Properties

Label 637.2.r.d.116.1
Level $637$
Weight $2$
Character 637.116
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(116,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.116"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.r (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,4,0,0,0,0,2,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 116.1
Root \(0.550552 + 0.147520i\) of defining polynomial
Character \(\chi\) \(=\) 637.116
Dual form 637.2.r.d.324.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.14878 + 1.24060i) q^{2} +(0.837565 - 1.45071i) q^{3} +(2.07816 - 3.59948i) q^{4} +(-0.584680 + 0.337565i) q^{5} +4.15633i q^{6} +5.35026i q^{8} +(0.0969683 + 0.167954i) q^{9} +(0.837565 - 1.45071i) q^{10} +(-3.88083 - 2.24060i) q^{11} +(-3.48119 - 6.02961i) q^{12} +(-3.28726 - 1.48119i) q^{13} +1.13093i q^{15} +(-2.48119 - 4.29755i) q^{16} +(-1.64363 + 2.84685i) q^{17} +(-0.416726 - 0.240597i) q^{18} +(4.52007 - 2.60966i) q^{19} +2.80606i q^{20} +11.1187 q^{22} +(-2.38423 - 4.12960i) q^{23} +(7.76166 + 4.48119i) q^{24} +(-2.27210 + 3.93539i) q^{25} +(8.90115 - 0.895406i) q^{26} +5.35026 q^{27} -9.31265 q^{29} +(-1.40303 - 2.43012i) q^{30} +(1.41813 + 0.818760i) q^{31} +(1.39614 + 0.806063i) q^{32} +(-6.50089 + 3.75329i) q^{33} -8.15633i q^{34} +0.806063 q^{36} +(-1.25018 + 0.721791i) q^{37} +(-6.47508 + 11.2152i) q^{38} +(-4.90207 + 3.52825i) q^{39} +(-1.80606 - 3.12819i) q^{40} +7.92478i q^{41} -4.61213 q^{43} +(-16.1300 + 9.31265i) q^{44} +(-0.113391 - 0.0654663i) q^{45} +(10.2463 + 5.91573i) q^{46} +(-6.81481 + 3.93453i) q^{47} -8.31265 q^{48} -11.2750i q^{50} +(2.75329 + 4.76884i) q^{51} +(-12.1630 + 8.75427i) q^{52} +(1.57816 - 2.73346i) q^{53} +(-11.4965 + 6.63752i) q^{54} +3.02539 q^{55} -8.74306i q^{57} +(20.0108 - 11.5532i) q^{58} +(-2.20334 - 1.27210i) q^{59} +(4.07077 + 2.35026i) q^{60} +(-1.15633 - 2.00281i) q^{61} -4.06300 q^{62} +5.92478 q^{64} +(2.42200 - 0.243639i) q^{65} +(9.31265 - 16.1300i) q^{66} +(-6.36551 - 3.67513i) q^{67} +(6.83146 + 11.8324i) q^{68} -7.98778 q^{69} +7.75623i q^{71} +(-0.898598 + 0.518806i) q^{72} +(-13.1152 - 7.57205i) q^{73} +(1.79090 - 3.10194i) q^{74} +(3.80606 + 6.59230i) q^{75} -21.6932i q^{76} +(6.15633 - 13.6629i) q^{78} +(-7.33146 - 12.6985i) q^{79} +(2.90141 + 1.67513i) q^{80} +(4.19029 - 7.25779i) q^{81} +(-9.83146 - 17.0286i) q^{82} +1.45088i q^{83} -2.21933i q^{85} +(9.91043 - 5.72179i) q^{86} +(-7.79995 + 13.5099i) q^{87} +(11.9878 - 20.7634i) q^{88} +(6.74967 - 3.89692i) q^{89} +0.324869 q^{90} -19.8192 q^{92} +(2.37556 - 1.37153i) q^{93} +(9.76234 - 16.9089i) q^{94} +(-1.76187 + 3.05164i) q^{95} +(2.33872 - 1.35026i) q^{96} +17.9805i q^{97} -0.869067i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} + 2 q^{9} - 20 q^{12} - 16 q^{13} - 8 q^{16} - 8 q^{17} + 48 q^{22} - 6 q^{23} - 8 q^{25} + 12 q^{26} + 24 q^{27} - 28 q^{29} - 16 q^{30} + 8 q^{36} - 4 q^{38} + 8 q^{39} - 20 q^{40} - 52 q^{43}+ \cdots - 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.14878 + 1.24060i −1.51941 + 0.877235i −0.519677 + 0.854363i \(0.673948\pi\)
−0.999738 + 0.0228716i \(0.992719\pi\)
\(3\) 0.837565 1.45071i 0.483569 0.837565i −0.516253 0.856436i \(-0.672674\pi\)
0.999822 + 0.0188705i \(0.00600703\pi\)
\(4\) 2.07816 3.59948i 1.03908 1.79974i
\(5\) −0.584680 + 0.337565i −0.261477 + 0.150964i −0.625008 0.780618i \(-0.714904\pi\)
0.363531 + 0.931582i \(0.381571\pi\)
\(6\) 4.15633i 1.69681i
\(7\) 0 0
\(8\) 5.35026i 1.89160i
\(9\) 0.0969683 + 0.167954i 0.0323228 + 0.0559847i
\(10\) 0.837565 1.45071i 0.264861 0.458753i
\(11\) −3.88083 2.24060i −1.17011 0.675565i −0.216407 0.976303i \(-0.569434\pi\)
−0.953707 + 0.300738i \(0.902767\pi\)
\(12\) −3.48119 6.02961i −1.00493 1.74060i
\(13\) −3.28726 1.48119i −0.911721 0.410809i
\(14\) 0 0
\(15\) 1.13093i 0.292006i
\(16\) −2.48119 4.29755i −0.620299 1.07439i
\(17\) −1.64363 + 2.84685i −0.398639 + 0.690462i −0.993558 0.113323i \(-0.963851\pi\)
0.594920 + 0.803785i \(0.297184\pi\)
\(18\) −0.416726 0.240597i −0.0982234 0.0567093i
\(19\) 4.52007 2.60966i 1.03698 0.598698i 0.118000 0.993014i \(-0.462352\pi\)
0.918975 + 0.394315i \(0.129018\pi\)
\(20\) 2.80606i 0.627455i
\(21\) 0 0
\(22\) 11.1187 2.37052
\(23\) −2.38423 4.12960i −0.497145 0.861081i 0.502849 0.864374i \(-0.332285\pi\)
−0.999995 + 0.00329297i \(0.998952\pi\)
\(24\) 7.76166 + 4.48119i 1.58434 + 0.914720i
\(25\) −2.27210 + 3.93539i −0.454420 + 0.787078i
\(26\) 8.90115 0.895406i 1.74566 0.175604i
\(27\) 5.35026 1.02966
\(28\) 0 0
\(29\) −9.31265 −1.72932 −0.864658 0.502361i \(-0.832465\pi\)
−0.864658 + 0.502361i \(0.832465\pi\)
\(30\) −1.40303 2.43012i −0.256157 0.443678i
\(31\) 1.41813 + 0.818760i 0.254704 + 0.147054i 0.621916 0.783084i \(-0.286354\pi\)
−0.367212 + 0.930137i \(0.619688\pi\)
\(32\) 1.39614 + 0.806063i 0.246806 + 0.142493i
\(33\) −6.50089 + 3.75329i −1.13166 + 0.653365i
\(34\) 8.15633i 1.39880i
\(35\) 0 0
\(36\) 0.806063 0.134344
\(37\) −1.25018 + 0.721791i −0.205528 + 0.118662i −0.599231 0.800576i \(-0.704527\pi\)
0.393703 + 0.919238i \(0.371194\pi\)
\(38\) −6.47508 + 11.2152i −1.05040 + 1.81934i
\(39\) −4.90207 + 3.52825i −0.784960 + 0.564972i
\(40\) −1.80606 3.12819i −0.285564 0.494611i
\(41\) 7.92478i 1.23764i 0.785532 + 0.618821i \(0.212389\pi\)
−0.785532 + 0.618821i \(0.787611\pi\)
\(42\) 0 0
\(43\) −4.61213 −0.703343 −0.351671 0.936124i \(-0.614387\pi\)
−0.351671 + 0.936124i \(0.614387\pi\)
\(44\) −16.1300 + 9.31265i −2.43169 + 1.40393i
\(45\) −0.113391 0.0654663i −0.0169033 0.00975914i
\(46\) 10.2463 + 5.91573i 1.51074 + 0.872227i
\(47\) −6.81481 + 3.93453i −0.994043 + 0.573911i −0.906480 0.422248i \(-0.861241\pi\)
−0.0875623 + 0.996159i \(0.527908\pi\)
\(48\) −8.31265 −1.19983
\(49\) 0 0
\(50\) 11.2750i 1.59453i
\(51\) 2.75329 + 4.76884i 0.385538 + 0.667772i
\(52\) −12.1630 + 8.75427i −1.68670 + 1.21400i
\(53\) 1.57816 2.73346i 0.216777 0.375469i −0.737044 0.675845i \(-0.763779\pi\)
0.953821 + 0.300376i \(0.0971121\pi\)
\(54\) −11.4965 + 6.63752i −1.56448 + 0.903252i
\(55\) 3.02539 0.407944
\(56\) 0 0
\(57\) 8.74306i 1.15805i
\(58\) 20.0108 11.5532i 2.62755 1.51702i
\(59\) −2.20334 1.27210i −0.286850 0.165613i 0.349670 0.936873i \(-0.386294\pi\)
−0.636521 + 0.771260i \(0.719627\pi\)
\(60\) 4.07077 + 2.35026i 0.525535 + 0.303417i
\(61\) −1.15633 2.00281i −0.148052 0.256434i 0.782455 0.622707i \(-0.213967\pi\)
−0.930508 + 0.366273i \(0.880634\pi\)
\(62\) −4.06300 −0.516002
\(63\) 0 0
\(64\) 5.92478 0.740597
\(65\) 2.42200 0.243639i 0.300412 0.0302197i
\(66\) 9.31265 16.1300i 1.14631 1.98546i
\(67\) −6.36551 3.67513i −0.777671 0.448989i 0.0579331 0.998320i \(-0.481549\pi\)
−0.835604 + 0.549332i \(0.814882\pi\)
