(-4.64360 - 2.68098i) q^{89} +4.21432 q^{90} +5.00492 q^{92} +(11.1925 + 6.46198i) q^{93} +(0.648409 + 1.12308i) q^{94} +(-13.7351 - 23.7898i) q^{95} +(-11.1347 - 6.42864i) q^{96} -9.62867i q^{97} -5.11753i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} + 2 q^{9} - 20 q^{12} - 16 q^{13} - 8 q^{16} - 8 q^{17} + 48 q^{22} - 6 q^{23} - 8 q^{25} + 12 q^{26} + 24 q^{27} - 28 q^{29} - 16 q^{30} + 8 q^{36} - 4 q^{38} + 8 q^{39} - 20 q^{40} - 52 q^{43}+ \cdots - 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.596598 0.344446i −0.421859 0.243560i 0.274014 0.961726i \(-0.411649\pi\)
−0.695872 + 0.718166i \(0.744982\pi\)
\(3\) −1.10716 1.91766i −0.639219 1.10716i −0.985604 0.169068i \(-0.945924\pi\)
0.346385 0.938092i \(-0.387409\pi\)
\(4\) −0.762714 1.32106i −0.381357 0.660530i
\(5\) 2.78368 + 1.60716i 1.24490 + 0.718744i 0.970088 0.242754i \(-0.0780508\pi\)
0.274813 + 0.961498i \(0.411384\pi\)
\(6\) 1.52543i 0.622753i
\(7\) 0 0
\(8\) 2.42864i 0.858654i
\(9\) −0.951606 + 1.64823i −0.317202 + 0.549410i
\(10\) −1.10716 1.91766i −0.350115 0.606416i
\(11\) −2.32865 + 1.34445i −0.702114 + 0.405366i −0.808134 0.588998i \(-0.799522\pi\)
0.106020 + 0.994364i \(0.466189\pi\)
\(12\) −1.68889 + 2.92525i −0.487541 + 0.844446i
\(13\) −3.59210 0.311108i −0.996270 0.0862858i
\(14\) 0 0
\(15\) 7.11753i 1.83774i
\(16\) −0.688892 + 1.19320i −0.172223 + 0.298299i
\(17\) −1.79605 3.11085i −0.435607 0.754493i 0.561738 0.827315i \(-0.310133\pi\)
−0.997345 + 0.0728222i \(0.976799\pi\)
\(18\) 1.13545 0.655554i 0.267629 0.154516i
\(19\) −7.40120 4.27309i −1.69795 0.980313i −0.947701 0.319160i \(-0.896599\pi\)
−0.750251 0.661153i \(-0.770067\pi\)
\(20\) 4.90321i 1.09639i
\(21\) 0 0
\(22\) 1.85236 0.394924
\(23\) −1.64050 + 2.84143i −0.342068 + 0.592478i −0.984817 0.173599i \(-0.944460\pi\)
0.642749 + 0.766077i \(0.277794\pi\)
\(24\) 4.65730 2.68889i 0.950667 0.548868i
\(25\) 2.66593 + 4.61752i 0.533185 + 0.923504i
\(26\) 2.03588 + 1.42289i 0.399269 + 0.279052i
\(27\) −2.42864 −0.467392
\(28\) 0 0
\(29\) 2.05086 0.380834 0.190417 0.981703i \(-0.439016\pi\)
0.190417 + 0.981703i \(0.439016\pi\)
\(30\) −2.45161 + 4.24631i −0.447600 + 0.775266i
\(31\) −5.05459 + 2.91827i −0.907831 + 0.524136i −0.879733 0.475469i \(-0.842278\pi\)
−0.0280982 + 0.999605i \(0.508945\pi\)
\(32\) 5.02851 2.90321i 0.888923 0.513220i
\(33\) 5.15637 + 2.97703i 0.897609 + 0.518235i
\(34\) 2.47457i 0.424386i
\(35\) 0 0
\(36\) 2.90321 0.483869
\(37\) 3.40636 + 1.96666i 0.560002 + 0.323317i 0.753146 0.657853i \(-0.228535\pi\)
−0.193144 + 0.981170i \(0.561869\pi\)
\(38\) 2.94370 + 5.09863i 0.477530 + 0.827107i
\(39\) 3.38044 + 7.23287i 0.541303 + 1.15819i
\(40\) −3.90321 + 6.76056i −0.617152 + 1.06894i
\(41\) 0.755569i 0.118000i −0.998258 0.0590000i \(-0.981209\pi\)
0.998258 0.0590000i \(-0.0187912\pi\)
\(42\) 0 0
\(43\) −8.80642 −1.34297 −0.671484 0.741019i \(-0.734343\pi\)
−0.671484 + 0.741019i \(0.734343\pi\)
\(44\) 3.55219 + 2.05086i 0.535512 + 0.309178i
\(45\) −5.29794 + 3.05877i −0.789770 + 0.455974i
\(46\) 1.95744 1.13013i 0.288608 0.166628i
\(47\) −1.63027 0.941234i −0.237799 0.137293i 0.376366 0.926471i \(-0.377174\pi\)
−0.614165 + 0.789178i \(0.710507\pi\)
\(48\) 3.05086 0.440353
\(49\) 0 0
\(50\) 3.67307i 0.519451i
\(51\) −3.97703 + 6.88842i −0.556896 + 0.964572i
\(52\) 2.32876 + 4.98267i 0.322940 + 0.690972i
\(53\) −1.26271 2.18708i −0.173447 0.300419i 0.766176 0.642631i \(-0.222157\pi\)
−0.939623 + 0.342212i \(0.888824\pi\)
\(54\) 1.44892 + 0.836535i 0.197173 + 0.113838i
\(55\) −8.64296 −1.16542
\(56\) 0 0
\(57\) 18.9240i 2.50654i
\(58\) −1.22354 0.706409i −0.160658 0.0927560i
\(59\) 6.34957 3.66593i 0.826644 0.477263i −0.0260585 0.999660i \(-0.508296\pi\)
0.852702 + 0.522398i \(0.174962\pi\)
\(60\) −9.40268 + 5.42864i −1.21388 + 0.700834i
\(61\) 4.52543 7.83827i 0.579422 1.00359i −0.416124 0.909308i \(-0.636612\pi\)
0.995546 0.0942799i \(-0.0300549\pi\)
\(62\) 4.02074 0.510635
\(63\) 0 0
\(64\) −1.24443 −0.155554
\(65\) −9.49928 6.63911i −1.17824 0.823480i
\(66\) −2.05086 3.55219i −0.252443 0.437244i
\(67\) 0.371213 0.214320i 0.0453508 0.0261833i −0.477153 0.878820i \(-0.658331\pi\)
0.522504 + 0.852637i \(0.324998\pi\)
\(68\) −2.73975 + 4.74538i −0.332243 + 0.575462i
\(69\) 7.26517 0.874624
\(70\) 0 0
\(71\) 8.98418i 1.06623i 0.846044 + 0.533113i \(0.178978\pi\)
−0.846044 + 0.533113i \(0.821022\pi\)
\(72\) −4.00296 2.31111i −0.471753 0.272367i
\(73\) 5.01481 2.89530i 0.586939 0.338869i −0.176947 0.984220i \(-0.556622\pi\)
0.763886 + 0.645351i \(0.223289\pi\)
\(74\) −1.35482 2.34661i −0.157494 0.272788i
\(75\) 5.90321 10.2247i 0.681644 1.18064i
\(76\) 13.0366i 1.49540i
\(77\) 0 0
\(78\) 0.474572 5.47949i 0.0537347 0.620431i
\(79\) 2.23975 3.87936i 0.251991 0.436462i −0.712083 0.702096i \(-0.752248\pi\)
0.964074 + 0.265634i \(0.0855812\pi\)
\(80\) −3.83531 + 2.21432i −0.428801 + 0.247568i
\(81\) 5.54371 + 9.60199i 0.615968 + 1.06689i
\(82\) −0.260253 + 0.450771i −0.0287401 + 0.0497793i
\(83\) 10.8272i 1.18844i 0.804304 + 0.594218i \(0.202538\pi\)
−0.804304 + 0.594218i \(0.797462\pi\)
\(84\) 0 0
\(85\) 11.5462i 1.25236i
\(86\) 5.25390 + 3.03334i 0.566542 + 0.327093i
\(87\) −2.27062 3.93284i −0.243436 0.421644i
\(88\) −3.26517 5.65545i −0.348069 0.602873i
\(89\) −4.64360 2.68098i −0.492220 0.284183i 0.233275 0.972411i \(-0.425056\pi\)
−0.725495 + 0.688227i \(0.758389\pi\)
\(90\) 4.21432 0.444228
\(91\) 0 0
\(92\) 5.00492 0.521799
\(93\) 11.1925 + 6.46198i 1.16061 + 0.670076i
\(94\) 0.648409 + 1.12308i 0.0668783 + 0.115837i
\(95\) −13.7351 23.7898i −1.40919 2.44078i
\(96\) −11.1347 6.42864i −1.13643 0.656120i
\(97\) 9.62867i 0.977643i −0.872384 0.488822i \(-0.837427\pi\)
0.872384 0.488822i \(-0.162573\pi\)
\(98\) 0 0
\(99\) 5.11753i 0.514331i
\(100\) 4.06668 7.04369i 0.406668 0.704369i
\(101\) −6.84691 11.8592i −0.681293 1.18003i −0.974587 0.224011i \(-0.928085\pi\)
0.293294 0.956022i \(-0.405249\pi\)
\(102\) 4.74538 2.73975i 0.469863 0.271275i
\(103\) −6.14764 + 10.6480i −0.605745 + 1.04918i 0.386188 + 0.922420i \(0.373792\pi\)
−0.991933 + 0.126761i \(0.959542\pi\)
\(104\) 0.755569 8.72393i 0.0740896 0.855451i
\(105\) 0 0
\(106\) 1.73975i 0.168979i
\(107\) 9.09457 15.7522i 0.879205 1.52283i 0.0269898 0.999636i \(-0.491408\pi\)
0.852215 0.523192i \(-0.175259\pi\)
\(108\) 1.85236 + 3.20838i 0.178243 + 0.308726i
\(109\) 7.24167 4.18098i 0.693626 0.400465i −0.111343 0.993782i \(-0.535515\pi\)
