Properties

Label 637.2.q.j.491.2
Level $637$
Weight $2$
Character 637.491
Analytic conductor $5.086$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 491.2
Character \(\chi\) \(=\) 637.491
Dual form 637.2.q.j.589.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.08022 + 1.20101i) q^{2} +(0.888571 + 1.53905i) q^{3} +(1.88487 - 3.26470i) q^{4} +0.706642i q^{5} +(-3.69684 - 2.13437i) q^{6} +4.25098i q^{8} +(-0.0791164 + 0.137034i) q^{9} +O(q^{10})\) \(q+(-2.08022 + 1.20101i) q^{2} +(0.888571 + 1.53905i) q^{3} +(1.88487 - 3.26470i) q^{4} +0.706642i q^{5} +(-3.69684 - 2.13437i) q^{6} +4.25098i q^{8} +(-0.0791164 + 0.137034i) q^{9} +(-0.848687 - 1.46997i) q^{10} +(4.66830 - 2.69524i) q^{11} +6.69937 q^{12} +(-0.746990 + 3.52732i) q^{13} +(-1.08756 + 0.627901i) q^{15} +(-1.33575 - 2.31358i) q^{16} +(2.12541 - 3.68131i) q^{17} -0.380080i q^{18} +(-2.40306 - 1.38741i) q^{19} +(2.30697 + 1.33193i) q^{20} +(-6.47406 + 11.2134i) q^{22} +(3.35956 + 5.81893i) q^{23} +(-6.54247 + 3.77730i) q^{24} +4.50066 q^{25} +(-2.68246 - 8.23475i) q^{26} +5.05022 q^{27} +(-1.27934 - 2.21588i) q^{29} +(1.50824 - 2.61234i) q^{30} +8.74418i q^{31} +(-1.80563 - 1.04248i) q^{32} +(8.29623 + 4.78983i) q^{33} +10.2106i q^{34} +(0.298249 + 0.516582i) q^{36} +(-1.18180 + 0.682315i) q^{37} +6.66519 q^{38} +(-6.09248 + 1.98462i) q^{39} -3.00392 q^{40} +(3.91241 - 2.25883i) q^{41} +(3.78044 - 6.54792i) q^{43} -20.3208i q^{44} +(-0.0968337 - 0.0559070i) q^{45} +(-13.9772 - 8.06976i) q^{46} +0.0870907i q^{47} +(2.37381 - 4.11156i) q^{48} +(-9.36235 + 5.40536i) q^{50} +7.55430 q^{51} +(10.1077 + 9.08725i) q^{52} +7.04425 q^{53} +(-10.5056 + 6.06539i) q^{54} +(1.90457 + 3.29882i) q^{55} -4.93124i q^{57} +(5.32262 + 3.07302i) q^{58} +(-5.41052 - 3.12376i) q^{59} +4.73406i q^{60} +(-6.40224 + 11.0890i) q^{61} +(-10.5019 - 18.1898i) q^{62} +10.3511 q^{64} +(-2.49255 - 0.527855i) q^{65} -23.0106 q^{66} +(-9.09751 + 5.25245i) q^{67} +(-8.01224 - 13.8776i) q^{68} +(-5.97041 + 10.3411i) q^{69} +(-9.03045 - 5.21373i) q^{71} +(-0.582527 - 0.336322i) q^{72} +10.1732i q^{73} +(1.63894 - 2.83873i) q^{74} +(3.99915 + 6.92674i) q^{75} +(-9.05893 + 5.23018i) q^{76} +(10.2901 - 11.4456i) q^{78} -10.5270 q^{79} +(1.63487 - 0.943894i) q^{80} +(4.72483 + 8.18365i) q^{81} +(-5.42578 + 9.39773i) q^{82} +3.20483i q^{83} +(2.60137 + 1.50190i) q^{85} +18.1615i q^{86} +(2.27357 - 3.93794i) q^{87} +(11.4574 + 19.8449i) q^{88} +(-1.75452 + 1.01297i) q^{89} +0.268580 q^{90} +25.3294 q^{92} +(-13.4577 + 7.76983i) q^{93} +(-0.104597 - 0.181168i) q^{94} +(0.980401 - 1.69810i) q^{95} -3.70527i q^{96} +(4.62864 + 2.67235i) q^{97} +0.852952i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 20 q^{4} - 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + 20 q^{4} - 28 q^{9} - 12 q^{15} - 28 q^{16} + 8 q^{22} + 24 q^{23} - 40 q^{25} - 24 q^{29} + 24 q^{30} - 60 q^{32} + 92 q^{36} - 32 q^{39} + 12 q^{43} - 24 q^{46} + 12 q^{50} + 72 q^{53} - 132 q^{58} + 32 q^{64} + 48 q^{67} - 48 q^{71} + 72 q^{72} + 24 q^{74} - 156 q^{78} + 96 q^{79} - 64 q^{81} + 12 q^{85} + 56 q^{88} + 168 q^{92} - 48 q^{93} + 84 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08022 + 1.20101i −1.47094 + 0.849246i −0.999467 0.0326368i \(-0.989610\pi\)
−0.471469 + 0.881882i \(0.656276\pi\)