\(68\) 6.83146 + 11.8324i 0.828436 + 1.43489i
\(69\) −7.98778 −0.961616
\(70\) 0 0
\(71\) 7.75623i 0.920496i 0.887791 + 0.460248i \(0.152239\pi\)
−0.887791 + 0.460248i \(0.847761\pi\)
\(72\) −0.898598 + 0.518806i −0.105901 + 0.0611418i
\(73\) −13.1152 7.57205i −1.53502 0.886242i −0.999119 0.0419581i \(-0.986640\pi\)
−0.535896 0.844284i \(-0.680026\pi\)
\(74\) 1.79090 3.10194i 0.208188 0.360593i
\(75\) 3.80606 + 6.59230i 0.439486 + 0.761213i
\(76\) 21.6932i 2.48838i
\(77\) 0 0
\(78\) 6.15633 13.6629i 0.697067 1.54702i
\(79\) −7.33146 12.6985i −0.824853 1.42869i −0.902031 0.431670i \(-0.857924\pi\)
0.0771782 0.997017i \(-0.475409\pi\)
\(80\) 2.90141 + 1.67513i 0.324388 + 0.187285i
\(81\) 4.19029 7.25779i 0.465588 0.806422i
\(82\) −9.83146 17.0286i −1.08570 1.88049i
\(83\) 1.45088i 0.159254i 0.996825 + 0.0796272i \(0.0253730\pi\)
−0.996825 + 0.0796272i \(0.974627\pi\)
\(84\) 0 0
\(85\) 2.21933i 0.240720i
\(86\) 9.91043 5.72179i 1.06867 0.616997i
\(87\) −7.79995 + 13.5099i −0.836243 + 1.44842i
\(88\) 11.9878 20.7634i 1.27790 2.21339i
\(89\) 6.74967 3.89692i 0.715463 0.413073i −0.0976173 0.995224i \(-0.531122\pi\)
0.813081 + 0.582151i \(0.197789\pi\)
\(90\) 0.324869 0.0342442
\(91\) 0 0
\(92\) −19.8192 −2.06630
\(93\) 2.37556 1.37153i 0.246334 0.142221i
\(94\) 9.76234 16.9089i 1.00691 1.74402i
\(95\) −1.76187 + 3.05164i −0.180764 + 0.313092i
\(96\) 2.33872 1.35026i 0.238695 0.137811i
\(97\) 17.9805i 1.82564i 0.408360 + 0.912821i \(0.366101\pi\)
−0.408360 + 0.912821i \(0.633899\pi\)
\(98\) 0 0
\(99\) 0.869067i 0.0873446i
\(100\) 9.44358 + 16.3568i 0.944358 + 1.63568i
\(101\) 4.66902 8.08698i 0.464585 0.804685i −0.534598 0.845107i \(-0.679537\pi\)
0.999183 + 0.0404219i \(0.0128702\pi\)
\(102\) −11.8324 6.83146i −1.17159 0.676415i
\(103\) 3.11871 + 5.40177i 0.307296 + 0.532252i 0.977770 0.209681i \(-0.0672425\pi\)
−0.670474 + 0.741933i \(0.733909\pi\)
\(104\) 7.92478 17.5877i 0.777088 1.72461i
\(105\) 0 0
\(106\) 7.83146i 0.760658i
\(107\) −3.62236 6.27411i −0.350187 0.606541i 0.636095 0.771611i \(-0.280549\pi\)
−0.986282 + 0.165069i \(0.947215\pi\)
\(108\) 11.1187 19.2582i 1.06990 1.85312i
\(109\) −4.15159 2.39692i −0.397650 0.229584i 0.287819 0.957685i \(-0.407070\pi\)
−0.685470 + 0.728101i \(0.740403\pi\)
\(110\) −6.50089 + 3.75329i −0.619836 + 0.357862i
\(111\) 2.41819i 0.229524i
\(112\) 0 0
\(113\) −9.34297 −0.878912 −0.439456 0.898264i \(-0.644829\pi\)
−0.439456 + 0.898264i \(0.644829\pi\)
\(114\) 10.8466 + 18.7869i 1.01588 + 1.75955i
\(115\) 2.78802 + 1.60966i 0.259984 + 0.150102i
\(116\) −19.3532 + 33.5207i −1.79690 + 3.11232i
\(117\) −0.0699872 0.695737i −0.00647032 0.0643209i
\(118\) 6.31265 0.581127
\(119\) 0 0
\(120\) −6.05079 −0.552359
\(121\) 4.54055 + 7.86447i 0.412777 + 0.714951i
\(122\) 4.96937 + 2.86907i 0.449906 + 0.259753i
\(123\) 11.4965 + 6.63752i 1.03661 + 0.598485i
\(124\) 5.89422 3.40303i 0.529317 0.305601i
\(125\) 6.44358i 0.576332i
\(126\) 0 0
\(127\) −1.38058 −0.122507 −0.0612533 0.998122i \(-0.519510\pi\)
−0.0612533 + 0.998122i \(0.519510\pi\)
\(128\) −15.5233 + 8.96239i −1.37208 + 0.792171i
\(129\) −3.86296 + 6.69084i −0.340114 + 0.589096i
\(130\) −4.90207 + 3.52825i −0.429940 + 0.309448i
\(131\) 6.24965 + 10.8247i 0.546034 + 0.945759i 0.998541 + 0.0539980i \(0.0171965\pi\)
−0.452507 + 0.891761i \(0.649470\pi\)
\(132\) 31.1998i 2.71560i
\(133\) 0 0
\(134\) 18.2374 1.57547
\(135\) −3.12819 + 1.80606i −0.269232 + 0.155441i
\(136\) −15.2314 8.79384i −1.30608 0.754066i
\(137\) −2.77661 1.60308i −0.237222 0.136960i 0.376677 0.926345i \(-0.377067\pi\)
−0.613899 + 0.789384i \(0.710400\pi\)
\(138\) 17.1640 9.90962i 1.46109 0.843563i
\(139\) 0.249646 0.0211747 0.0105874 0.999944i \(-0.496630\pi\)
0.0105874 + 0.999944i \(0.496630\pi\)
\(140\) 0 0
\(141\) 13.1817i 1.11010i
\(142\) −9.62236 16.6664i −0.807491 1.39861i
\(143\) 9.43852 + 13.1137i 0.789289 + 1.09662i
\(144\) 0.481194 0.833453i 0.0400995 0.0694544i
\(145\) 5.44492 3.14363i 0.452176 0.261064i
\(146\) 37.5755 3.10977
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) −3.49241 + 2.01634i −0.286109 + 0.165185i −0.636186 0.771536i \(-0.719489\pi\)
0.350077 + 0.936721i \(0.386156\pi\)
\(150\) −16.3568 9.44358i −1.33552 0.771065i
\(151\) −1.35931 0.784795i −0.110619 0.0638657i 0.443670 0.896190i \(-0.353676\pi\)
−0.554289 + 0.832325i \(0.687010\pi\)
\(152\) 13.9624 + 24.1836i 1.13250 + 1.96155i
\(153\) −0.637519 −0.0515404
\(154\) 0 0
\(155\) −1.10554 −0.0887991
\(156\) 2.51257 + 24.9772i 0.201166 + 1.99978i
\(157\) 1.44969 2.51094i 0.115698 0.200395i −0.802361 0.596840i \(-0.796423\pi\)
0.918059 + 0.396445i \(0.129756\pi\)
\(158\) 31.5073 + 18.1908i 2.50659 + 1.44718i
\(159\) −2.64363 4.57890i −0.209653 0.363130i
\(160\) −1.08840 −0.0860453
\(161\) 0 0
\(162\) 20.7938i 1.63372i
\(163\) 14.9606 8.63752i 1.17181 0.676543i 0.217702 0.976015i \(-0.430144\pi\)
0.954105 + 0.299473i \(0.0968107\pi\)
\(164\) 28.5251 + 16.4690i 2.22744 + 1.28601i
\(165\) 2.53396 4.38895i 0.197269 0.341680i
\(166\) −1.79995 3.11761i −0.139704 0.241974i
\(167\) 16.2931i 1.26080i −0.776270 0.630400i \(-0.782891\pi\)
0.776270 0.630400i \(-0.217109\pi\)
\(168\) 0 0
\(169\) 8.61213 + 9.73813i 0.662471 + 0.749087i
\(170\) 2.75329 + 4.76884i 0.211168 + 0.365754i
\(171\) 0.876607 + 0.506109i 0.0670358 + 0.0387032i
\(172\) −9.58475 + 16.6013i −0.730830 + 1.26584i
\(173\) 1.08721 + 1.88311i 0.0826592 + 0.143170i 0.904391 0.426704i \(-0.140325\pi\)
−0.821732 + 0.569874i \(0.806992\pi\)
\(174\) 38.7064i 2.93432i
\(175\) 0 0
\(176\) 22.2374i 1.67621i
\(177\) −3.69088 + 2.13093i −0.277424 + 0.160171i
\(178\) −9.66902 + 16.7472i −0.724724 + 1.25526i
\(179\) 0.275746 0.477607i 0.0206102 0.0356980i −0.855536 0.517743i \(-0.826772\pi\)
0.876147 + 0.482045i \(0.160106\pi\)
\(180\) −0.471290 + 0.272099i −0.0351278 + 0.0202811i
\(181\) −0.511511 −0.0380203 −0.0190102 0.999819i \(-0.506051\pi\)
−0.0190102 + 0.999819i \(0.506051\pi\)
\(182\) 0 0
\(183\) −3.87399 −0.286374
\(184\) 22.0944 12.7562i 1.62882 0.940402i
\(185\) 0.487304 0.844035i 0.0358273 0.0620547i
\(186\) −3.40303 + 5.89422i −0.249522 + 0.432185i
\(187\) 12.7573 7.36542i 0.932905 0.538613i
\(188\) 32.7064i 2.38536i
\(189\) 0 0
\(190\) 8.74306i 0.634288i
\(191\) 8.27210 + 14.3277i 0.598548 + 1.03672i 0.993036 + 0.117814i \(0.0375888\pi\)
−0.394488 + 0.918901i \(0.629078\pi\)
\(192\) 4.96239 8.59511i 0.358130 0.620299i
\(193\) −6.41802 3.70545i −0.461979 0.266724i 0.250897 0.968014i \(-0.419275\pi\)
−0.712876 + 0.701290i \(0.752608\pi\)
\(194\) −22.3065 38.6361i −1.60152 2.77391i
\(195\) 1.67513 3.71767i 0.119959 0.266228i
\(196\) 0 0
\(197\) 7.14903i 0.509347i 0.967027 + 0.254674i \(0.0819681\pi\)
−0.967027 + 0.254674i \(0.918032\pi\)