0.804969 + 0.593317i \(0.202182\pi\)
\(110\) 5.15637 + 2.97703i 0.491641 + 0.283849i
\(111\) 8.70964i 0.826682i
\(112\) 0 0
\(113\) −8.46520 −0.796339 −0.398170 0.917312i \(-0.630354\pi\)
−0.398170 + 0.917312i \(0.630354\pi\)
\(114\) 6.51828 11.2900i 0.610493 1.05741i
\(115\) −9.13325 + 5.27309i −0.851680 + 0.491718i
\(116\) −1.56422 2.70930i −0.145234 0.251552i
\(117\) 3.93104 5.62456i 0.363425 0.519991i
\(118\) −5.05086 −0.464969
\(119\) 0 0
\(120\) 17.2859 1.57798
\(121\) −1.88493 + 3.26479i −0.171357 + 0.296799i
\(122\) −5.39972 + 3.11753i −0.488868 + 0.282248i
\(123\) −1.44892 + 0.836535i −0.130645 + 0.0754279i
\(124\) 7.71041 + 4.45161i 0.692415 + 0.399766i
\(125\) 1.06668i 0.0954065i
\(126\) 0 0
\(127\) −4.08742 −0.362700 −0.181350 0.983419i \(-0.558047\pi\)
−0.181350 + 0.983419i \(0.558047\pi\)
\(128\) −9.31460 5.37778i −0.823302 0.475333i
\(129\) 9.75012 + 16.8877i 0.858450 + 1.48688i
\(130\) 3.38044 + 7.23287i 0.296484 + 0.634365i
\(131\) 2.96989 5.14400i 0.259480 0.449433i −0.706622 0.707591i \(-0.749782\pi\)
0.966103 + 0.258158i \(0.0831154\pi\)
\(132\) 9.08250i 0.790530i
\(133\) 0 0
\(134\) −0.295286 −0.0255089
\(135\) −6.76056 3.90321i −0.581856 0.335935i
\(136\) 7.55514 4.36196i 0.647848 0.374035i
\(137\) −14.1699 + 8.18098i −1.21061 + 0.698948i −0.962893 0.269883i \(-0.913015\pi\)
−0.247721 + 0.968831i \(0.579682\pi\)
\(138\) −4.33439 2.50246i −0.368968 0.213024i
\(139\) −3.03011 −0.257011 −0.128505 0.991709i \(-0.541018\pi\)
−0.128505 + 0.991709i \(0.541018\pi\)
\(140\) 0 0
\(141\) 4.16839i 0.351041i
\(142\) 3.09457 5.35994i 0.259690 0.449797i
\(143\) 8.78302 4.10493i 0.734473 0.343271i
\(144\) −1.31111 2.27091i −0.109259 0.189242i
\(145\) 5.70893 + 3.29605i 0.474101 + 0.273722i
\(146\) −3.98910 −0.330140
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) 12.5892 + 7.26840i 1.03135 + 0.595451i 0.917371 0.398032i \(-0.130307\pi\)
0.113979 + 0.993483i \(0.463640\pi\)
\(150\) −7.04369 + 4.06668i −0.575115 + 0.332043i
\(151\) 17.2987 9.98741i 1.40775 0.812764i 0.412577 0.910923i \(-0.364629\pi\)
0.995171 + 0.0981592i \(0.0312954\pi\)
\(152\) 10.3778 17.9748i 0.841749 1.45795i
\(153\) 6.83654 0.552701
\(154\) 0 0
\(155\) −18.7605 −1.50688
\(156\) 6.97674 9.98236i 0.558587 0.799229i
\(157\) 3.69926 + 6.40731i 0.295233 + 0.511359i 0.975039 0.222033i \(-0.0712693\pi\)
−0.679806 + 0.733392i \(0.737936\pi\)
\(158\) −2.67246 + 1.54294i −0.212609 + 0.122750i
\(159\) −2.79605 + 4.84290i −0.221741 + 0.384067i
\(160\) 18.6637 1.47550
\(161\) 0 0
\(162\) 7.63804i 0.600101i
\(163\) 2.01518 + 1.16346i 0.157841 + 0.0911296i 0.576840 0.816857i \(-0.304286\pi\)
−0.418999 + 0.907987i \(0.637619\pi\)
\(164\) −0.998151 + 0.576283i −0.0779425 + 0.0450001i
\(165\) 9.56914 + 16.5742i 0.744956 + 1.29030i
\(166\) 3.72938 6.45947i 0.289456 0.501352i
\(167\) 3.42219i 0.264817i −0.991195 0.132408i \(-0.957729\pi\)
0.991195 0.132408i \(-0.0422710\pi\)
\(168\) 0 0
\(169\) 12.8064 + 2.23506i 0.985110 + 0.171928i
\(170\) −3.97703 + 6.88842i −0.305025 + 0.528318i
\(171\) 14.0861 8.13259i 1.07719 0.621915i
\(172\) 6.71678 + 11.6338i 0.512150 + 0.887069i
\(173\) −4.13727 + 7.16596i −0.314551 + 0.544818i −0.979342 0.202211i \(-0.935187\pi\)
0.664791 + 0.747029i \(0.268521\pi\)
\(174\) 3.12843i 0.237166i
\(175\) 0 0
\(176\) 3.70471i 0.279253i
\(177\) −14.0600 8.11753i −1.05681 0.610151i
\(178\) 1.84691 + 3.19894i 0.138432 + 0.239770i
\(179\) −8.11285 14.0519i −0.606383 1.05029i −0.991831 0.127556i \(-0.959287\pi\)
0.385449 0.922729i \(-0.374047\pi\)
\(180\) 8.08162 + 4.66593i 0.602368 + 0.347778i
\(181\) −9.20495 −0.684199 −0.342099 0.939664i \(-0.611138\pi\)
−0.342099 + 0.939664i \(0.611138\pi\)
\(182\) 0 0
\(183\) −20.0415 −1.48151
\(184\) −6.90080 3.98418i −0.508734 0.293718i
\(185\) 6.32148 + 10.9491i 0.464764 + 0.804996i
\(186\) −4.45161 7.71041i −0.326408 0.565355i
\(187\) 8.36475 + 4.82939i 0.611691 + 0.353160i
\(188\) 2.87157i 0.209431i
\(189\) 0 0
\(190\) 18.9240i 1.37289i
\(191\) 3.33407 5.77479i 0.241245 0.417849i −0.719824 0.694157i \(-0.755778\pi\)
0.961069 + 0.276308i \(0.0891109\pi\)
\(192\) 1.37778 + 2.38639i 0.0994330 + 0.172223i
\(193\) −17.8431 + 10.3017i −1.28438 + 0.741535i −0.977645 0.210261i \(-0.932569\pi\)
−0.306732 + 0.951796i \(0.599235\pi\)
\(194\) −3.31656 + 5.74445i −0.238115 + 0.412427i
\(195\) −2.21432 + 25.5669i −0.158571 + 1.83088i
\(196\) 0 0
\(197\) 8.36842i 0.596225i −0.954531 0.298112i \(-0.903643\pi\)
0.954531 0.298112i \(-0.0963571\pi\)
\(198\) −1.76271 + 3.05311i −0.125271 + 0.216975i
\(199\) 0.300736 + 0.520890i 0.0213186 + 0.0369249i 0.876488 0.481424i \(-0.159880\pi\)
−0.855169 + 0.518349i \(0.826547\pi\)
\(200\) −11.2143 + 6.47457i −0.792970 + 0.457821i
\(201\) −0.821984 0.474572i −0.0579783 0.0334738i
\(202\) 9.43356i 0.663743i
\(203\) 0 0
\(204\) 12.1334 0.849505
\(205\) 1.21432 2.10326i 0.0848118 0.146898i
\(206\) 7.33534 4.23506i 0.511078 0.295071i
\(207\) −3.12222 5.40784i −0.217009 0.375871i
\(208\) 2.84579 4.07177i 0.197320 0.282326i
\(209\) 22.9797 1.58954
\(210\) 0 0
\(211\) −1.90321 −0.131023 −0.0655113 0.997852i \(-0.520868\pi\)
−0.0655113 + 0.997852i \(0.520868\pi\)
\(212\) −1.92618 + 3.33624i −0.132290 + 0.229134i
\(213\) 17.2286 9.94692i 1.18048 0.681552i
\(214\) −10.8516 + 6.26517i −0.741800 + 0.428279i
\(215\) −24.5143 14.1533i −1.67186 0.965249i
\(216\) 5.89829i 0.401328i
\(217\) 0 0
\(218\) −5.76049 −0.390150
\(219\) −11.1044 6.41112i −0.750365 0.433224i
\(220\) 6.59210 + 11.4179i 0.444440 + 0.769792i
\(221\) 5.48380 + 11.7333i 0.368880 + 0.789265i
\(222\) −3.00000 + 5.19615i −0.201347 + 0.348743i
\(223\) 10.6336i 0.712078i −0.934471 0.356039i \(-0.884127\pi\)
0.934471 0.356039i \(-0.115873\pi\)
\(224\) 0 0
\(225\) −10.1476 −0.676510
\(226\) 5.05033 + 2.91581i 0.335943 + 0.193957i
\(227\) −13.0344 + 7.52543i −0.865125 + 0.499480i −0.865725 0.500520i \(-0.833142\pi\)
0.000600144 1.00000i \(0.499809\pi\)
\(228\) 24.9997 14.4336i 1.65564 0.955886i
\(229\) 5.65930 + 3.26740i 0.373977 + 0.215916i 0.675195 0.737640i \(-0.264060\pi\)
−0.301218 + 0.953555i \(0.597393\pi\)
\(230\) 7.26517 0.479051
\(231\) 0 0
\(232\) 4.98079i 0.327005i
\(233\) −13.9795 + 24.2132i −0.915827 + 1.58626i −0.110141 + 0.993916i \(0.535130\pi\)
−0.805686 + 0.592343i \(0.798203\pi\)
\(234\) −4.28261 + 2.00157i −0.279963 + 0.130847i
\(235\) −3.02543 5.24019i −0.197357 0.341833i
\(236\) −9.68581 5.59210i −0.630492 0.364015i