\(198\) 1.07816 + 1.86743i 0.0766217 + 0.132713i
\(199\) 2.55031 4.41726i 0.180787 0.313131i −0.761362 0.648327i \(-0.775469\pi\)
0.942149 + 0.335195i \(0.108802\pi\)
\(200\) −21.0554 12.1563i −1.48884 0.859582i
\(201\) −10.6631 + 6.15633i −0.752115 + 0.434234i
\(202\) 23.1695i 1.63020i
\(203\) 0 0
\(204\) 22.8872 1.60242
\(205\) −2.67513 4.63346i −0.186839 0.323615i
\(206\) −13.4028 7.73813i −0.933820 0.539141i
\(207\) 0.462389 0.800881i 0.0321382 0.0556650i
\(208\) 1.79081 + 17.8023i 0.124170 + 1.23437i
\(209\) −23.3888 −1.61784
\(210\) 0 0
\(211\) 0.193937 0.0133511 0.00667557 0.999978i \(-0.497875\pi\)
0.00667557 + 0.999978i \(0.497875\pi\)
\(212\) −6.55936 11.3611i −0.450498 0.780286i
\(213\) 11.2520 + 6.49635i 0.770975 + 0.445123i
\(214\) 15.5673 + 8.98778i 1.06416 + 0.614392i
\(215\) 2.69662 1.55689i 0.183908 0.106179i
\(216\) 28.6253i 1.94771i
\(217\) 0 0
\(218\) 11.8945 0.805594
\(219\) −21.9696 + 12.6842i −1.48457 + 0.857117i
\(220\) 6.28726 10.8898i 0.423887 0.734194i
\(221\) 9.61977 6.92379i 0.647096 0.465745i
\(222\) −3.00000 5.19615i −0.201347 0.348743i
\(223\) 5.83875i 0.390992i −0.980705 0.195496i \(-0.937368\pi\)
0.980705 0.195496i \(-0.0626316\pi\)
\(224\) 0 0
\(225\) −0.881286 −0.0587524
\(226\) 20.0760 11.5909i 1.33543 0.771012i
\(227\) −3.19334 1.84367i −0.211949 0.122369i 0.390268 0.920701i \(-0.372382\pi\)
−0.602217 + 0.798332i \(0.705716\pi\)
\(228\) −31.4705 18.1695i −2.08418 1.20330i
\(229\) 4.89913 2.82852i 0.323744 0.186914i −0.329316 0.944220i \(-0.606818\pi\)
0.653060 + 0.757306i \(0.273485\pi\)
\(230\) −7.98778 −0.526699
\(231\) 0 0
\(232\) 49.8251i 3.27118i
\(233\) 5.16291 + 8.94243i 0.338234 + 0.585838i 0.984101 0.177612i \(-0.0568373\pi\)
−0.645867 + 0.763450i \(0.723504\pi\)
\(234\) 1.01352 + 1.40816i 0.0662556 + 0.0920542i
\(235\) 2.65633 4.60089i 0.173280 0.300129i
\(236\) −9.15780 + 5.28726i −0.596122 + 0.344171i
\(237\) −24.5623 −1.59549
\(238\) 0 0
\(239\) 22.2882i 1.44170i −0.693089 0.720852i \(-0.743751\pi\)
0.693089 0.720852i \(-0.256249\pi\)
\(240\) 4.86024 2.80606i 0.313727 0.181131i
\(241\) 25.4840 + 14.7132i 1.64157 + 0.947762i 0.980275 + 0.197637i \(0.0633267\pi\)
0.661296 + 0.750125i \(0.270007\pi\)
\(242\) −19.5133 11.2660i −1.25436 0.724205i
\(243\) 1.00611 + 1.74263i 0.0645419 + 0.111790i
\(244\) −9.61213 −0.615353
\(245\) 0 0
\(246\) −32.9380 −2.10005
\(247\) −18.7241 + 1.88354i −1.19138 + 0.119847i
\(248\) −4.38058 + 7.58739i −0.278167 + 0.481799i
\(249\) 2.10480 + 1.21520i 0.133386 + 0.0770105i
\(250\) 7.99389 + 13.8458i 0.505578 + 0.875687i
\(251\) 21.5247 1.35863 0.679313 0.733849i \(-0.262278\pi\)
0.679313 + 0.733849i \(0.262278\pi\)
\(252\) 0 0
\(253\) 21.3684i 1.34342i
\(254\) 2.96656 1.71274i 0.186138 0.107467i
\(255\) −3.21959 1.85883i −0.201619 0.116405i
\(256\) 16.3127 28.2543i 1.01954 1.76590i
\(257\) 0.330979 + 0.573272i 0.0206459 + 0.0357597i 0.876164 0.482014i \(-0.160094\pi\)
−0.855518 + 0.517773i \(0.826761\pi\)
\(258\) 19.1695i 1.19344i
\(259\) 0 0
\(260\) 4.15633 9.22425i 0.257764 0.572064i
\(261\) −0.903032 1.56410i −0.0558963 0.0968152i
\(262\) −26.8582 15.5066i −1.65930 0.958000i
\(263\) −2.59332 + 4.49176i −0.159911 + 0.276974i −0.934836 0.355079i \(-0.884454\pi\)
0.774925 + 0.632053i \(0.217787\pi\)
\(264\) −20.0811 34.7815i −1.23591 2.14065i
\(265\) 2.13093i 0.130902i
\(266\) 0 0
\(267\) 13.0557i 0.798996i
\(268\) −26.4571 + 15.2750i −1.61613 + 0.933072i
\(269\) 13.6253 23.5997i 0.830749 1.43890i −0.0666957 0.997773i \(-0.521246\pi\)
0.897445 0.441127i \(-0.145421\pi\)
\(270\) 4.48119 7.76166i 0.272717 0.472359i
\(271\) 16.2476 9.38058i 0.986974 0.569830i 0.0826055 0.996582i \(-0.473676\pi\)
0.904368 + 0.426753i \(0.140343\pi\)
\(272\) 16.3127 0.989100
\(273\) 0 0
\(274\) 7.95509 0.480585
\(275\) 17.6353 10.1817i 1.06345 0.613981i
\(276\) −16.5999 + 28.7519i −0.999197 + 1.73066i
\(277\) 7.71203 13.3576i 0.463371 0.802583i −0.535755 0.844373i \(-0.679973\pi\)
0.999126 + 0.0417908i \(0.0133063\pi\)
\(278\) −0.536434 + 0.309711i −0.0321732 + 0.0185752i
\(279\) 0.317575i 0.0190127i
\(280\) 0 0
\(281\) 24.8446i 1.48211i −0.671446 0.741053i \(-0.734327\pi\)
0.671446 0.741053i \(-0.265673\pi\)
\(282\) −16.3532 28.3246i −0.973819 1.68670i
\(283\) −11.4436 + 19.8209i −0.680250 + 1.17823i 0.294654 + 0.955604i \(0.404796\pi\)
−0.974904 + 0.222624i \(0.928538\pi\)
\(284\) 27.9184 + 16.1187i 1.65665 + 0.956470i
\(285\) 2.95135 + 5.11190i 0.174823 + 0.302803i
\(286\) −36.5501 16.4690i −2.16125 0.973831i
\(287\) 0 0
\(288\) 0.312650i 0.0184231i
\(289\) 3.09697 + 5.36411i 0.182175 + 0.315536i
\(290\) −7.79995 + 13.5099i −0.458029 + 0.793330i
\(291\) 26.0844 + 15.0598i 1.52909 + 0.882823i
\(292\) −54.5110 + 31.4719i −3.19001 + 1.84175i
\(293\) 25.2193i 1.47333i −0.676258 0.736664i \(-0.736400\pi\)
0.676258 0.736664i \(-0.263600\pi\)
\(294\) 0 0
\(295\) 1.71767 0.100006
\(296\) −3.86177 6.68879i −0.224461 0.388778i
\(297\) −20.7634 11.9878i −1.20482 0.695602i
\(298\) 5.00294 8.66535i 0.289813 0.501970i
\(299\) 1.72082 + 17.1066i 0.0995179 + 0.989298i
\(300\) 31.6385 1.82665
\(301\) 0 0
\(302\) 3.89446 0.224101
\(303\) −7.82122 13.5468i −0.449317 0.778241i
\(304\) −22.4304 12.9502i −1.28647 0.742743i
\(305\) 1.35216 + 0.780671i 0.0774245 + 0.0447011i
\(306\) 1.36989 0.790905i 0.0783112 0.0452130i
\(307\) 7.24965i 0.413759i −0.978366 0.206880i \(-0.933669\pi\)
0.978366 0.206880i \(-0.0663308\pi\)
\(308\) 0 0
\(309\) 10.4485 0.594395
\(310\) 2.37556 1.37153i 0.134923 0.0778977i
\(311\) 10.1199 17.5282i 0.573847 0.993932i −0.422319 0.906447i \(-0.638784\pi\)
0.996166 0.0874846i \(-0.0278829\pi\)
\(312\) −18.8770 26.2274i −1.06870 1.48483i
\(313\) −16.5684 28.6973i −0.936502 1.62207i −0.771934 0.635703i \(-0.780710\pi\)
−0.164568 0.986366i \(-0.552623\pi\)
\(314\) 7.19394i 0.405977i
\(315\) 0 0
\(316\) −60.9438 −3.42836
\(317\) 14.7338 8.50659i 0.827535 0.477778i −0.0254730 0.999676i \(-0.508109\pi\)
0.853008 + 0.521898i \(0.174776\pi\)
\(318\) 11.3611 + 6.55936i 0.637101 + 0.367830i
\(319\) 36.1408 + 20.8659i 2.02350 + 1.16827i
\(320\) −3.46410 + 2.00000i −0.193649 + 0.111803i
\(321\) −12.1359 −0.677357
\(322\) 0 0
\(323\) 17.1573i 0.954657i
\(324\) −17.4162 30.1658i −0.967567 1.67588i
\(325\) 13.2981 9.57122i 0.737643 0.530916i
\(326\) −21.4314 + 37.1202i −1.18697 + 2.05590i
\(327\) −6.95446 + 4.01516i −0.384582 + 0.222039i
\(328\) −42.3996 −2.34113
\(329\) 0 0
\(330\) 12.5745i 0.692204i
\(331\) −9.38458 + 5.41819i −0.515823 + 0.297811i −0.735224 0.677824i \(-0.762923\pi\)
0.219401 + 0.975635i \(0.429590\pi\)
\(332\) 5.22241 + 3.01516i 0.286617 + 0.165478i
\(333\) −0.242456 0.139982i −0.0132865 0.00767095i
\(334\) 20.2132 + 35.0103i 1.10602 + 1.91568i
\(335\) 4.96239 0.271124
\(336\) 0 0
\(337\) −2.96968 −0.161769 −0.0808845 0.996723i \(-0.525774\pi\)
−0.0808845 + 0.996723i \(0.525774\pi\)
\(338\) −30.5866 10.2409i −1.66369 0.557032i
\(339\) −7.82535 + 13.5539i −0.425014 + 0.736147i
\(340\) −7.98844 4.61213i −0.433234 0.250128i
\(341\) −3.66902 6.35493i −0.198689 0.344139i
\(342\) −2.51151 −0.135807
\(343\) 0 0
\(344\) 24.6761i 1.33045i
\(345\) 4.67030 2.69640i 0.251440 0.145169i
\(346\) −4.67235 2.69758i −0.251187 0.145023i
\(347\) −15.3684 + 26.6188i −0.825017 + 1.42897i 0.0768897 + 0.997040i \(0.475501\pi\)
−0.901906 + 0.431931i \(0.857832\pi\)
\(348\) 32.4191 + 56.1516i 1.73785 + 3.01004i
\(349\) 2.00492i 0.107321i −0.998559 0.0536606i \(-0.982911\pi\)
0.998559 0.0536606i \(-0.0170889\pi\)
\(350\) 0 0
\(351\) −17.5877 7.92478i −0.938761 0.422993i
\(352\) −3.61213 6.25639i −0.192527 0.333467i
\(353\) −14.9429 8.62729i −0.795330 0.459184i 0.0465055 0.998918i \(-0.485191\pi\)
−0.841836 + 0.539734i \(0.818525\pi\)
\(354\) 5.28726 9.15780i 0.281015 0.486732i
\(355\) −2.61824 4.53492i −0.138962 0.240688i
\(356\) 32.3938i 1.71687i
\(357\) 0 0
\(358\) 1.36836i 0.0723201i
\(359\) −6.15441 + 3.55325i −0.324817 + 0.187533i −0.653538 0.756894i \(-0.726716\pi\)
0.328721 + 0.944427i \(0.393383\pi\)
\(360\) 0.350262 0.606671i 0.0184604 0.0319744i
\(361\) 4.12070 7.13726i 0.216879 0.375645i
\(362\) 1.09912 0.634580i 0.0577687 0.0333528i
\(363\) 15.2120 0.798425
\(364\) 0 0
\(365\) 10.2243 0.535162
\(366\) 8.32435 4.80606i 0.435121 0.251217i
\(367\) −13.6314 + 23.6103i −0.711554 + 1.23245i 0.252720 + 0.967539i \(0.418675\pi\)
−0.964274 + 0.264908i \(0.914658\pi\)
\(368\) −11.8315 + 20.4927i −0.616757 + 1.06825i
\(369\) −1.33100 + 0.768452i −0.0692890 + 0.0400040i
\(370\) 2.41819i 0.125716i
\(371\) 0 0
\(372\) 11.4010i 0.591117i
\(373\) 2.95945 + 5.12592i 0.153234 + 0.265410i 0.932415 0.361390i \(-0.117698\pi\)
−0.779180 + 0.626800i \(0.784364\pi\)
\(374\) −18.2750 + 31.6533i −0.944980 + 1.63675i
\(375\) −9.34774 5.39692i −0.482715 0.278696i
\(376\) −21.0508 36.4610i −1.08561 1.88033i
\(377\) 30.6131 + 13.7938i 1.57665 + 0.710419i
\(378\) 0 0
\(379\) 28.9706i 1.48812i 0.668112 + 0.744061i \(0.267103\pi\)
−0.668112 + 0.744061i \(0.732897\pi\)
\(380\) 7.32288 + 12.6836i 0.375656 + 0.650655i
\(381\) −1.15633 + 2.00281i −0.0592403 + 0.102607i
\(382\) −35.5498 20.5247i −1.81889 1.05013i
\(383\) 20.1128 11.6121i 1.02772 0.593352i 0.111386 0.993777i \(-0.464471\pi\)
0.916329 + 0.400425i \(0.131138\pi\)
\(384\) 30.0263i 1.53228i
\(385\) 0 0
\(386\) 18.3879 0.935918
\(387\) −0.447230 0.774625i −0.0227340 0.0393764i
\(388\) 64.7205 + 37.3664i 3.28568 + 1.89699i
\(389\) 8.06594 13.9706i 0.408960 0.708339i −0.585814 0.810446i \(-0.699225\pi\)
0.994773 + 0.102107i \(0.0325584\pi\)
\(390\) 1.01264 + 10.0666i 0.0512772 + 0.509742i
\(391\) 15.6751 0.792725
\(392\) 0 0
\(393\) 20.9380 1.05618
\(394\) −8.86907 15.3617i −0.446817 0.773910i
\(395\) 8.57312 + 4.94969i 0.431360 + 0.249046i
\(396\) −3.12819 1.80606i −0.157198 0.0907581i
\(397\) −20.8329 + 12.0279i −1.04557 + 0.603661i −0.921406 0.388601i \(-0.872959\pi\)
−0.124165 + 0.992262i \(0.539625\pi\)
\(398\) 12.6556i 0.634369i
\(399\) 0 0
\(400\) 22.5501 1.12750
\(401\) 2.40387 1.38787i 0.120043 0.0693071i −0.438776 0.898596i \(-0.644588\pi\)
0.558819 + 0.829289i \(0.311255\pi\)
\(402\) 15.2750 26.4571i 0.761850 1.31956i
\(403\) −3.44903 4.79201i −0.171808 0.238707i
\(404\) −19.4060 33.6121i −0.965483 1.67227i
\(405\) 5.65799i 0.281148i
\(406\) 0 0
\(407\) 6.46898 0.320655
\(408\) −25.5146 + 14.7308i −1.26316 + 0.729285i
\(409\) 17.4339 + 10.0655i 0.862051 + 0.497705i 0.864699 0.502291i \(-0.167509\pi\)
−0.00264770 + 0.999996i \(0.500843\pi\)
\(410\) 11.4965 + 6.63752i 0.567773 + 0.327804i
\(411\) −4.65119 + 2.68536i −0.229426 + 0.132459i
\(412\) 25.9248 1.27722
\(413\) 0 0
\(414\) 2.29455i 0.112771i
\(415\) −0.489766 0.848300i −0.0240417 0.0416414i
\(416\) −3.39554 4.71770i −0.166480 0.231304i
\(417\) 0.209095 0.362163i 0.0102394 0.0177352i
\(418\) 50.2574 29.0161i 2.45817 1.41922i
\(419\) 0.385503 0.0188331 0.00941654 0.999956i \(-0.497003\pi\)
0.00941654 + 0.999956i \(0.497003\pi\)
\(420\) 0 0
\(421\) 15.6810i 0.764246i −0.924112 0.382123i \(-0.875193\pi\)
0.924112 0.382123i \(-0.124807\pi\)
\(422\) −0.416726 + 0.240597i −0.0202859 + 0.0117121i
\(423\) −1.32164 0.763050i −0.0642604 0.0371008i
\(424\) 14.6247 + 8.44358i 0.710239 + 0.410057i
\(425\) −7.46898 12.9366i −0.362299 0.627519i
\(426\) −32.2374 −1.56191
\(427\) 0 0
\(428\) −30.1114 −1.45549
\(429\) 26.9295 2.70895i 1.30017 0.130790i
\(430\) −3.86296 + 6.69084i −0.186288 + 0.322661i
\(431\) 1.33100 + 0.768452i 0.0641119 + 0.0370150i 0.531713 0.846924i \(-0.321548\pi\)
−0.467601 + 0.883939i \(0.654882\pi\)
\(432\) −13.2750 22.9930i −0.638696 1.10625i
\(433\) −26.0362 −1.25122 −0.625610 0.780136i \(-0.715150\pi\)
−0.625610 + 0.780136i \(0.715150\pi\)
\(434\) 0 0
\(435\) 10.5320i 0.504970i
\(436\) −17.2554 + 9.96239i −0.826382 + 0.477112i
\(437\) −21.5537 12.4441i −1.03106 0.595280i
\(438\) 31.4719 54.5110i 1.50379 2.60463i
\(439\) −9.56230 16.5624i −0.456384 0.790479i 0.542383 0.840131i \(-0.317522\pi\)
−0.998767 + 0.0496519i \(0.984189\pi\)
\(440\) 16.1866i 0.771668i
\(441\) 0 0
\(442\) −12.0811 + 26.8119i −0.574639 + 1.27531i
\(443\) 6.30900 + 10.9275i 0.299750 + 0.519182i 0.976079 0.217418i \(-0.0697635\pi\)
−0.676329 + 0.736600i \(0.736430\pi\)
\(444\) 8.70424 + 5.02539i 0.413085 + 0.238495i
\(445\) −2.63093 + 4.55691i −0.124718 + 0.216018i
\(446\) 7.24354 + 12.5462i 0.342991 + 0.594079i
\(447\) 6.75528i 0.319514i
\(448\) 0 0
\(449\) 1.02302i 0.0482794i −0.999709 0.0241397i \(-0.992315\pi\)
0.999709 0.0241397i \(-0.00768466\pi\)
\(450\) 1.89369 1.09332i 0.0892693 0.0515397i
\(451\) 17.7562 30.7547i 0.836108 1.44818i
\(452\) −19.4162 + 33.6299i −0.913261 + 1.58182i
\(453\) −2.27701 + 1.31464i −0.106983 + 0.0617669i
\(454\) 9.14903 0.429385
\(455\) 0 0
\(456\) 46.7777 2.19056
\(457\) −24.7094 + 14.2660i −1.15586 + 0.667335i −0.950308 0.311312i \(-0.899232\pi\)
−0.205550 + 0.978647i \(0.565898\pi\)
\(458\) −7.01810 + 12.1557i −0.327934 + 0.567999i
\(459\) −8.79384 + 15.2314i −0.410462 + 0.710940i
\(460\) 11.5879 6.69029i 0.540290 0.311936i
\(461\) 25.3503i 1.18068i 0.807155 + 0.590340i \(0.201006\pi\)
−0.807155 + 0.590340i \(0.798994\pi\)
\(462\) 0 0
\(463\) 39.6810i 1.84413i 0.387032 + 0.922066i \(0.373500\pi\)
−0.387032 + 0.922066i \(0.626500\pi\)
\(464\) 23.1065 + 40.0216i 1.07269 + 1.85796i
\(465\) −0.925962 + 1.60381i −0.0429405 + 0.0743751i
\(466\) −22.1879 12.8102i −1.02783 0.593421i
\(467\) −0.975792 1.69012i −0.0451543 0.0782095i 0.842565 0.538595i \(-0.181045\pi\)
−0.887719 + 0.460385i \(0.847711\pi\)