\(237\) −9.91903 −0.644310
\(238\) 0 0
\(239\) 19.5812i 1.26660i −0.773905 0.633301i \(-0.781699\pi\)
0.773905 0.633301i \(-0.218301\pi\)
\(240\) 8.49261 + 4.90321i 0.548196 + 0.316501i
\(241\) −11.5679 + 6.67876i −0.745157 + 0.430217i −0.823941 0.566675i \(-0.808230\pi\)
0.0787843 + 0.996892i \(0.474896\pi\)
\(242\) 2.24909 1.29851i 0.144577 0.0834716i
\(243\) 8.63259 14.9521i 0.553781 0.959176i
\(244\) −13.8064 −0.883866
\(245\) 0 0
\(246\) 1.15257 0.0734849
\(247\) 25.2565 + 17.6519i 1.60703 + 1.12317i
\(248\) −7.08742 12.2758i −0.450052 0.779512i
\(249\) 20.7628 11.9874i 1.31579 0.759671i
\(250\) 0.367413 0.636377i 0.0232372 0.0402480i
\(251\) 3.29682 0.208093 0.104047 0.994572i \(-0.466821\pi\)
0.104047 + 0.994572i \(0.466821\pi\)
\(252\) 0 0
\(253\) 8.82225i 0.554650i
\(254\) 2.43855 + 1.40790i 0.153008 + 0.0883392i
\(255\) −22.1416 + 12.7835i −1.38656 + 0.800531i
\(256\) 4.94914 + 8.57217i 0.309322 + 0.535761i
\(257\) 11.8469 20.5194i 0.738990 1.27997i −0.213961 0.976842i \(-0.568636\pi\)
0.952951 0.303126i \(-0.0980302\pi\)
\(258\) 13.4336i 0.836337i
\(259\) 0 0
\(260\) −1.52543 + 17.6128i −0.0946030 + 1.09230i
\(261\) −1.95161 + 3.38028i −0.120801 + 0.209234i
\(262\) −3.54366 + 2.04593i −0.218928 + 0.126398i
\(263\) −4.99532 8.65214i −0.308024 0.533514i 0.669906 0.742446i \(-0.266335\pi\)
−0.977930 + 0.208932i \(0.933001\pi\)
\(264\) −7.23014 + 12.5230i −0.444984 + 0.770736i
\(265\) 8.11753i 0.498656i
\(266\) 0 0
\(267\) 11.8731i 0.726622i
\(268\) −0.566258 0.326929i −0.0345897 0.0199704i
\(269\) −9.10171 15.7646i −0.554941 0.961186i −0.997908 0.0646482i \(-0.979407\pi\)
0.442967 0.896538i \(-0.353926\pi\)
\(270\) 2.68889 + 4.65730i 0.163641 + 0.283434i
\(271\) 20.9360 + 12.0874i 1.27177 + 0.734258i 0.975322 0.220789i \(-0.0708634\pi\)
0.296451 + 0.955048i \(0.404197\pi\)
\(272\) 4.94914 0.300086
\(273\) 0 0
\(274\) 11.2716 0.680944
\(275\) −12.4160 7.16839i −0.748714 0.432270i
\(276\) −5.54125 9.59772i −0.333544 0.577715i
\(277\) 0.847673 + 1.46821i 0.0509317 + 0.0882163i 0.890367 0.455243i \(-0.150448\pi\)
−0.839436 + 0.543459i \(0.817114\pi\)
\(278\) 1.80776 + 1.04371i 0.108422 + 0.0625976i
\(279\) 11.1082i 0.665028i
\(280\) 0 0
\(281\) 11.6479i 0.694854i −0.937707 0.347427i \(-0.887055\pi\)
0.937707 0.347427i \(-0.112945\pi\)
\(282\) 1.43578 2.48685i 0.0854997 0.148090i
\(283\) −6.06668 10.5078i −0.360626 0.624623i 0.627438 0.778667i \(-0.284104\pi\)
−0.988064 + 0.154043i \(0.950770\pi\)
\(284\) 11.8686 6.85236i 0.704274 0.406613i
\(285\) −30.4138 + 52.6783i −1.80156 + 3.12039i
\(286\) −6.65386 0.576283i −0.393451 0.0340763i
\(287\) 0 0
\(288\) 11.0509i 0.651178i
\(289\) 2.04839 3.54792i 0.120494 0.208701i
\(290\) −2.27062 3.93284i −0.133336 0.230944i
\(291\) −18.4645 + 10.6605i −1.08241 + 0.624928i
\(292\) −7.64973 4.41657i −0.447666 0.258460i
\(293\) 11.4538i 0.669140i 0.942371 + 0.334570i \(0.108591\pi\)
−0.942371 + 0.334570i \(0.891409\pi\)
\(294\) 0 0
\(295\) 23.5669 1.37212
\(296\) −4.77631 + 8.27282i −0.277618 + 0.480848i
\(297\) 5.65545 3.26517i 0.328162 0.189465i
\(298\) −5.00715 8.67263i −0.290056 0.502392i
\(299\) 6.77683 9.69633i 0.391914 0.560753i
\(300\) −18.0098 −1.03980
\(301\) 0 0
\(302\) −13.7605 −0.791827
\(303\) −15.1612 + 26.2600i −0.870991 + 1.50860i
\(304\) 10.1973 5.88739i 0.584853 0.337665i
\(305\) 25.1947 14.5462i 1.44264 0.832911i
\(306\) −4.07866 2.35482i −0.233162 0.134616i
\(307\) 3.96989i 0.226574i 0.993562 + 0.113287i \(0.0361379\pi\)
−0.993562 + 0.113287i \(0.963862\pi\)
\(308\) 0 0
\(309\) 27.2257 1.54882
\(310\) 11.1925 + 6.46198i 0.635690 + 0.367016i
\(311\) −13.6741 23.6842i −0.775386 1.34301i −0.934577 0.355760i \(-0.884222\pi\)
0.159192 0.987248i \(-0.449111\pi\)
\(312\) −17.5660 + 8.20986i −0.994481 + 0.464792i
\(313\) −9.55162 + 16.5439i −0.539890 + 0.935116i 0.459020 + 0.888426i \(0.348201\pi\)
−0.998909 + 0.0466901i \(0.985133\pi\)
\(314\) 5.09679i 0.287628i
\(315\) 0 0
\(316\) −6.83314 −0.384394
\(317\) −8.58070 4.95407i −0.481940 0.278248i 0.239285 0.970949i \(-0.423087\pi\)
−0.721225 + 0.692701i \(0.756420\pi\)
\(318\) 3.33624 1.92618i 0.187087 0.108015i
\(319\) −4.77572 + 2.75726i −0.267389 + 0.154377i
\(320\) −3.46410 2.00000i −0.193649 0.111803i
\(321\) −40.2766 −2.24802
\(322\) 0 0
\(323\) 30.6987i 1.70812i
\(324\) 8.45653 14.6471i 0.469807 0.813730i
\(325\) −8.13974 17.4160i −0.451511 0.966066i
\(326\) −0.801502 1.38824i −0.0443911 0.0768876i
\(327\) −16.0354 9.25803i −0.886758 0.511970i
\(328\) 1.83500 0.101321
\(329\) 0 0
\(330\) 13.1842i 0.725767i
\(331\) −20.2817 11.7096i −1.11478 0.643620i −0.174718 0.984618i \(-0.555902\pi\)
−0.940064 + 0.340999i \(0.889235\pi\)
\(332\) 14.3033 8.25803i 0.784997 0.453218i
\(333\) −6.48302 + 3.74297i −0.355267 + 0.205114i
\(334\) −1.17876 + 2.04167i −0.0644988 + 0.111715i
\(335\) 1.37778 0.0752764
\(336\) 0 0
\(337\) 7.51606 0.409426 0.204713 0.978822i \(-0.434374\pi\)
0.204713 + 0.978822i \(0.434374\pi\)
\(338\) −6.87043 5.74456i −0.373702 0.312463i
\(339\) 9.37233 + 16.2334i 0.509035 + 0.881675i
\(340\) −15.2532 + 8.80642i −0.827219 + 0.477595i
\(341\) 7.84691 13.5912i 0.424934 0.736007i
\(342\) −11.2050 −0.605894
\(343\) 0 0
\(344\) 21.3876i 1.15314i
\(345\) 20.2239 + 11.6763i 1.08882 + 0.628631i
\(346\) 4.93658 2.85013i 0.265392 0.153224i
\(347\) −2.82225 4.88827i −0.151506 0.262416i 0.780275 0.625436i \(-0.215079\pi\)
−0.931781 + 0.363020i \(0.881746\pi\)
\(348\) −3.46367 + 5.99926i −0.185672 + 0.321594i
\(349\) 24.1590i 1.29320i 0.762828 + 0.646601i \(0.223810\pi\)
−0.762828 + 0.646601i \(0.776190\pi\)
\(350\) 0 0
\(351\) 8.72393 + 0.755569i 0.465649 + 0.0403293i
\(352\) −7.80642 + 13.5211i −0.416084 + 0.720678i
\(353\) −31.2886 + 18.0645i −1.66532 + 0.961474i −0.695213 + 0.718804i \(0.744690\pi\)
−0.970109 + 0.242670i \(0.921977\pi\)
\(354\) 5.59210 + 9.68581i 0.297217 + 0.514795i
\(355\) −14.4390 + 25.0091i −0.766343 + 1.32735i
\(356\) 8.17929i 0.433501i
\(357\) 0 0
\(358\) 11.1778i 0.590763i
\(359\) 15.0799 + 8.70641i 0.795889 + 0.459507i 0.842032 0.539428i \(-0.181360\pi\)
−0.0461427 + 0.998935i \(0.514693\pi\)
\(360\) −7.42864 12.8668i −0.391524 0.678139i
\(361\) 27.0185 + 46.7975i 1.42203 + 2.46302i
\(362\) 5.49166 + 3.17061i 0.288635 + 0.166644i
\(363\) 8.34767 0.438139
\(364\) 0 0
\(365\) 18.6128 0.974241
\(366\) 11.9567 + 6.90321i 0.624987 + 0.360837i