\(468\) −2.64974 1.19394i −0.122484 0.0551897i
\(469\) 0 0
\(470\) 13.1817i 0.608027i
\(471\) −2.42842 4.20615i −0.111896 0.193809i
\(472\) 6.80606 11.7884i 0.313274 0.542607i
\(473\) 17.8989 + 10.3339i 0.822991 + 0.475154i
\(474\) 52.7789 30.4719i 2.42422 1.39962i
\(475\) 23.7177i 1.08824i
\(476\) 0 0
\(477\) 0.612127 0.0280274
\(478\) 27.6507 + 47.8924i 1.26471 + 2.19055i
\(479\) −22.6351 13.0684i −1.03423 0.597111i −0.116034 0.993245i \(-0.537018\pi\)
−0.918192 + 0.396135i \(0.870351\pi\)
\(480\) −0.911603 + 1.57894i −0.0416088 + 0.0720686i
\(481\) 5.17878 0.520956i 0.236132 0.0237535i
\(482\) −73.0127 −3.32564
\(483\) 0 0
\(484\) 37.7440 1.71564
\(485\) −6.06959 10.5128i −0.275606 0.477363i
\(486\) −4.32381 2.49635i −0.196132 0.113237i
\(487\) −18.1540 10.4812i −0.822634 0.474948i 0.0286896 0.999588i \(-0.490867\pi\)
−0.851324 + 0.524640i \(0.824200\pi\)
\(488\) 10.7156 6.18664i 0.485071 0.280056i
\(489\) 28.9380i 1.30862i
\(490\) 0 0
\(491\) 2.95651 0.133425 0.0667127 0.997772i \(-0.478749\pi\)
0.0667127 + 0.997772i \(0.478749\pi\)
\(492\) 47.7833 27.5877i 2.15424 1.24375i
\(493\) 15.3065 26.5117i 0.689372 1.19403i
\(494\) 37.8971 27.2763i 1.70507 1.22722i
\(495\) 0.293367 + 0.508127i 0.0131859 + 0.0228386i
\(496\) 8.12601i 0.364869i
\(497\) 0 0
\(498\) −6.03032 −0.270225
\(499\) 2.47205 1.42724i 0.110664 0.0638920i −0.443646 0.896202i \(-0.646315\pi\)
0.554311 + 0.832310i \(0.312982\pi\)
\(500\) −23.1936 13.3908i −1.03725 0.598855i
\(501\) −23.6366 13.6466i −1.05600 0.609684i
\(502\) −46.2518 + 26.7035i −2.06432 + 1.19183i
\(503\) −23.8641 −1.06405 −0.532025 0.846729i \(-0.678569\pi\)
−0.532025 + 0.846729i \(0.678569\pi\)
\(504\) 0 0
\(505\) 6.30440i 0.280542i
\(506\) −26.5095 45.9158i −1.17849 2.04121i
\(507\) 21.3404 4.33734i 0.947760 0.192628i
\(508\) −2.86907 + 4.96937i −0.127294 + 0.220480i
\(509\) −9.69506 + 5.59745i −0.429726 + 0.248102i −0.699230 0.714897i \(-0.746474\pi\)
0.269504 + 0.962999i \(0.413140\pi\)
\(510\) 9.22425 0.408457
\(511\) 0 0
\(512\) 45.1002i 1.99316i
\(513\) 24.1836 13.9624i 1.06773 0.616455i
\(514\) −1.42240 0.821222i −0.0627393 0.0362226i
\(515\) −3.64690 2.10554i −0.160702 0.0927812i
\(516\) 16.0557 + 27.8093i 0.706813 + 1.22424i
\(517\) 35.2628 1.55086
\(518\) 0 0
\(519\) 3.64244 0.159886
\(520\) 1.30353 + 12.9583i 0.0571637 + 0.568259i
\(521\) −13.2447 + 22.9405i −0.580262 + 1.00504i 0.415186 + 0.909736i \(0.363716\pi\)
−0.995448 + 0.0953065i \(0.969617\pi\)
\(522\) 3.88083 + 2.24060i 0.169859 + 0.0980683i
\(523\) −6.47627 11.2172i −0.283188 0.490495i 0.688981 0.724780i \(-0.258059\pi\)
−0.972168 + 0.234285i \(0.924725\pi\)
\(524\) 51.9511 2.26950
\(525\) 0 0
\(526\) 12.8691i 0.561118i
\(527\) −4.66177 + 2.69147i −0.203070 + 0.117242i
\(528\) 32.2600 + 18.6253i 1.40393 + 0.810562i
\(529\) 0.130933 0.226782i 0.00569272 0.00986008i
\(530\) −2.64363 4.57890i −0.114832 0.198895i
\(531\) 0.493413i 0.0214123i
\(532\) 0 0
\(533\) 11.7381 26.0508i 0.508435 1.12838i
\(534\) 16.1969 + 28.0538i 0.700907 + 1.21401i
\(535\) 4.23585 + 2.44557i 0.183132 + 0.105731i
\(536\) 19.6629 34.0572i 0.849308 1.47105i
\(537\) −0.461911 0.800053i −0.0199329 0.0345249i
\(538\) 67.6140i 2.91505i
\(539\) 0 0
\(540\) 15.0132i 0.646064i
\(541\) −24.3295 + 14.0467i −1.04601 + 0.603913i −0.921529 0.388309i \(-0.873059\pi\)
−0.124479 + 0.992222i \(0.539726\pi\)
\(542\) −23.2750 + 40.3136i −0.999749 + 1.73162i
\(543\) −0.428424 + 0.742053i −0.0183854 + 0.0318445i
\(544\) −4.58948 + 2.64974i −0.196772 + 0.113607i
\(545\) 3.23647 0.138635
\(546\) 0 0
\(547\) 14.8192 0.633625 0.316812 0.948488i \(-0.397387\pi\)
0.316812 + 0.948488i \(0.397387\pi\)
\(548\) −11.5405 + 6.66291i −0.492986 + 0.284625i
\(549\) 0.224254 0.388419i 0.00957092 0.0165773i
\(550\) −25.2628 + 43.7565i −1.07721 + 1.86578i
\(551\) −42.0938 + 24.3029i −1.79326 + 1.03534i
\(552\) 42.7367i 1.81900i
\(553\) 0 0
\(554\) 38.2701i 1.62594i
\(555\) −0.816297 1.41387i −0.0346499 0.0600154i
\(556\) 0.518806 0.898598i 0.0220023 0.0381090i
\(557\) −15.9244 9.19394i −0.674737 0.389560i 0.123132 0.992390i \(-0.460706\pi\)
−0.797869 + 0.602831i \(0.794039\pi\)
\(558\) −0.393983 0.682398i −0.0166786 0.0288882i
\(559\) 15.1612 + 6.83146i 0.641253 + 0.288940i
\(560\) 0 0
\(561\) 24.6761i 1.04183i
\(562\) 30.8222 + 53.3856i 1.30016 + 2.25193i
\(563\) 7.66784 13.2811i 0.323161 0.559731i −0.657978 0.753037i \(-0.728588\pi\)
0.981138 + 0.193307i \(0.0619212\pi\)
\(564\) 47.4474 + 27.3938i 1.99789 + 1.15349i
\(565\) 5.46265 3.15386i 0.229815 0.132684i
\(566\) 56.7875i 2.38696i
\(567\) 0 0
\(568\) −41.4979 −1.74121
\(569\) 0.661250 + 1.14532i 0.0277210 + 0.0480142i 0.879553 0.475801i \(-0.157842\pi\)
−0.851832 + 0.523815i \(0.824508\pi\)
\(570\) −12.6836 7.32288i −0.531258 0.306722i
\(571\) −18.9587 + 32.8375i −0.793399 + 1.37421i 0.130452 + 0.991455i \(0.458357\pi\)
−0.923851 + 0.382752i \(0.874976\pi\)
\(572\) 66.8173 6.72144i 2.79377 0.281038i
\(573\) 27.7137 1.15776
\(574\) 0 0
\(575\) 21.6688 0.903651
\(576\) 0.574515 + 0.995090i 0.0239381 + 0.0414621i
\(577\) 11.1394 + 6.43136i 0.463741 + 0.267741i 0.713616 0.700537i \(-0.247056\pi\)
−0.249875 + 0.968278i \(0.580389\pi\)
\(578\) −13.3094 7.68418i −0.553598 0.319620i
\(579\) −10.7510 + 6.20711i −0.446798 + 0.257959i
\(580\) 26.1319i 1.08507i
\(581\) 0 0
\(582\) −74.7328 −3.09777
\(583\) −12.2492 + 7.07205i −0.507308 + 0.292895i
\(584\) 40.5125 70.1697i 1.67642 2.90364i
\(585\) 0.275777 + 0.383159i 0.0114020 + 0.0158417i
\(586\) 31.2870 + 54.1907i 1.29246 + 2.23860i
\(587\) 31.0240i 1.28050i −0.768168 0.640248i \(-0.778831\pi\)
0.768168 0.640248i \(-0.221169\pi\)
\(588\) 0 0
\(589\) 8.54675 0.352163
\(590\) −3.69088 + 2.13093i −0.151951 + 0.0877291i
\(591\) 10.3711 + 5.98778i 0.426612 + 0.246304i
\(592\) 6.20388 + 3.58181i 0.254978 + 0.147211i
\(593\) 9.88295 5.70593i 0.405844 0.234314i −0.283158 0.959073i \(-0.591382\pi\)
0.689003 + 0.724759i \(0.258049\pi\)
\(594\) 59.4880 2.44082
\(595\) 0 0
\(596\) 16.7612i 0.686564i
\(597\) −4.27210 7.39949i −0.174845 0.302841i
\(598\) −24.9200 34.6233i −1.01906 1.41585i
\(599\) −3.68664 + 6.38545i −0.150632 + 0.260902i −0.931460 0.363844i \(-0.881464\pi\)
0.780828 + 0.624746i \(0.214798\pi\)
\(600\) −35.2705 + 20.3634i −1.43991 + 0.831334i
\(601\) −17.2144 −0.702190 −0.351095 0.936340i \(-0.614191\pi\)
−0.351095 + 0.936340i \(0.614191\pi\)
\(602\) 0 0
\(603\) 1.42548i 0.0580502i
\(604\) −5.64972 + 3.26187i −0.229884 + 0.132723i
\(605\) −5.30954 3.06547i −0.215864 0.124629i
\(606\) 33.6121 + 19.4060i 1.36540 + 0.788314i
\(607\) 16.2132 + 28.0821i 0.658074 + 1.13982i 0.981114 + 0.193433i \(0.0619621\pi\)
−0.323039 + 0.946386i \(0.604705\pi\)
\(608\) 8.41422 0.341242
\(609\) 0 0
\(610\) −3.87399 −0.156853
\(611\) 28.2299 2.83977i 1.14206 0.114885i
\(612\) −1.32487 + 2.29474i −0.0535547 + 0.0927594i
\(613\) −30.9163 17.8496i −1.24870 0.720937i −0.277849 0.960625i \(-0.589622\pi\)
−0.970850 + 0.239688i \(0.922955\pi\)
\(614\) 8.99389 + 15.5779i 0.362964 + 0.628672i
\(615\) −8.96239 −0.361398
\(616\) 0 0
\(617\) 20.3733i 0.820198i −0.912041 0.410099i \(-0.865494\pi\)
0.912041 0.410099i \(-0.134506\pi\)
\(618\) −22.4515 + 12.9624i −0.903132 + 0.521424i
\(619\) −34.6512 20.0059i −1.39275 0.804104i −0.399130 0.916894i \(-0.630688\pi\)
−0.993619 + 0.112790i \(0.964021\pi\)
\(620\) −2.29749 + 3.97937i −0.0922695 + 0.159815i
\(621\) −12.7562 22.0944i −0.511890 0.886620i
\(622\) 50.2189i 2.01359i
\(623\) 0 0
\(624\) 27.3258 + 12.3127i 1.09391 + 0.492900i
\(625\) −9.18536 15.9095i −0.367415 0.636381i
\(626\) 71.2036 + 41.1094i 2.84587 + 1.64306i
\(627\) −19.5897 + 33.9303i −0.782336 + 1.35505i
\(628\) −6.02539 10.4363i −0.240439 0.416453i
\(629\) 4.74543i 0.189213i
\(630\) 0 0
\(631\) 16.3879i 0.652391i −0.945302 0.326195i \(-0.894233\pi\)
0.945302 0.326195i \(-0.105767\pi\)
\(632\) 67.9401 39.2252i 2.70251 1.56030i
\(633\) 0.162435 0.281345i 0.00645619 0.0111825i
\(634\) −21.1065 + 36.5575i −0.838246 + 1.45188i
\(635\) 0.807198 0.466036i 0.0320327 0.0184941i
\(636\) −21.9756 −0.871388
\(637\) 0 0
\(638\) −103.545 −4.09937
\(639\) −1.30269 + 0.752109i −0.0515336 + 0.0297530i
\(640\) 6.05079 10.4803i 0.239178 0.414269i
\(641\) −4.11942 + 7.13505i −0.162707 + 0.281817i −0.935839 0.352428i \(-0.885356\pi\)
0.773131 + 0.634246i \(0.218689\pi\)
\(642\) 26.0773 15.0557i 1.02919 0.594201i
\(643\) 30.4847i 1.20220i −0.799174 0.601100i \(-0.794729\pi\)
0.799174 0.601100i \(-0.205271\pi\)
\(644\) 0 0
\(645\) 5.21600i 0.205380i
\(646\) −21.2853 36.8672i −0.837458 1.45052i
\(647\) −14.4194 + 24.9751i −0.566884 + 0.981872i 0.429988 + 0.902835i \(0.358518\pi\)
−0.996872 + 0.0790373i \(0.974815\pi\)
\(648\) 38.8311 + 22.4191i 1.52543 + 0.880707i
\(649\) 5.70052 + 9.87360i 0.223765 + 0.387573i
\(650\) −16.7005 + 37.0640i −0.655048 + 1.45377i
\(651\) 0 0
\(652\) 71.8007i 2.81193i
\(653\) −10.7259 18.5778i −0.419738 0.727007i 0.576175 0.817326i \(-0.304545\pi\)
−0.995913 + 0.0903194i \(0.971211\pi\)
\(654\) 9.96239 17.2554i 0.389560 0.674738i
\(655\) −7.30809 4.21933i −0.285551 0.164863i
\(656\) 34.0572 19.6629i 1.32971 0.767708i
\(657\) 2.93700i 0.114583i
\(658\) 0 0
\(659\) −50.6589 −1.97339 −0.986696 0.162575i \(-0.948020\pi\)
−0.986696 + 0.162575i \(0.948020\pi\)
\(660\) −10.5320 18.2419i −0.409957 0.710066i
\(661\) −13.4647 7.77385i −0.523717 0.302368i 0.214737 0.976672i \(-0.431110\pi\)
−0.738454 + 0.674304i \(0.764444\pi\)
\(662\) 13.4436 23.2850i 0.522500 0.904996i
\(663\) −1.98720 19.7546i −0.0771765 0.767204i
\(664\) −7.76257 −0.301246
\(665\) 0 0
\(666\) 0.694644 0.0269169
\(667\) 22.2035 + 38.4575i 0.859722 + 1.48908i
\(668\) −58.6469 33.8598i −2.26912 1.31007i
\(669\) −8.47031 4.89034i −0.327481 0.189071i
\(670\) −10.6631 + 6.15633i −0.411950 + 0.237840i
\(671\) 10.3634i 0.400076i
\(672\) 0 0
\(673\) 26.8700 1.03576 0.517882 0.855452i \(-0.326721\pi\)
0.517882 + 0.855452i \(0.326721\pi\)
\(674\) 6.38119 3.68418i 0.245794 0.141909i
\(675\) −12.1563 + 21.0554i −0.467897 + 0.810422i
\(676\) 52.9497 10.7618i 2.03653 0.413915i
\(677\) 8.18783 + 14.1817i 0.314684 + 0.545048i 0.979370 0.202074i \(-0.0647682\pi\)
−0.664686 + 0.747122i \(0.731435\pi\)
\(678\) 38.8324i 1.49135i
\(679\) 0 0
\(680\) 11.8740 0.455347
\(681\) −5.34926 + 3.08840i −0.204984 + 0.118348i
\(682\) 15.7678 + 9.10356i 0.603781 + 0.348593i
\(683\) 13.6821 + 7.89938i 0.523532 + 0.302262i 0.738379 0.674386i \(-0.235592\pi\)
−0.214846 + 0.976648i \(0.568925\pi\)
\(684\) 3.64346 2.10356i 0.139311 0.0804314i
\(685\) 2.16457 0.0827041
\(686\) 0 0
\(687\) 9.47627i 0.361542i
\(688\) 11.4436 + 19.8209i 0.436283 + 0.755663i
\(689\) −9.23661 + 6.64801i −0.351887 + 0.253269i
\(690\) −6.69029 + 11.5879i −0.254695 + 0.441145i
\(691\) 6.55423 3.78409i 0.249335 0.143953i −0.370125 0.928982i \(-0.620685\pi\)
0.619460 + 0.785029i \(0.287352\pi\)
\(692\) 9.03761 0.343558
\(693\) 0 0
\(694\) 76.2638i 2.89493i
\(695\) −0.145963 + 0.0842720i −0.00553671 + 0.00319662i
\(696\) −72.2816 41.7318i −2.73983 1.58184i
\(697\) −22.5606 13.0254i −0.854545 0.493372i
\(698\) 2.48730 + 4.30814i 0.0941458 + 0.163065i
\(699\) 17.2971 0.654237
\(700\) 0 0
\(701\) −32.6629 −1.23366 −0.616831 0.787096i \(-0.711584\pi\)
−0.616831 + 0.787096i \(0.711584\pi\)
\(702\) 47.6235 4.79066i 1.79743 0.180812i
\(703\) −3.76727 + 6.52510i −0.142085 + 0.246099i
\(704\) −22.9930 13.2750i −0.866583 0.500322i
\(705\) −4.44969 7.70709i −0.167585 0.290266i
\(706\) 42.8119 1.61125
\(707\) 0 0
\(708\) 17.7137i 0.665722i
\(709\) 21.6692 12.5107i 0.813803 0.469850i −0.0344715 0.999406i \(-0.510975\pi\)
0.848275 + 0.529556i \(0.177641\pi\)
\(710\) 11.2520 + 6.49635i 0.422281 + 0.243804i
\(711\) 1.42184 2.46269i 0.0533231 0.0923583i
\(712\) 20.8496 + 36.1125i 0.781370 + 1.35337i
\(713\) 7.80843i 0.292428i
\(714\) 0 0
\(715\) −9.94525 4.48119i −0.371931 0.167587i
\(716\) −1.14609 1.98509i −0.0428314 0.0741862i
\(717\) −32.3336 18.6678i −1.20752 0.697163i
\(718\) 8.81630 15.2703i 0.329021 0.569882i
\(719\) 0.925962 + 1.60381i 0.0345326 + 0.0598121i 0.882775 0.469796i \(-0.155672\pi\)
−0.848243 + 0.529608i \(0.822339\pi\)
\(720\) 0.649738i 0.0242143i
\(721\) 0 0
\(722\) 20.4485i 0.761015i
\(723\) 42.6891 24.6466i 1.58763 0.916616i
\(724\) −1.06300 + 1.84118i −0.0395062 + 0.0684268i
\(725\) 21.1593 36.6489i 0.785835 1.36111i
\(726\) −32.6873 + 18.8720i −1.21314 + 0.700406i
\(727\) 10.8265 0.401534 0.200767 0.979639i \(-0.435657\pi\)
0.200767 + 0.979639i \(0.435657\pi\)
\(728\) 0 0
\(729\) 28.5125 1.05602
\(730\) −21.9696 + 12.6842i −0.813133 + 0.469463i
\(731\) 7.58062 13.1300i 0.280380 0.485632i
\(732\) −8.05079 + 13.9444i −0.297566 + 0.515399i
\(733\) −20.2879 + 11.7132i −0.749350 + 0.432638i −0.825459 0.564462i \(-0.809084\pi\)
0.0761088 + 0.997100i \(0.475750\pi\)
\(734\) 67.6444i 2.49680i
\(735\) 0 0
\(736\) 7.68735i 0.283359i
\(737\) 16.4690 + 28.5251i 0.606643 + 1.05074i
\(738\) 1.90668 3.30246i 0.0701858 0.121565i
\(739\) −0.416726 0.240597i −0.0153295 0.00885051i 0.492316 0.870417i \(-0.336151\pi\)
−0.507645 + 0.861566i \(0.669484\pi\)
\(740\) −2.02539 3.50808i −0.0744549 0.128960i
\(741\) −12.9502 + 28.7407i −0.475736 + 1.05582i
\(742\) 0 0
\(743\) 13.7889i 0.505866i −0.967484 0.252933i \(-0.918605\pi\)
0.967484 0.252933i \(-0.0813953\pi\)
\(744\) 7.33804 + 12.7099i 0.269026 + 0.465966i
\(745\) 1.36130 2.35783i 0.0498740 0.0863843i
\(746\) −12.7184 7.34297i −0.465653 0.268845i