\(367\) 1.46912 + 2.54460i 0.0766876 + 0.132827i 0.901819 0.432114i \(-0.142232\pi\)
−0.825131 + 0.564941i \(0.808899\pi\)
\(368\) −2.26025 3.91487i −0.117824 0.204077i
\(369\) 1.24535 + 0.719004i 0.0648304 + 0.0374298i
\(370\) 8.70964i 0.452792i
\(371\) 0 0
\(372\) 19.7146i 1.02215i
\(373\) 9.38493 16.2552i 0.485933 0.841661i −0.513936 0.857828i \(-0.671813\pi\)
0.999869 + 0.0161675i \(0.00514648\pi\)
\(374\) −3.32693 5.76241i −0.172031 0.297967i
\(375\) 2.04552 1.18098i 0.105630 0.0609856i
\(376\) 2.28592 3.95933i 0.117887 0.204187i
\(377\) −7.36689 0.638037i −0.379414 0.0328606i
\(378\) 0 0
\(379\) 23.6894i 1.21684i 0.793615 + 0.608421i \(0.208197\pi\)
−0.793615 + 0.608421i \(0.791803\pi\)
\(380\) −20.9518 + 36.2897i −1.07481 + 1.86162i
\(381\) 4.52543 + 7.83827i 0.231845 + 0.401567i
\(382\) −3.97820 + 2.29682i −0.203543 + 0.117515i
\(383\) 27.3775 + 15.8064i 1.39893 + 0.807671i 0.994280 0.106803i \(-0.0340614\pi\)
0.404646 + 0.914473i \(0.367395\pi\)
\(384\) 23.8163i 1.21537i
\(385\) 0 0
\(386\) 14.1936 0.722434
\(387\) 8.38025 14.5150i 0.425992 0.737839i
\(388\) −12.7200 + 7.34392i −0.645762 + 0.372831i
\(389\) −10.0279 17.3688i −0.508434 0.880634i −0.999952 0.00976644i \(-0.996891\pi\)
0.491518 0.870867i \(-0.336442\pi\)
\(390\) 10.1275 14.4905i 0.512825 0.733753i
\(391\) 11.7857 0.596027
\(392\) 0 0
\(393\) −13.1526 −0.663459
\(394\) −2.88247 + 4.99258i −0.145217 + 0.251523i
\(395\) 12.4695 7.19926i 0.627408 0.362234i
\(396\) −6.76056 + 3.90321i −0.339731 + 0.196144i
\(397\) −19.8087 11.4366i −0.994169 0.573984i −0.0876515 0.996151i \(-0.527936\pi\)
−0.906518 + 0.422167i \(0.861270\pi\)
\(398\) 0.414349i 0.0207695i
\(399\) 0 0
\(400\) −7.34614 −0.367307
\(401\) −4.86087 2.80642i −0.242740 0.140146i 0.373695 0.927552i \(-0.378091\pi\)
−0.616436 + 0.787405i \(0.711424\pi\)
\(402\) 0.326929 + 0.566258i 0.0163057 + 0.0282424i
\(403\) 19.0645 8.91020i 0.949670 0.443849i
\(404\) −10.4445 + 18.0903i −0.519631 + 0.900028i
\(405\) 35.6385i 1.77089i
\(406\) 0 0
\(407\) −10.5763 −0.524247
\(408\) −16.7295 9.65878i −0.828234 0.478181i
\(409\) 22.6184 13.0588i 1.11841 0.645714i 0.177416 0.984136i \(-0.443226\pi\)
0.940995 + 0.338422i \(0.109893\pi\)
\(410\) −1.44892 + 0.836535i −0.0715571 + 0.0413135i
\(411\) 31.3766 + 18.1153i 1.54770 + 0.893562i
\(412\) 18.7556 0.924021
\(413\) 0 0
\(414\) 4.30174i 0.211419i
\(415\) −17.4010 + 30.1394i −0.854181 + 1.47948i
\(416\) −18.9661 + 8.86423i −0.929892 + 0.434605i
\(417\) 3.35482 + 5.81072i 0.164286 + 0.284552i
\(418\) −13.7097 7.91528i −0.670562 0.387149i
\(419\) 25.2464 1.23337 0.616685 0.787210i \(-0.288475\pi\)
0.616685 + 0.787210i \(0.288475\pi\)
\(420\) 0 0
\(421\) 8.22861i 0.401038i −0.979690 0.200519i \(-0.935737\pi\)
0.979690 0.200519i \(-0.0642628\pi\)
\(422\) 1.13545 + 0.655554i 0.0552730 + 0.0319119i
\(423\) 3.10274 1.79137i 0.150860 0.0870993i
\(424\) 5.31164 3.06668i 0.257956 0.148931i
\(425\) 9.57628 16.5866i 0.464518 0.804569i
\(426\) −13.7047 −0.663996
\(427\) 0 0
\(428\) −27.7462 −1.34116
\(429\) −17.5961 12.2980i −0.849545 0.593753i
\(430\) 9.75012 + 16.8877i 0.470192 + 0.814397i
\(431\) −1.24535 + 0.719004i −0.0599864 + 0.0346332i −0.529693 0.848189i \(-0.677693\pi\)
0.469707 + 0.882822i \(0.344360\pi\)
\(432\) 1.67307 2.89784i 0.0804957 0.139423i
\(433\) −16.5018 −0.793024 −0.396512 0.918029i \(-0.629780\pi\)
−0.396512 + 0.918029i \(0.629780\pi\)
\(434\) 0 0
\(435\) 14.5970i 0.699874i
\(436\) −11.0466 6.37778i −0.529038 0.305440i
\(437\) 24.2833 14.0200i 1.16163 0.670666i
\(438\) 4.41657 + 7.64973i 0.211032 + 0.365518i
\(439\) 5.08097 8.80049i 0.242501 0.420025i −0.718925 0.695088i \(-0.755365\pi\)
0.961426 + 0.275063i \(0.0886988\pi\)
\(440\) 20.9906i 1.00069i
\(441\) 0 0
\(442\) 0.769859 8.88892i 0.0366185 0.422803i
\(443\) −1.60393 + 2.77809i −0.0762052 + 0.131991i −0.901610 0.432550i \(-0.857614\pi\)
0.825405 + 0.564542i \(0.190947\pi\)
\(444\) −11.5059 + 6.64296i −0.546048 + 0.315261i
\(445\) −8.61753 14.9260i −0.408510 0.707560i
\(446\) −3.66270 + 6.34398i −0.173434 + 0.300396i
\(447\) 32.1891i 1.52249i
\(448\) 0 0
\(449\) 18.4099i 0.868817i 0.900716 + 0.434409i \(0.143043\pi\)
−0.900716 + 0.434409i \(0.856957\pi\)
\(450\) 6.05406 + 3.49532i 0.285391 + 0.164771i
\(451\) 1.01582 + 1.75945i 0.0478332 + 0.0828495i
\(452\) 6.45653 + 11.1830i 0.303690 + 0.526006i
\(453\) −38.3048 22.1153i −1.79972 1.03907i
\(454\) 10.3684 0.486614
\(455\) 0 0
\(456\) −45.9595 −2.15225
\(457\) −2.94706 1.70149i −0.137858 0.0795922i 0.429485 0.903074i \(-0.358695\pi\)
−0.567343 + 0.823482i \(0.692028\pi\)
\(458\) −2.25088 3.89865i −0.105177 0.182172i
\(459\) 4.36196 + 7.55514i 0.203599 + 0.352644i
\(460\) 13.9321 + 8.04371i 0.649588 + 0.375040i
\(461\) 17.5714i 0.818380i −0.912449 0.409190i \(-0.865811\pi\)
0.912449 0.409190i \(-0.134189\pi\)
\(462\) 0 0
\(463\) 15.7714i 0.732959i −0.930426 0.366479i \(-0.880563\pi\)
0.930426 0.366479i \(-0.119437\pi\)
\(464\) −1.41282 + 2.44707i −0.0655884 + 0.113602i
\(465\) 20.7709 + 35.9762i 0.963226 + 1.66836i
\(466\) 16.6803 9.63036i 0.772699 0.446118i
\(467\) 1.88347 3.26227i 0.0871567 0.150960i −0.819151 0.573577i \(-0.805555\pi\)
0.906308 + 0.422617i \(0.138889\pi\)
\(468\) −10.4286 0.903212i −0.482064 0.0417510i
\(469\) 0 0
\(470\) 4.16839i 0.192273i
\(471\) 8.19135 14.1878i 0.377438 0.653741i
\(472\) 8.90321 + 15.4208i 0.409804 + 0.709801i
\(473\) 20.5071 11.8398i 0.942916 0.544393i
\(474\) 5.91768 + 3.41657i 0.271808 + 0.156928i
\(475\) 45.5669i 2.09075i
\(476\) 0 0
\(477\) 4.80642 0.220071
\(478\) −6.74467 + 11.6821i −0.308494 + 0.534327i
\(479\) −10.4817 + 6.05162i −0.478922 + 0.276506i −0.719967 0.694008i \(-0.755843\pi\)
0.241045 + 0.970514i \(0.422510\pi\)
\(480\) −20.6637 35.7906i −0.943165 1.63361i
\(481\) −11.6241 8.12420i −0.530016 0.370432i
\(482\) 9.20189 0.419135
\(483\) 0 0
\(484\) 5.75065 0.261393
\(485\) 15.4748 26.8032i 0.702675 1.21707i
\(486\) −10.3004 + 5.94692i −0.467234 + 0.269758i
\(487\) −15.0496 + 8.68889i −0.681963 + 0.393731i −0.800594 0.599207i \(-0.795483\pi\)
0.118631 + 0.992938i \(0.462149\pi\)
\(488\) 19.0363 + 10.9906i 0.861734 + 0.497523i
\(489\) 5.15257i 0.233007i
\(490\) 0 0
\(491\) 19.3921 0.875152 0.437576 0.899181i \(-0.355837\pi\)
0.437576 + 0.899181i \(0.355837\pi\)
\(492\) 2.21023 + 1.27607i 0.0996446 + 0.0575299i
\(493\) −3.68344 6.37991i −0.165894 0.287337i
\(494\) −8.98784 19.2306i −0.404382 0.865226i
\(495\) 8.22469 14.2456i 0.369672 0.640291i