\(747\) −0.243681 + 0.140689i −0.00891581 + 0.00514754i
\(748\) 61.2262i 2.23865i
\(749\) 0 0
\(750\) 26.7816 0.977927
\(751\) −13.2308 22.9165i −0.482800 0.836235i 0.517005 0.855983i \(-0.327047\pi\)
−0.999805 + 0.0197480i \(0.993714\pi\)
\(752\) 33.8177 + 19.5247i 1.23321 + 0.711992i
\(753\) 18.0283 31.2260i 0.656989 1.13794i
\(754\) −82.8933 + 8.33860i −3.01880 + 0.303674i
\(755\) 1.05968 0.0385657
\(756\) 0 0
\(757\) −21.1114 −0.767308 −0.383654 0.923477i \(-0.625334\pi\)
−0.383654 + 0.923477i \(0.625334\pi\)
\(758\) −35.9409 62.2514i −1.30543 2.26107i
\(759\) 30.9992 + 17.8974i 1.12520 + 0.649634i
\(760\) −16.3271 9.42644i −0.592245 0.341933i
\(761\) 24.7031 14.2623i 0.895487 0.517010i 0.0197536 0.999805i \(-0.493712\pi\)
0.875733 + 0.482795i \(0.160379\pi\)
\(762\) 5.73813i 0.207871i
\(763\) 0 0
\(764\) 68.7631 2.48776
\(765\) 0.372745 0.215205i 0.0134766 0.00778074i
\(766\) −28.8119 + 49.9037i −1.04102 + 1.80310i
\(767\) 5.35872 + 7.44529i 0.193492 + 0.268834i
\(768\) −27.3258 47.3297i −0.986036 1.70786i
\(769\) 25.8388i 0.931769i 0.884845 + 0.465885i \(0.154264\pi\)
−0.884845 + 0.465885i \(0.845736\pi\)
\(770\) 0 0
\(771\) 1.10886 0.0399348
\(772\) −26.6754 + 15.4010i −0.960069 + 0.554296i
\(773\) −23.7300 13.7005i −0.853509 0.492774i 0.00832435 0.999965i \(-0.497350\pi\)
−0.861833 + 0.507192i \(0.830684\pi\)
\(774\) 1.92200 + 1.10966i 0.0690847 + 0.0398861i
\(775\) −6.44428 + 3.72061i −0.231485 + 0.133648i
\(776\) −96.2003 −3.45339
\(777\) 0 0
\(778\) 40.0263i 1.43501i
\(779\) 20.6810 + 35.8206i 0.740974 + 1.28340i
\(780\) −9.90048 13.7555i −0.354494 0.492527i
\(781\) 17.3786 30.1006i 0.621855 1.07708i
\(782\) −33.6824 + 19.4465i −1.20448 + 0.695406i
\(783\) −49.8251 −1.78060
\(784\) 0 0
\(785\) 1.95746i 0.0698649i
\(786\) −44.9910 + 25.9756i −1.60478 + 0.926518i
\(787\) 26.8676 + 15.5120i 0.957725 + 0.552943i 0.895472 0.445118i \(-0.146838\pi\)
0.0622528 + 0.998060i \(0.480172\pi\)
\(788\) 25.7328 + 14.8568i 0.916694 + 0.529253i
\(789\) 4.34415 + 7.52429i 0.154656 + 0.267872i
\(790\) −24.5623 −0.873887
\(791\) 0 0
\(792\) 4.64974 0.165221
\(793\) 0.834582 + 8.29651i 0.0296369 + 0.294618i
\(794\) 29.8434 51.6904i 1.05910 1.83442i
\(795\) 3.09136 + 1.78480i 0.109639 + 0.0633002i
\(796\) −10.5999 18.3596i −0.375704 0.650738i
\(797\) 16.1378 0.571629 0.285815 0.958285i \(-0.407736\pi\)
0.285815 + 0.958285i \(0.407736\pi\)
\(798\) 0 0
\(799\) 25.8677i 0.915132i
\(800\) −6.34435 + 3.66291i −0.224307 + 0.129503i
\(801\) 1.30901 + 0.755756i 0.0462515 + 0.0267033i
\(802\) −3.44358 + 5.96446i −0.121597 + 0.210612i
\(803\) 33.9318 + 58.7717i 1.19743 + 2.07401i
\(804\) 51.1754i 1.80482i
\(805\) 0 0
\(806\) 13.3561 + 6.01810i 0.470450 + 0.211978i
\(807\) −22.8242 39.5326i −0.803449 1.39161i
\(808\) 43.2675 + 24.9805i 1.52214 + 0.878810i
\(809\) 5.17513 8.96359i 0.181948 0.315143i −0.760596 0.649226i \(-0.775093\pi\)
0.942544 + 0.334083i \(0.108426\pi\)
\(810\) −7.01928 12.1578i −0.246632 0.427180i
\(811\) 46.3752i 1.62845i 0.580547 + 0.814227i \(0.302839\pi\)
−0.580547 + 0.814227i \(0.697161\pi\)
\(812\) 0 0
\(813\) 31.4274i 1.10221i
\(814\) −13.9004 + 8.02539i −0.487208 + 0.281290i
\(815\) −5.83146 + 10.1004i −0.204267 + 0.353801i
\(816\) 13.6629 23.6649i 0.478298 0.828436i
\(817\) −20.8471 + 12.0361i −0.729349 + 0.421090i
\(818\) −49.9488 −1.74642
\(819\) 0 0
\(820\) −22.2374 −0.776565
\(821\) −48.0980 + 27.7694i −1.67863 + 0.969159i −0.716098 + 0.698000i \(0.754074\pi\)
−0.962534 + 0.271159i \(0.912593\pi\)
\(822\) 6.66291 11.5405i 0.232396 0.402521i
\(823\) −10.4162 + 18.0414i −0.363086 + 0.628884i −0.988467 0.151436i \(-0.951610\pi\)
0.625381 + 0.780320i \(0.284944\pi\)
\(824\) −28.9009 + 16.6859i −1.00681 + 0.581282i
\(825\) 34.1114i 1.18761i
\(826\) 0 0
\(827\) 2.47295i 0.0859927i 0.999075 + 0.0429964i \(0.0136904\pi\)
−0.999075 + 0.0429964i \(0.986310\pi\)
\(828\) −1.92184 3.32872i −0.0667885 0.115681i
\(829\) 17.2811 29.9318i 0.600199 1.03958i −0.392591 0.919713i \(-0.628421\pi\)
0.992791 0.119862i \(-0.0382453\pi\)
\(830\) 2.10480 + 1.21520i 0.0730585 + 0.0421804i
\(831\) −12.9187 22.3758i −0.448144 0.776208i
\(832\) −19.4763 8.77575i −0.675218 0.304244i
\(833\) 0 0
\(834\) 1.03761i 0.0359295i
\(835\) 5.50000 + 9.52628i 0.190335 + 0.329670i
\(836\) −48.6058 + 84.1877i −1.68107 + 2.91169i
\(837\) 7.58739 + 4.38058i 0.262258 + 0.151415i
\(838\) −0.828361 + 0.478255i −0.0286153 + 0.0165210i
\(839\) 39.9149i 1.37802i 0.724754 + 0.689008i \(0.241954\pi\)
−0.724754 + 0.689008i \(0.758046\pi\)
\(840\) 0 0
\(841\) 57.7255 1.99053
\(842\) 19.4538 + 33.6950i 0.670423 + 1.16121i
\(843\) −36.0423 20.8090i −1.24136 0.716700i
\(844\) 0.403032 0.698071i 0.0138729 0.0240286i
\(845\) −8.32260 2.78654i −0.286306 0.0958599i
\(846\) 3.78655 0.130184
\(847\) 0 0
\(848\) −15.6629 −0.537867
\(849\) 19.1695 + 33.2025i 0.657896 + 1.13951i
\(850\) 32.0983 + 18.5320i 1.10096 + 0.635642i
\(851\) 5.96142 + 3.44183i 0.204355 + 0.117984i
\(852\) 46.7670 27.0010i 1.60221 0.925037i
\(853\) 32.6507i 1.11794i 0.829188 + 0.558969i \(0.188803\pi\)
−0.829188 + 0.558969i \(0.811197\pi\)
\(854\) 0 0
\(855\) −0.683380 −0.0233711
\(856\) 33.5681 19.3806i 1.14734 0.662415i
\(857\) 3.81828 6.61346i 0.130430 0.225911i −0.793412 0.608684i \(-0.791698\pi\)
0.923842 + 0.382773i \(0.125031\pi\)
\(858\) −54.5047 + 39.2296i −1.86076 + 1.33928i
\(859\) −4.48119 7.76166i −0.152896 0.264824i 0.779395 0.626533i \(-0.215527\pi\)
−0.932291 + 0.361709i \(0.882193\pi\)
\(860\) 12.9419i 0.441316i
\(861\) 0 0
\(862\) −3.81336 −0.129883
\(863\) 40.5318 23.4010i 1.37972 0.796581i 0.387593 0.921830i \(-0.373306\pi\)
0.992125 + 0.125250i \(0.0399732\pi\)
\(864\) 7.46973 + 4.31265i 0.254125 + 0.146719i
\(865\) −1.27134 0.734010i −0.0432270 0.0249571i
\(866\) 55.9460 32.3004i 1.90112 1.09761i
\(867\) 10.3757 0.352376
\(868\) 0 0
\(869\) 65.7074i 2.22897i
\(870\) 13.0659 + 22.6309i 0.442977 + 0.767259i
\(871\) 15.4815 + 21.5097i 0.524571 + 0.728827i
\(872\) 12.8242 22.2121i 0.434281 0.752197i
\(873\) −3.01989 + 1.74354i −0.102208 + 0.0590098i
\(874\) 61.7523 2.08880
\(875\) 0 0
\(876\) 105.439i 3.56246i
\(877\) −8.95522 + 5.17030i −0.302396 + 0.174589i −0.643519 0.765430i \(-0.722526\pi\)
0.341123 + 0.940019i \(0.389193\pi\)
\(878\) 41.0945 + 23.7259i 1.38687 + 0.800711i
\(879\) −36.5858 21.1228i −1.23401 0.712456i
\(880\) −7.50659 13.0018i −0.253047 0.438290i
\(881\) 15.1538 0.510543 0.255272 0.966869i \(-0.417835\pi\)
0.255272 + 0.966869i \(0.417835\pi\)
\(882\) 0 0
\(883\) 51.5983 1.73642 0.868211 0.496196i \(-0.165270\pi\)
0.868211 + 0.496196i \(0.165270\pi\)
\(884\) −4.93063 49.0150i −0.165835 1.64855i
\(885\) 1.43866 2.49183i 0.0483600 0.0837619i
\(886\) −27.1133 15.6539i −0.910889 0.525902i