\(496\) 8.04149i 0.361073i
\(497\) 0 0
\(498\) −16.5161 −0.740102
\(499\) 9.24063 + 5.33508i 0.413667 + 0.238831i 0.692364 0.721548i \(-0.256569\pi\)
−0.278697 + 0.960379i \(0.589903\pi\)
\(500\) 1.40914 0.813569i 0.0630188 0.0363839i
\(501\) −6.56258 + 3.78891i −0.293194 + 0.169276i
\(502\) −1.96688 1.13558i −0.0877859 0.0506832i
\(503\) 4.27655 0.190682 0.0953410 0.995445i \(-0.469606\pi\)
0.0953410 + 0.995445i \(0.469606\pi\)
\(504\) 0 0
\(505\) 44.0163i 1.95870i
\(506\) −3.03879 + 5.26334i −0.135091 + 0.233984i
\(507\) −9.89267 27.0329i −0.439349 1.20057i
\(508\) 3.11753 + 5.39972i 0.138318 + 0.239574i
\(509\) 28.6451 + 16.5383i 1.26967 + 0.733046i 0.974926 0.222530i \(-0.0714316\pi\)
0.294746 + 0.955576i \(0.404765\pi\)
\(510\) 17.6128 0.779910
\(511\) 0 0
\(512\) 14.6923i 0.649313i
\(513\) 17.9748 + 10.3778i 0.793609 + 0.458190i
\(514\) −14.1357 + 8.16124i −0.623498 + 0.359977i
\(515\) −34.2262 + 19.7605i −1.50819 + 0.870751i
\(516\) 14.8731 25.7610i 0.654752 1.13406i
\(517\) 5.06175 0.222616
\(518\) 0 0
\(519\) 18.3225 0.804268
\(520\) 16.1240 23.0703i 0.707084 1.01170i
\(521\) 12.1891 + 21.1122i 0.534015 + 0.924942i 0.999210 + 0.0397336i \(0.0126509\pi\)
−0.465195 + 0.885208i \(0.654016\pi\)
\(522\) 2.32865 1.34445i 0.101922 0.0588448i
\(523\) 17.4701 30.2591i 0.763915 1.32314i −0.176903 0.984228i \(-0.556608\pi\)
0.940818 0.338912i \(-0.110059\pi\)
\(524\) −9.06070 −0.395818
\(525\) 0 0
\(526\) 6.88247i 0.300090i
\(527\) 18.1566 + 10.4827i 0.790914 + 0.456635i
\(528\) −7.10437 + 4.10171i −0.309178 + 0.178504i
\(529\) 6.11753 + 10.5959i 0.265980 + 0.460690i
\(530\) −2.79605 + 4.84290i −0.121453 + 0.210362i
\(531\) 13.9541i 0.605555i
\(532\) 0 0
\(533\) −0.235063 + 2.71408i −0.0101817 + 0.117560i
\(534\) 4.08964 7.08347i 0.176976 0.306532i
\(535\) 50.6328 29.2328i 2.18905 1.26385i
\(536\) 0.520505 + 0.901542i 0.0224824 + 0.0389407i
\(537\) −17.9644 + 31.1153i −0.775223 + 1.34273i
\(538\) 12.5402i 0.540646i
\(539\) 0 0
\(540\) 11.9081i 0.512445i
\(541\) −26.4097 15.2477i −1.13544 0.655548i −0.190144 0.981756i \(-0.560896\pi\)
−0.945298 + 0.326208i \(0.894229\pi\)
\(542\) −8.32693 14.4227i −0.357672 0.619506i
\(543\) 10.1914 + 17.6519i 0.437353 + 0.757517i
\(544\) −18.0629 10.4286i −0.774442 0.447124i
\(545\) 26.8780 1.15133
\(546\) 0 0
\(547\) −10.0049 −0.427780 −0.213890 0.976858i \(-0.568613\pi\)
−0.213890 + 0.976858i \(0.568613\pi\)
\(548\) 21.6151 + 12.4795i 0.923352 + 0.533098i
\(549\) 8.61285 + 14.9179i 0.367587 + 0.636680i
\(550\) 4.93825 + 8.55329i 0.210568 + 0.364714i
\(551\) −15.1788 8.76348i −0.646638 0.373337i
\(552\) 17.6445i 0.750999i
\(553\) 0 0
\(554\) 1.16791i 0.0496198i
\(555\) 13.9978 24.2449i 0.594173 1.02914i
\(556\) 2.31111 + 4.00296i 0.0980128 + 0.169763i
\(557\) −12.2920 + 7.09679i −0.520829 + 0.300701i −0.737274 0.675594i \(-0.763887\pi\)
0.216445 + 0.976295i \(0.430554\pi\)
\(558\) −3.82616 + 6.62711i −0.161974 + 0.280548i
\(559\) 31.6336 + 2.73975i 1.33796 + 0.115879i
\(560\) 0 0
\(561\) 21.3876i 0.902986i
\(562\) −4.01207 + 6.94910i −0.169239 + 0.293130i
\(563\) 10.6795 + 18.4975i 0.450088 + 0.779576i 0.998391 0.0567041i \(-0.0180592\pi\)
−0.548303 + 0.836280i \(0.684726\pi\)
\(564\) 5.50668 3.17929i 0.231873 0.133872i
\(565\) −23.5644 13.6049i −0.991364 0.572364i
\(566\) 8.35857i 0.351337i
\(567\) 0 0
\(568\) −21.8193 −0.915519
\(569\) 17.1336 29.6763i 0.718278 1.24409i −0.243404 0.969925i \(-0.578264\pi\)
0.961682 0.274168i \(-0.0884025\pi\)
\(570\) 36.2897 20.9518i 1.52001 0.877576i
\(571\) −18.8247 32.6053i −0.787789 1.36449i −0.927318 0.374273i \(-0.877892\pi\)
0.139529 0.990218i \(-0.455441\pi\)
\(572\) −12.1218 8.47200i −0.506837 0.354232i
\(573\) −14.7654 −0.616834
\(574\) 0 0
\(575\) −17.4938 −0.729541
\(576\) 1.18421 2.05111i 0.0493420 0.0854629i
\(577\) −24.5925 + 14.1985i −1.02380 + 0.591091i −0.915202 0.402995i \(-0.867969\pi\)
−0.108598 + 0.994086i \(0.534636\pi\)
\(578\) −2.44414 + 1.41112i −0.101663 + 0.0586950i
\(579\) 39.5104 + 22.8113i 1.64200 + 0.948007i
\(580\) 10.0558i 0.417543i
\(581\) 0 0
\(582\) 14.6878 0.608830
\(583\) 5.88083 + 3.39530i 0.243559 + 0.140619i
\(584\) 7.03164 + 12.1792i 0.290971 + 0.503977i
\(585\) 19.9824 9.33918i 0.826169 0.386127i
\(586\) 3.94523 6.83333i 0.162976 0.282282i
\(587\) 6.23659i 0.257412i 0.991683 + 0.128706i \(0.0410823\pi\)
−0.991683 + 0.128706i \(0.958918\pi\)
\(588\) 0 0
\(589\) 49.8800 2.05527
\(590\) −14.0600 8.11753i −0.578840 0.334193i
\(591\) −16.0478 + 9.26517i −0.660116 + 0.381118i
\(592\) −4.69323 + 2.70964i −0.192890 + 0.111365i
\(593\) −15.2159 8.78491i −0.624843 0.360753i 0.153909 0.988085i \(-0.450814\pi\)
−0.778752 + 0.627332i \(0.784147\pi\)
\(594\) −4.49871 −0.184584
\(595\) 0 0
\(596\) 22.1748i 0.908317i
\(597\) 0.665926 1.15342i 0.0272545 0.0472062i
\(598\) −7.38291 + 3.45056i −0.301909 + 0.141104i
\(599\) −8.49063 14.7062i −0.346918 0.600879i 0.638782 0.769387i \(-0.279438\pi\)
−0.985700 + 0.168508i \(0.946105\pi\)
\(600\) 24.8320 + 14.3368i 1.01376 + 0.585296i
\(601\) 18.7052 0.763001 0.381500 0.924369i \(-0.375408\pi\)
0.381500 + 0.924369i \(0.375408\pi\)
\(602\) 0 0
\(603\) 0.815792i 0.0332216i
\(604\) −26.3879 15.2351i −1.07371 0.619906i
\(605\) −10.4941 + 6.05877i −0.426645 + 0.246324i
\(606\) 18.0903 10.4445i 0.734870 0.424277i
\(607\) −5.17876 + 8.96987i −0.210199 + 0.364076i −0.951777 0.306791i \(-0.900745\pi\)
0.741577 + 0.670867i \(0.234078\pi\)
\(608\) −49.6227 −2.01247
\(609\) 0 0
\(610\) −20.0415 −0.811456
\(611\) 5.56326 + 3.88820i 0.225065 + 0.157300i
\(612\) −5.21432 9.03147i −0.210776 0.365075i
\(613\) −6.08147 + 3.51114i −0.245628 + 0.141814i −0.617761 0.786366i \(-0.711960\pi\)
0.372133 + 0.928180i \(0.378627\pi\)
\(614\) 1.36741 2.36843i 0.0551843 0.0955820i
\(615\) −5.37778 −0.216853
\(616\) 0 0
\(617\) 29.9813i 1.20700i 0.797363 + 0.603500i \(0.206228\pi\)
−0.797363 + 0.603500i \(0.793772\pi\)
\(618\) −16.2428 9.37778i −0.653381 0.377230i
\(619\) 0.0247512 0.0142901i 0.000994834 0.000574368i −0.499503 0.866312i \(-0.666484\pi\)
0.500497 + 0.865738i \(0.333151\pi\)
\(620\) 14.3089 + 24.7837i 0.574659 + 0.995338i
\(621\) 3.98418 6.90080i 0.159880 0.276920i
\(622\) 18.8399i 0.755412i
\(623\) 0 0
\(624\) −10.9590 0.949145i −0.438711 0.0379962i
\(625\) 11.6153 20.1183i 0.464612 0.804732i
\(626\) 11.3970 6.58004i 0.455514 0.262991i
\(627\) −25.4422 44.0672i −1.01607 1.75988i