\(887\) 2.09332 + 3.62574i 0.0702868 + 0.121740i 0.899027 0.437893i \(-0.144275\pi\)
−0.828740 + 0.559634i \(0.810942\pi\)
\(888\) −12.9380 −0.434169
\(889\) 0 0
\(890\) 13.0557i 0.437628i
\(891\) −32.5236 + 18.7775i −1.08958 + 0.629070i
\(892\) −21.0165 12.1339i −0.703684 0.406272i
\(893\) −20.5356 + 35.5687i −0.687199 + 1.19026i
\(894\) −8.38058 14.5156i −0.280288 0.485474i
\(895\) 0.372330i 0.0124456i
\(896\) 0 0
\(897\) 26.2579 + 11.8315i 0.876726 + 0.395041i
\(898\) 1.26916 + 2.19825i 0.0423524 + 0.0733565i
\(899\) −13.2066 7.62482i −0.440464 0.254302i
\(900\) −1.83146 + 3.17217i −0.0610485 + 0.105739i
\(901\) 5.18783 + 8.98558i 0.172832 + 0.299353i
\(902\) 88.1133i 2.93385i
\(903\) 0 0
\(904\) 49.9873i 1.66255i
\(905\) 0.299071 0.172669i 0.00994145 0.00573970i
\(906\) 3.26187 5.64972i 0.108368 0.187699i
\(907\) −4.80242 + 8.31803i −0.159462 + 0.276196i −0.934675 0.355504i \(-0.884309\pi\)
0.775213 + 0.631700i \(0.217642\pi\)
\(908\) −13.2726 + 7.66291i −0.440465 + 0.254303i
\(909\) 1.81099 0.0600667
\(910\) 0 0
\(911\) −1.82653 −0.0605157 −0.0302578 0.999542i \(-0.509633\pi\)
−0.0302578 + 0.999542i \(0.509633\pi\)
\(912\) −37.5738 + 21.6932i −1.24419 + 0.718335i
\(913\) 3.25083 5.63060i 0.107587 0.186346i
\(914\) 35.3967 61.3089i 1.17082 2.02792i
\(915\) 2.26505 1.30773i 0.0748802 0.0432321i
\(916\) 23.5125i 0.776874i
\(917\) 0 0
\(918\) 43.6385i 1.44028i
\(919\) −7.89209 13.6695i −0.260336 0.450915i 0.705995 0.708217i \(-0.250500\pi\)
−0.966331 + 0.257301i \(0.917167\pi\)
\(920\) −8.61213 + 14.9166i −0.283933 + 0.491787i
\(921\) −10.5171 6.07205i −0.346550 0.200081i
\(922\) −31.4495 54.4721i −1.03573 1.79394i
\(923\) 11.4885 25.4967i 0.378148 0.839235i
\(924\) 0 0
\(925\) 6.55993i 0.215689i
\(926\) −49.2281 85.2657i −1.61774 2.80200i
\(927\) −0.604833 + 1.04760i −0.0198653 + 0.0344077i
\(928\) −13.0018 7.50659i −0.426805 0.246416i
\(929\) −14.5502 + 8.40057i −0.477377 + 0.275614i −0.719323 0.694676i \(-0.755548\pi\)
0.241946 + 0.970290i \(0.422214\pi\)
\(930\) 4.59498i 0.150675i
\(931\) 0 0
\(932\) 42.9175 1.40581
\(933\) −16.9522 29.3620i −0.554989 0.961268i
\(934\) 4.19352 + 2.42113i 0.137216 + 0.0792218i
\(935\) −4.97262 + 8.61284i −0.162622 + 0.281670i
\(936\) 3.72237 0.374450i 0.121670 0.0122393i
\(937\) 38.3004 1.25122 0.625610 0.780136i \(-0.284850\pi\)
0.625610 + 0.780136i \(0.284850\pi\)
\(938\) 0 0
\(939\) −55.5085 −1.81145
\(940\) −11.0406 19.1228i −0.360103 0.623717i
\(941\) 39.1873 + 22.6248i 1.27747 + 0.737548i 0.976383 0.216048i \(-0.0693168\pi\)
0.301088 + 0.953596i \(0.402650\pi\)
\(942\) 10.4363 + 6.02539i 0.340033 + 0.196318i
\(943\) 32.7262 18.8945i 1.06571 0.615288i
\(944\) 12.6253i 0.410919i
\(945\) 0 0
\(946\) −51.2809 −1.66729
\(947\) 4.10212 2.36836i 0.133301 0.0769614i −0.431867 0.901938i \(-0.642145\pi\)
0.565168 + 0.824976i \(0.308812\pi\)
\(948\) −51.0444 + 88.4116i −1.65785 + 2.87147i
\(949\) 31.8973 + 44.3174i 1.03543 + 1.43860i
\(950\) −29.4241 50.9640i −0.954643 1.65349i
\(951\) 28.4993i 0.924153i
\(952\) 0 0
\(953\) −44.8007 −1.45124 −0.725618 0.688098i \(-0.758446\pi\)
−0.725618 + 0.688098i \(0.758446\pi\)
\(954\) −1.31532 + 0.759403i −0.0425852 + 0.0245866i
\(955\) −9.67307 5.58475i −0.313013 0.180718i
\(956\) −80.2260 46.3185i −2.59470 1.49805i
\(957\) 60.5406 34.9531i 1.95700 1.12987i
\(958\) 64.8505 2.09522
\(959\) 0 0
\(960\) 6.70052i 0.216258i
\(961\) −14.1593 24.5246i −0.456750 0.791115i
\(962\) −10.4817 + 7.54419i −0.337945 + 0.243235i
\(963\) 0.702508 1.21678i 0.0226380 0.0392102i
\(964\) 105.920 61.1529i 3.41145 1.96960i
\(965\) 5.00332 0.161063
\(966\) 0 0
\(967\) 40.6843i 1.30832i 0.756356 + 0.654160i \(0.226978\pi\)
−0.756356 + 0.654160i \(0.773022\pi\)
\(968\) −42.0769 + 24.2931i −1.35240 + 0.780811i
\(969\) 24.8902 + 14.3703i 0.799587 + 0.461642i
\(970\) 26.0844 + 15.0598i 0.837520 + 0.483542i
\(971\) −20.7054 35.8629i −0.664469 1.15089i −0.979429 0.201790i \(-0.935324\pi\)
0.314959 0.949105i \(-0.398009\pi\)
\(972\) 8.36344 0.268257
\(973\) 0 0
\(974\) 52.0118 1.66656
\(975\) −2.74704 27.3081i −0.0879757 0.874559i
\(976\) −5.73813 + 9.93874i −0.183673 + 0.318131i
\(977\) 43.8271 + 25.3036i 1.40215 + 0.809534i 0.994613 0.103653i \(-0.0330532\pi\)
0.407540 + 0.913187i \(0.366387\pi\)
\(978\) 35.9003 + 62.1812i 1.14797 + 1.98834i
\(979\) −34.9257 −1.11623
\(980\) 0 0
\(981\) 0.929702i 0.0296831i
\(982\) −6.35288 + 3.66784i −0.202729 + 0.117045i
\(983\) 21.2567 + 12.2726i 0.677984 + 0.391434i 0.799095 0.601205i \(-0.205312\pi\)
−0.121111 + 0.992639i \(0.538646\pi\)
\(984\) −35.5125 + 61.5094i −1.13210 + 1.96085i
\(985\) −2.41327 4.17990i −0.0768930 0.133183i
\(986\) 75.9570i 2.41896i
\(987\) 0 0
\(988\) −32.1319 + 71.3112i −1.02225 + 2.26871i
\(989\) 10.9964 + 19.0462i 0.349664 + 0.605635i
\(990\) −1.26076 0.727901i −0.0400696 0.0231342i
\(991\) 15.8271 27.4133i 0.502764 0.870814i −0.497230 0.867619i \(-0.665650\pi\)
0.999995 0.00319506i \(-0.00101702\pi\)
\(992\) 1.31994 + 2.28621i 0.0419083 + 0.0725873i
\(993\) 18.1524i 0.576048i
\(994\) 0 0
\(995\) 3.44358i 0.109169i
\(996\) 8.74822 5.05079i 0.277198 0.160040i
\(997\) −14.5926 + 25.2751i −0.462153 + 0.800472i −0.999068 0.0431642i \(-0.986256\pi\)
0.536915 + 0.843636i \(0.319589\pi\)
\(998\) −3.54126 + 6.13364i −0.112097 + 0.194157i
\(999\) −6.68879 + 3.86177i −0.211624 + 0.122181i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.r.d.116.1 12
7.2 even 3 inner 637.2.r.d.324.6 12
7.3 odd 6 91.2.c.a.64.1 6
7.4 even 3 637.2.c.d.246.1 6
7.5 odd 6 637.2.r.e.324.6 12
7.6 odd 2 637.2.r.e.116.1 12
13.12 even 2 inner 637.2.r.d.116.6 12
21.17 even 6 819.2.c.b.64.6 6
28.3 even 6 1456.2.k.c.337.2 6
91.12 odd 6 637.2.r.e.324.1 12
91.18 odd 12 8281.2.a.be.1.1 3
91.25 even 6 637.2.c.d.246.6 6
91.31 even 12 1183.2.a.h.1.1 3
91.38 odd 6 91.2.c.a.64.6 yes 6
91.51 even 6 inner 637.2.r.d.324.1 12
91.60 odd 12 8281.2.a.bi.1.3 3
91.73 even 12 1183.2.a.j.1.3 3
91.90 odd 2 637.2.r.e.116.6 12
273.38 even 6 819.2.c.b.64.1 6
364.311 even 6 1456.2.k.c.337.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.c.a.64.1 6 7.3 odd 6
91.2.c.a.64.6 yes 6 91.38 odd 6
637.2.c.d.246.1 6 7.4 even 3
637.2.c.d.246.6 6 91.25 even 6
637.2.r.d.116.1 12 1.1 even 1 trivial
637.2.r.d.116.6 12 13.12 even 2 inner
637.2.r.d.324.1 12 91.51 even 6 inner
637.2.r.d.324.6 12 7.2 even 3 inner
637.2.r.e.116.1 12 7.6 odd 2
637.2.r.e.116.6 12 91.90 odd 2
637.2.r.e.324.1 12 91.12 odd 6
637.2.r.e.324.6 12 7.5 odd 6
819.2.c.b.64.1 6 273.38 even 6
819.2.c.b.64.6 6 21.17 even 6
1183.2.a.h.1.1 3 91.31 even 12
1183.2.a.j.1.3 3 91.73 even 12
1456.2.k.c.337.1 6 364.311 even 6
1456.2.k.c.337.2 6 28.3 even 6
8281.2.a.be.1.1 3 91.18 odd 12
8281.2.a.bi.1.3 3 91.60 odd 12