\(628\) 5.64296 9.77389i 0.225179 0.390021i
\(629\) 14.1289i 0.563356i
\(630\) 0 0
\(631\) 12.1936i 0.485419i 0.970099 + 0.242709i \(0.0780361\pi\)
−0.970099 + 0.242709i \(0.921964\pi\)
\(632\) 9.42156 + 5.43954i 0.374769 + 0.216373i
\(633\) 2.10716 + 3.64971i 0.0837521 + 0.145063i
\(634\) 3.41282 + 5.91117i 0.135540 + 0.234763i
\(635\) −11.3781 6.56914i −0.451525 0.260688i
\(636\) 8.53035 0.338250
\(637\) 0 0
\(638\) 3.79892 0.150401
\(639\) −14.8080 8.54940i −0.585795 0.338209i
\(640\) −17.2859 29.9401i −0.683286 1.18349i
\(641\) −1.41258 2.44666i −0.0557935 0.0966373i 0.836780 0.547540i \(-0.184436\pi\)
−0.892573 + 0.450903i \(0.851102\pi\)
\(642\) 24.0289 + 13.8731i 0.948346 + 0.547528i
\(643\) 37.7275i 1.48783i 0.668276 + 0.743913i \(0.267032\pi\)
−0.668276 + 0.743913i \(0.732968\pi\)
\(644\) 0 0
\(645\) 62.6800i 2.46802i
\(646\) 10.5741 18.3148i 0.416031 0.720587i
\(647\) −6.18320 10.7096i −0.243087 0.421039i 0.718505 0.695522i \(-0.244827\pi\)
−0.961592 + 0.274483i \(0.911493\pi\)
\(648\) −23.3198 + 13.4637i −0.916087 + 0.528903i
\(649\) −9.85728 + 17.0733i −0.386932 + 0.670186i
\(650\) −1.14272 + 13.1941i −0.0448212 + 0.517513i
\(651\) 0 0
\(652\) 3.54956i 0.139012i
\(653\) 16.5002 28.5793i 0.645704 1.11839i −0.338434 0.940990i \(-0.609897\pi\)
0.984138 0.177402i \(-0.0567694\pi\)
\(654\) 6.37778 + 11.0466i 0.249391 + 0.431958i
\(655\) 16.5345 9.54617i 0.646055 0.373000i
\(656\) 0.901542 + 0.520505i 0.0351993 + 0.0203223i
\(657\) 11.0207i 0.429960i
\(658\) 0 0
\(659\) 32.8118 1.27817 0.639084 0.769137i \(-0.279314\pi\)
0.639084 + 0.769137i \(0.279314\pi\)
\(660\) 14.5970 25.2828i 0.568188 0.984131i
\(661\) −12.7364 + 7.35336i −0.495388 + 0.286013i −0.726807 0.686842i \(-0.758997\pi\)
0.231419 + 0.972854i \(0.425663\pi\)
\(662\) 8.06668 + 13.9719i 0.313520 + 0.543033i
\(663\) 16.4290 23.5067i 0.638048 0.912923i
\(664\) −26.2953 −1.02046
\(665\) 0 0
\(666\) 5.15701 0.199830
\(667\) −3.36442 + 5.82735i −0.130271 + 0.225636i
\(668\) −4.52091 + 2.61015i −0.174919 + 0.100990i
\(669\) −20.3916 + 11.7731i −0.788384 + 0.455174i
\(670\) −0.821984 0.474572i −0.0317560 0.0183343i
\(671\) 24.3368i 0.939511i
\(672\) 0 0
\(673\) −21.2908 −0.820702 −0.410351 0.911928i \(-0.634594\pi\)
−0.410351 + 0.911928i \(0.634594\pi\)
\(674\) −4.48407 2.58888i −0.172720 0.0997198i
\(675\) −6.47457 11.2143i −0.249206 0.431638i
\(676\) −6.81499 18.6228i −0.262115 0.716260i
\(677\) −1.53580 + 2.66008i −0.0590256 + 0.102235i −0.894028 0.448011i \(-0.852133\pi\)
0.835003 + 0.550246i \(0.185466\pi\)
\(678\) 12.9131i 0.495923i
\(679\) 0 0
\(680\) 28.0415 1.07534
\(681\) 28.8624 + 16.6637i 1.10601 + 0.638554i
\(682\) −9.36290 + 5.40567i −0.358524 + 0.206994i
\(683\) 21.4749 12.3985i 0.821713 0.474416i −0.0292935 0.999571i \(-0.509326\pi\)
0.851007 + 0.525154i \(0.175992\pi\)
\(684\) −21.4873 12.4057i −0.821586 0.474343i
\(685\) −52.5926 −2.00946
\(686\) 0 0
\(687\) 14.4701i 0.552070i
\(688\) 6.06668 10.5078i 0.231290 0.400606i
\(689\) 3.85538 + 8.24908i 0.146878 + 0.314265i
\(690\) −8.04371 13.9321i −0.306219 0.530387i
\(691\) −23.4652 13.5476i −0.892658 0.515376i −0.0178467 0.999841i \(-0.505681\pi\)
−0.874811 + 0.484465i \(0.839014\pi\)
\(692\) 12.6222 0.479825
\(693\) 0 0
\(694\) 3.88845i 0.147603i
\(695\) −8.43487 4.86987i −0.319953 0.184725i
\(696\) 9.55144 5.51453i 0.362047 0.209028i
\(697\) −2.35046 + 1.35704i −0.0890302 + 0.0514016i
\(698\) 8.32148 14.4132i 0.314973 0.545549i
\(699\) 61.9101 2.34166
\(700\) 0 0
\(701\) −13.5205 −0.510662 −0.255331 0.966854i \(-0.582185\pi\)
−0.255331 + 0.966854i \(0.582185\pi\)
\(702\) −4.94443 3.45569i −0.186615 0.130427i
\(703\) −16.8074 29.1113i −0.633904 1.09795i
\(704\) 2.89784 1.67307i 0.109217 0.0630562i
\(705\) −6.69926 + 11.6035i −0.252309 + 0.437012i
\(706\) 24.8889 0.936707
\(707\) 0 0
\(708\) 24.7654i 0.930741i
\(709\) −44.1459 25.4876i −1.65793 0.957209i −0.973666 0.227977i \(-0.926789\pi\)
−0.684267 0.729231i \(-0.739878\pi\)
\(710\) 17.2286 9.94692i 0.646577 0.373301i
\(711\) 4.26271 + 7.38324i 0.159864 + 0.276893i
\(712\) 6.51114 11.2776i 0.244015 0.422647i
\(713\) 19.1497i 0.717160i
\(714\) 0 0
\(715\) 31.0464 + 2.68889i 1.16107 + 0.100559i
\(716\) −12.3756 + 21.4351i −0.462496 + 0.801067i
\(717\) −37.5500 + 21.6795i −1.40233 + 0.809637i
\(718\) −5.99778 10.3885i −0.223835 0.387694i
\(719\) −20.7709 + 35.9762i −0.774622 + 1.34169i 0.160384 + 0.987055i \(0.448727\pi\)
−0.935006 + 0.354631i \(0.884607\pi\)
\(720\) 8.42864i 0.314117i
\(721\) 0 0
\(722\) 37.2257i 1.38540i
\(723\) 25.6151 + 14.7889i 0.952637 + 0.550005i
\(724\) 7.02074 + 12.1603i 0.260924 + 0.451933i
\(725\) 5.46743 + 9.46986i 0.203055 + 0.351702i
\(726\) −4.98021 2.87532i −0.184833 0.106713i
\(727\) −20.8988 −0.775092 −0.387546 0.921850i \(-0.626677\pi\)
−0.387546 + 0.921850i \(0.626677\pi\)
\(728\) 0 0
\(729\) −4.96836 −0.184013
\(730\) −11.1044 6.41112i −0.410992 0.237286i
\(731\) 15.8168 + 27.3955i 0.585005 + 1.01326i
\(732\) 15.2859 + 26.4760i 0.564984 + 0.978581i
\(733\) 16.7641 + 9.67876i 0.619196 + 0.357493i 0.776556 0.630048i \(-0.216965\pi\)
−0.157360 + 0.987541i \(0.550298\pi\)
\(734\) 2.02413i 0.0747122i
\(735\) 0 0
\(736\) 19.0509i 0.702224i
\(737\) −0.576283 + 0.998151i −0.0212276 + 0.0367674i
\(738\) −0.495316 0.857913i −0.0182328 0.0315802i
\(739\) 1.13545 0.655554i 0.0417683 0.0241149i −0.478970 0.877831i \(-0.658990\pi\)
0.520739 + 0.853716i \(0.325657\pi\)
\(740\) 9.64296 16.7021i 0.354482 0.613981i
\(741\) 5.88739 67.9768i 0.216279 2.49719i
\(742\) 0 0
\(743\) 21.5210i 0.789528i −0.918783 0.394764i \(-0.870826\pi\)
0.918783 0.394764i \(-0.129174\pi\)
\(744\) −15.6938 + 27.1825i −0.575363 + 0.996558i
\(745\) 23.3630 + 40.4658i 0.855953 + 1.48255i
\(746\) −11.1981 + 6.46520i −0.409990 + 0.236708i
\(747\) −17.8457 10.3032i −0.652939 0.376974i
\(748\) 14.7338i 0.538720i
\(749\) 0 0
\(750\) −1.62714 −0.0594147
\(751\) −8.15878 + 14.1314i −0.297718 + 0.515663i −0.975614 0.219495i \(-0.929559\pi\)
0.677895 + 0.735158i \(0.262892\pi\)
\(752\) 2.24615 1.29682i 0.0819088 0.0472901i
\(753\) −3.65010 6.32217i −0.133017 0.230393i
\(754\) 4.17530 + 2.91815i 0.152055 + 0.106273i
\(755\) 64.2054 2.33667
\(756\) 0 0
\(757\) −18.7462 −0.681342 −0.340671 0.940183i \(-0.610654\pi\)
−0.340671 + 0.940183i \(0.610654\pi\)
\(758\) 8.15971 14.1330i 0.296374 0.513335i
\(759\) −16.9180 + 9.76764i −0.614086 + 0.354543i
\(760\) 57.7769 33.3575i 2.09579 1.21000i
\(761\) 8.91731 + 5.14841i 0.323252 + 0.186630i 0.652841 0.757495i \(-0.273577\pi\)
−0.329589 + 0.944124i \(0.606910\pi\)
\(762\) 6.23506i 0.225873i
\(763\) 0 0
\(764\) −10.1718 −0.368002
\(765\) 19.0307 + 10.9874i 0.688058 + 0.397250i
\(766\) −10.8889 18.8602i −0.393433 0.681445i
\(767\) −23.9488 + 11.1930i −0.864742 + 0.404155i
\(768\) 10.9590 18.9815i 0.395448 0.684937i
\(769\) 9.36641i 0.337761i −0.985637 0.168881i \(-0.945985\pi\)
0.985637 0.168881i \(-0.0540153\pi\)
\(770\) 0 0
\(771\) −52.4657 −1.88951
\(772\) 27.2184 + 15.7146i 0.979612 + 0.565579i
\(773\) 3.21690 1.85728i 0.115704 0.0668017i −0.441031 0.897492i \(-0.645387\pi\)
0.556735 + 0.830690i \(0.312054\pi\)
\(774\) −9.99928 + 5.77309i −0.359417 + 0.207509i
\(775\) −26.9503 15.5598i −0.968084 0.558923i
\(776\) 23.3846 0.839457
\(777\) 0 0
\(778\) 13.8163i 0.495337i
\(779\) −3.22861 + 5.59212i −0.115677 + 0.200358i
\(780\) 35.4643 16.5750i 1.26983 0.593480i
\(781\) −12.0787 20.9210i −0.432211 0.748612i
\(782\) −7.03131 4.05953i −0.251439 0.145169i
\(783\) −4.98079 −0.177999
\(784\) 0 0
\(785\) 23.7812i 0.848789i
\(786\) 7.84680 + 4.53035i 0.279886 + 0.161592i
\(787\) 5.40105 3.11830i 0.192527 0.111155i −0.400638 0.916236i \(-0.631212\pi\)
0.593165 + 0.805081i \(0.297878\pi\)
\(788\) −11.0552 + 6.38271i −0.393824 + 0.227375i
\(789\) −11.0612 + 19.1586i −0.393790 + 0.682064i
\(790\) −9.91903 −0.352903
\(791\) 0 0
\(792\) 12.4286 0.441632
\(793\) −18.6944 + 26.7480i −0.663856 + 0.949849i
\(794\) 7.87855 + 13.6460i 0.279599 + 0.484280i
\(795\) −15.5666 + 8.98741i −0.552092 + 0.318750i
\(796\) 0.458751 0.794580i 0.0162600 0.0281631i
\(797\) −40.0701 −1.41935 −0.709677 0.704527i \(-0.751159\pi\)
−0.709677 + 0.704527i \(0.751159\pi\)
\(798\) 0 0
\(799\) 6.76202i 0.239223i
\(800\) 26.8113 + 15.4795i 0.947922 + 0.547283i
\(801\) 8.83775 5.10248i 0.312266 0.180287i
\(802\) 1.93332 + 3.34861i 0.0682680 + 0.118244i
\(803\) −7.78515 + 13.4843i −0.274732 + 0.475850i
\(804\) 1.44785i 0.0510618i
\(805\) 0 0
\(806\) −14.4429 1.25088i −0.508730 0.0440605i
\(807\) −20.1541 + 34.9079i −0.709458 + 1.22882i
\(808\) 28.8017 16.6287i 1.01324 0.584995i
\(809\) 1.28568 + 2.22686i 0.0452021 + 0.0782924i 0.887741 0.460343i \(-0.152273\pi\)
−0.842539 + 0.538635i \(0.818940\pi\)
\(810\) 12.2755 21.2619i 0.431319 0.747066i
\(811\) 28.3654i 0.996042i 0.867165 + 0.498021i \(0.165940\pi\)
−0.867165 + 0.498021i \(0.834060\pi\)
\(812\) 0 0
\(813\) 53.5308i 1.87741i
\(814\) 6.30979 + 3.64296i 0.221158 + 0.127686i
\(815\) 3.73975 + 6.47743i 0.130998 + 0.226895i
\(816\) −5.47949 9.49076i −0.191821 0.332243i
\(817\) 65.1781 + 37.6306i 2.28029 + 1.31653i
\(818\) −17.9922 −0.629081
\(819\) 0 0
\(820\) −3.70471 −0.129374
\(821\) 27.5263 + 15.8923i 0.960674 + 0.554646i 0.896380 0.443285i \(-0.146187\pi\)
0.0642938 + 0.997931i \(0.479521\pi\)
\(822\) −12.4795 21.6151i −0.435272 0.753914i
\(823\) 15.4565 + 26.7715i 0.538781 + 0.933196i 0.998970 + 0.0453747i \(0.0144482\pi\)
−0.460189 + 0.887821i \(0.652218\pi\)
\(824\) −25.8602 14.9304i −0.900884 0.520125i
\(825\) 31.7462i 1.10526i
\(826\) 0 0
\(827\) 49.7560i 1.73019i −0.501610 0.865094i \(-0.667259\pi\)
0.501610 0.865094i \(-0.332741\pi\)
\(828\) −4.76271 + 8.24926i −0.165516 + 0.286682i
\(829\) 9.95952 + 17.2504i 0.345908 + 0.599131i 0.985518 0.169569i \(-0.0542375\pi\)
−0.639610 + 0.768700i \(0.720904\pi\)
\(830\) 20.7628 11.9874i 0.720687 0.416089i
\(831\) 1.87702 3.25109i 0.0651131 0.112779i
\(832\) 4.47013 + 0.387152i 0.154974 + 0.0134221i
\(833\) 0 0
\(834\) 4.62222i 0.160054i
\(835\) 5.50000 9.52628i 0.190335 0.329670i
\(836\) −17.5270 30.3576i −0.606183 1.04994i
\(837\) 12.2758 7.08742i 0.424313 0.244977i
\(838\) −15.0620 8.69604i −0.520307 0.300400i
\(839\) 11.5625i 0.399181i 0.979879 + 0.199590i \(0.0639611\pi\)
−0.979879 + 0.199590i \(0.936039\pi\)
\(840\) 0 0
\(841\) −24.7940 −0.854965
\(842\) −2.83431 + 4.90917i −0.0976769 + 0.169181i
\(843\) −22.3366 + 12.8961i −0.769315 + 0.444164i
\(844\) 1.45161 + 2.51426i 0.0499663 + 0.0865442i
\(845\) 32.0569 + 26.8037i 1.10279 + 0.922075i
\(846\) −2.46812 −0.0848557
\(847\) 0 0
\(848\) 3.47949 0.119486
\(849\) −13.4336 + 23.2676i −0.461039 + 0.798542i
\(850\) −11.4264 + 6.59703i −0.391922 + 0.226276i
\(851\) −11.1762 + 6.45261i −0.383117 + 0.221193i
\(852\) −26.2809 15.1733i −0.900370 0.519829i
\(853\) 1.74467i 0.0597363i 0.999554 + 0.0298682i \(0.00950875\pi\)
−0.999554 + 0.0298682i \(0.990491\pi\)
\(854\) 0 0
\(855\) 52.2815 1.78799
\(856\) 38.2565 + 22.0874i 1.30758 + 0.754932i
\(857\) 21.1684 + 36.6647i 0.723098 + 1.25244i 0.959752 + 0.280849i \(0.0906160\pi\)
−0.236654 + 0.971594i \(0.576051\pi\)
\(858\) 6.26177 + 13.3979i 0.213773 + 0.457395i
\(859\) −2.68889 + 4.65730i −0.0917438 + 0.158905i −0.908245 0.418439i \(-0.862577\pi\)
0.816501 + 0.577344i \(0.195911\pi\)
\(860\) 43.1798i 1.47242i
\(861\) 0 0
\(862\) 0.990632 0.0337411
\(863\) −13.3620 7.71456i −0.454848 0.262607i 0.255027 0.966934i \(-0.417915\pi\)
−0.709875 + 0.704327i \(0.751249\pi\)
\(864\) −12.2124 + 7.05086i −0.415476 + 0.239875i
\(865\) −23.0337 + 13.2985i −0.783169 + 0.452163i
\(866\) 9.84492 + 5.68397i 0.334544 + 0.193149i
\(867\) −9.07160 −0.308088
\(868\) 0 0
\(869\) 12.0449i 0.408595i
\(870\) −5.02789 + 8.70856i −0.170461 + 0.295248i
\(871\) −1.40011 + 0.654372i −0.0474410 + 0.0221725i
\(872\) 10.1541 + 17.5874i 0.343861 + 0.595585i
\(873\) 15.8703 + 9.16270i 0.537127 + 0.310110i
\(874\) −19.3165 −0.653391
\(875\) 0 0
\(876\) 19.5594i 0.660851i
\(877\) −33.3576 19.2590i −1.12641 0.650331i −0.183378 0.983042i \(-0.558703\pi\)
−0.943029 + 0.332711i \(0.892037\pi\)
\(878\) −6.06259 + 3.50024i −0.204603 + 0.118127i
\(879\) 21.9645 12.6812i 0.740845 0.427727i
\(880\) 5.95407 10.3127i 0.200712 0.347643i
\(881\) −41.7373 −1.40617 −0.703083 0.711108i \(-0.748194\pi\)
−0.703083 + 0.711108i \(0.748194\pi\)
\(882\) 0 0
\(883\) −52.8439 −1.77834 −0.889170 0.457577i \(-0.848717\pi\)
−0.889170 + 0.457577i \(0.848717\pi\)
\(884\) 11.3178 16.1935i 0.380658 0.544648i
\(885\) −26.0923 45.1933i −0.877084 1.51915i
\(886\) 1.91381 1.10494i 0.0642956 0.0371211i
\(887\) 4.49532 7.78612i 0.150938 0.261432i −0.780635 0.624988i \(-0.785104\pi\)
0.931573 + 0.363556i \(0.118437\pi\)
\(888\) 21.1526 0.709834
\(889\) 0 0
\(890\) 11.8731i 0.397987i
\(891\) −25.8187 14.9064i −0.864959 0.499384i
\(892\) −14.0476 + 8.11039i −0.470348 + 0.271556i
\(893\) 8.04395 + 13.9325i 0.269180 + 0.466234i
\(894\) −11.0874 + 19.2040i −0.370819 + 0.642277i
\(895\) 52.1546i 1.74334i
\(896\) 0 0
\(897\) −26.0973 2.26025i −0.871362 0.0754676i
\(898\) 6.34122 10.9833i 0.211609 0.366518i
\(899\) −10.3662 + 5.98494i −0.345733 + 0.199609i
\(900\) 7.73975 + 13.4056i 0.257992 + 0.446855i
\(901\) −4.53580 + 7.85623i −0.151109 + 0.261729i
\(902\) 1.39958i 0.0466010i
\(903\) 0 0
\(904\) 20.5589i 0.683780i
\(905\) −25.6237 14.7938i −0.851759 0.491764i
\(906\) 15.2351 + 26.3879i 0.506151 + 0.876679i
\(907\) −10.3501 17.9270i −0.343671 0.595255i 0.641441 0.767173i \(-0.278337\pi\)
−0.985111 + 0.171918i \(0.945004\pi\)
\(908\) 19.8831 + 11.4795i 0.659843 + 0.380960i
\(909\) 26.0622 0.864430
\(910\) 0 0
\(911\) 29.8988 0.990590 0.495295 0.868725i \(-0.335060\pi\)
0.495295 + 0.868725i \(0.335060\pi\)
\(912\) −22.5800 13.0366i −0.747698 0.431684i
\(913\) −14.5565 25.2127i −0.481751 0.834418i
\(914\) 1.17214 + 2.03021i 0.0387710 + 0.0671533i
\(915\) −55.7891 32.2099i −1.84433 1.06483i
\(916\) 9.96836i 0.329364i
\(917\) 0 0
\(918\) 6.00984i 0.198354i
\(919\) −19.2924 + 33.4154i −0.636397 + 1.10227i 0.349821 + 0.936817i \(0.386242\pi\)
−0.986217 + 0.165455i \(0.947091\pi\)
\(920\) −12.8064 22.1814i −0.422215 0.731298i
\(921\) 7.61289 4.39530i 0.250853 0.144830i
\(922\) −6.05239 + 10.4830i −0.199325 + 0.345241i
\(923\) 2.79505 32.2721i 0.0920001 1.06225i
\(924\) 0 0
\(925\) 20.9719i 0.689552i
\(926\) −5.43239 + 9.40918i −0.178520 + 0.309205i
\(927\) −11.7003 20.2655i −0.384287 0.665605i
\(928\) 10.3127 5.95407i 0.338532 0.195452i
\(929\) 2.81961 + 1.62790i 0.0925085 + 0.0534098i 0.545541 0.838084i \(-0.316324\pi\)
−0.453032 + 0.891494i \(0.649658\pi\)
\(930\) 28.6178i 0.938414i
\(931\) 0 0
\(932\) 42.6494 1.39703
\(933\) −30.2788 + 52.4444i −0.991283 + 1.71695i
\(934\) −2.24735 + 1.29751i −0.0735356 + 0.0424558i
\(935\) 15.5232 + 26.8870i 0.507663 + 0.879298i
\(936\) 13.6600 + 9.54709i 0.446492 + 0.312056i
\(937\) 11.6840 0.381699 0.190849 0.981619i \(-0.438876\pi\)
0.190849 + 0.981619i \(0.438876\pi\)
\(938\) 0 0
\(939\) 42.3007 1.38043
\(940\) −4.61507 + 7.99354i −0.150527 + 0.260720i
\(941\) 36.3470 20.9849i 1.18488 0.684090i 0.227740 0.973722i \(-0.426866\pi\)
0.957138 + 0.289632i \(0.0935330\pi\)
\(942\) −9.77389 + 5.64296i −0.318451 + 0.183858i
\(943\) 2.14689 + 1.23951i 0.0699124 + 0.0403640i
\(944\) 10.1017i 0.328783i
\(945\) 0 0
\(946\) −16.3126 −0.530370
\(947\) −17.6284 10.1778i −0.572846 0.330733i 0.185439 0.982656i \(-0.440629\pi\)
−0.758285 + 0.651923i \(0.773962\pi\)
\(948\) 7.56538 + 13.1036i 0.245712 + 0.425586i
\(949\) −18.9145 + 8.84008i −0.613990 + 0.286961i
\(950\) −15.6953 + 27.1851i −0.509224 + 0.882002i
\(951\) 21.9398i 0.711446i
\(952\) 0 0
\(953\) 30.5496 0.989597 0.494799 0.869008i \(-0.335242\pi\)
0.494799 + 0.869008i \(0.335242\pi\)
\(954\) −2.86750 1.65555i −0.0928389 0.0536005i
\(955\) 18.5620 10.7168i 0.600653 0.346787i
\(956\) −25.8679 + 14.9349i −0.836629 + 0.483028i
\(957\) 10.5750 + 6.10546i 0.341840 + 0.197362i
\(958\) 8.33783 0.269383
\(959\) 0 0
\(960\) 8.85728i 0.285867i
\(961\) 1.53257 2.65449i 0.0494378 0.0856288i
\(962\) 4.13660 + 8.85077i 0.133369 + 0.285360i
\(963\) 17.3089 + 29.9799i 0.557771 + 0.966088i
\(964\) 17.6461 + 10.1880i 0.568342 + 0.328132i
\(965\) −66.2262 −2.13190
\(966\) 0 0
\(967\) 54.4548i 1.75115i 0.483084 + 0.875574i \(0.339516\pi\)
−0.483084 + 0.875574i \(0.660484\pi\)
\(968\) −7.92901 4.57781i −0.254848 0.147137i
\(969\) 58.8697 33.9884i 1.89117 1.09187i
\(970\) −18.4645 + 10.6605i −0.592859 + 0.342287i
\(971\) −27.3017 + 47.2880i −0.876155 + 1.51754i −0.0206267 + 0.999787i \(0.506566\pi\)
−0.855528 + 0.517757i \(0.826767\pi\)
\(972\) −26.3368 −0.844752
\(973\) 0 0
\(974\) 11.9714 0.383589
\(975\) −24.3859 + 34.8915i −0.780975 + 1.11742i
\(976\) 6.23506 + 10.7994i 0.199580 + 0.345682i
\(977\) 28.2735 16.3237i 0.904549 0.522242i 0.0258756 0.999665i \(-0.491763\pi\)
0.878673 + 0.477424i \(0.158429\pi\)
\(978\) −1.77478 + 3.07401i −0.0567512 + 0.0982960i
\(979\) 14.4177 0.460793
\(980\) 0 0
\(981\) 15.9146i 0.508114i
\(982\) −11.5693 6.67952i −0.369190 0.213152i
\(983\) −23.8202 + 13.7526i −0.759745 + 0.438639i −0.829204 0.558946i \(-0.811206\pi\)
0.0694590 + 0.997585i \(0.477873\pi\)
\(984\) −2.03164 3.51891i −0.0647664 0.112179i
\(985\) 13.4494 23.2950i 0.428533 0.742241i
\(986\) 5.07499i 0.161621i
\(987\) 0 0
\(988\) 4.05578 46.8287i 0.129031 1.48982i
\(989\) 14.4469 25.0228i 0.459385 0.795679i
\(990\) −9.81367 + 5.66593i −0.311899 + 0.180075i
\(991\) 3.14695 + 5.45068i 0.0999662 + 0.173147i 0.911670 0.410922i \(-0.134793\pi\)
−0.811704 + 0.584069i \(0.801460\pi\)
\(992\) −16.9447 + 29.3491i −0.537995 + 0.931834i
\(993\) 51.8578i 1.64566i
\(994\) 0 0
\(995\) 1.93332i 0.0612905i
\(996\) −31.6721 18.2859i −1.00357 0.579411i
\(997\) −10.4351 18.0741i −0.330483 0.572413i 0.652124 0.758112i \(-0.273878\pi\)
−0.982607 + 0.185700i \(0.940545\pi\)
\(998\) −3.67529 6.36580i −0.116339 0.201506i
\(999\) −8.27282 4.77631i −0.261740 0.151116i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.r.d.324.3 12
7.2 even 3 637.2.c.d.246.4 6
7.3 odd 6 637.2.r.e.116.4 12
7.4 even 3 inner 637.2.r.d.116.4 12
7.5 odd 6 91.2.c.a.64.4 yes 6
7.6 odd 2 637.2.r.e.324.3 12
13.12 even 2 inner 637.2.r.d.324.4 12
21.5 even 6 819.2.c.b.64.3 6
28.19 even 6 1456.2.k.c.337.6 6
91.5 even 12 1183.2.a.j.1.2 3
91.12 odd 6 91.2.c.a.64.3 6
91.25 even 6 inner 637.2.r.d.116.3 12
91.38 odd 6 637.2.r.e.116.3 12
91.44 odd 12 8281.2.a.bi.1.2 3
91.47 even 12 1183.2.a.h.1.2 3
91.51 even 6 637.2.c.d.246.3 6
91.86 odd 12 8281.2.a.be.1.2 3
91.90 odd 2 637.2.r.e.324.4 12
273.194 even 6 819.2.c.b.64.4 6
364.103 even 6 1456.2.k.c.337.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.c.a.64.3 6 91.12 odd 6
91.2.c.a.64.4 yes 6 7.5 odd 6
637.2.c.d.246.3 6 91.51 even 6
637.2.c.d.246.4 6 7.2 even 3
637.2.r.d.116.3 12 91.25 even 6 inner
637.2.r.d.116.4 12 7.4 even 3 inner
637.2.r.d.324.3 12 1.1 even 1 trivial
637.2.r.d.324.4 12 13.12 even 2 inner
637.2.r.e.116.3 12 91.38 odd 6
637.2.r.e.116.4 12 7.3 odd 6
637.2.r.e.324.3 12 7.6 odd 2
637.2.r.e.324.4 12 91.90 odd 2
819.2.c.b.64.3 6 21.5 even 6
819.2.c.b.64.4 6 273.194 even 6
1183.2.a.h.1.2 3 91.47 even 12
1183.2.a.j.1.2 3 91.5 even 12
1456.2.k.c.337.5 6 364.103 even 6
1456.2.k.c.337.6 6 28.19 even 6
8281.2.a.be.1.2 3 91.86 odd 12
8281.2.a.bi.1.2 3 91.44 odd 12