\(3\) 0.888571 + 1.53905i 0.513017 + 0.888571i 0.999886 + 0.0150961i \(0.00480542\pi\)
−0.486869 + 0.873475i \(0.661861\pi\)
\(4\) 1.88487 3.26470i 0.942436 1.63235i
\(5\) 0.706642i 0.316020i 0.987438 + 0.158010i \(0.0505078\pi\)
−0.987438 + 0.158010i \(0.949492\pi\)
\(6\) −3.69684 2.13437i −1.50923 0.871354i
\(7\) 0 0
\(8\) 4.25098i 1.50295i
\(9\) −0.0791164 + 0.137034i −0.0263721 + 0.0456779i
\(10\) −0.848687 1.46997i −0.268378 0.464845i
\(11\) 4.66830 2.69524i 1.40755 0.812647i 0.412395 0.911005i \(-0.364693\pi\)
0.995151 + 0.0983585i \(0.0313592\pi\)
\(12\) 6.69937 1.93394
\(13\) −0.746990 + 3.52732i −0.207178 + 0.978303i
\(14\) 0 0
\(15\) −1.08756 + 0.627901i −0.280806 + 0.162123i
\(16\) −1.33575 2.31358i −0.333936 0.578395i
\(17\) 2.12541 3.68131i 0.515487 0.892849i −0.484352 0.874873i \(-0.660944\pi\)
0.999838 0.0179758i \(-0.00572218\pi\)
\(18\) 0.380080i 0.0895857i
\(19\) −2.40306 1.38741i −0.551300 0.318293i 0.198346 0.980132i \(-0.436443\pi\)
−0.749646 + 0.661839i \(0.769776\pi\)
\(20\) 2.30697 + 1.33193i 0.515854 + 0.297829i
\(21\) 0 0
\(22\) −6.47406 + 11.2134i −1.38027 + 2.39070i
\(23\) 3.35956 + 5.81893i 0.700517 + 1.21333i 0.968285 + 0.249847i \(0.0803804\pi\)
−0.267769 + 0.963483i \(0.586286\pi\)
\(24\) −6.54247 + 3.77730i −1.33548 + 0.771038i
\(25\) 4.50066 0.900131
\(26\) −2.68246 8.23475i −0.526074 1.61497i
\(27\) 5.05022 0.971916
\(28\) 0 0
\(29\) −1.27934 2.21588i −0.237568 0.411479i 0.722448 0.691425i \(-0.243017\pi\)
−0.960016 + 0.279946i \(0.909683\pi\)
\(30\) 1.50824 2.61234i 0.275365 0.476947i
\(31\) 8.74418i 1.57050i 0.619178 + 0.785251i \(0.287466\pi\)
−0.619178 + 0.785251i \(0.712534\pi\)
\(32\) −1.80563 1.04248i −0.319193 0.184286i
\(33\) 8.29623 + 4.78983i 1.44419 + 0.833803i
\(34\) 10.2106i 1.75110i
\(35\) 0 0
\(36\) 0.298249 + 0.516582i 0.0497081 + 0.0860970i
\(37\) −1.18180 + 0.682315i −0.194288 + 0.112172i −0.593988 0.804474i \(-0.702447\pi\)
0.399701 + 0.916646i \(0.369114\pi\)
\(38\) 6.66519 1.08124
\(39\) −6.09248 + 1.98462i −0.975578 + 0.317794i
\(40\) −3.00392 −0.474962
\(41\) 3.91241 2.25883i 0.611016 0.352770i −0.162347 0.986734i \(-0.551906\pi\)
0.773363 + 0.633963i \(0.218573\pi\)
\(42\) 0 0
\(43\) 3.78044 6.54792i 0.576512 0.998548i −0.419363 0.907818i \(-0.637747\pi\)
0.995876 0.0907300i \(-0.0289200\pi\)
\(44\) 20.3208i 3.06347i
\(45\) −0.0968337 0.0559070i −0.0144351 0.00833412i
\(46\) −13.9772 8.06976i −2.06083 1.18982i
\(47\) 0.0870907i 0.0127035i 0.999980 + 0.00635175i \(0.00202184\pi\)
−0.999980 + 0.00635175i \(0.997978\pi\)
\(48\) 2.37381 4.11156i 0.342630 0.593452i
\(49\) 0 0
\(50\) −9.36235 + 5.40536i −1.32404 + 0.764433i
\(51\) 7.55430 1.05781
\(52\) 10.1077 + 9.08725i 1.40168 + 1.26017i
\(53\) 7.04425 0.967602 0.483801 0.875178i \(-0.339256\pi\)
0.483801 + 0.875178i \(0.339256\pi\)
\(54\) −10.5056 + 6.06539i −1.42963 + 0.825395i
\(55\) 1.90457 + 3.29882i 0.256812 + 0.444812i
\(56\) 0 0
\(57\) 4.93124i 0.653159i
\(58\) 5.32262 + 3.07302i 0.698894 + 0.403507i
\(59\) −5.41052 3.12376i −0.704389 0.406679i 0.104591 0.994515i \(-0.466647\pi\)
−0.808980 + 0.587836i \(0.799980\pi\)
\(60\) 4.73406i 0.611164i
\(61\) −6.40224 + 11.0890i −0.819723 + 1.41980i 0.0861637 + 0.996281i \(0.472539\pi\)
−0.905887 + 0.423521i \(0.860794\pi\)
\(62\) −10.5019 18.1898i −1.33374 2.31011i
\(63\) 0 0
\(64\) 10.3511 1.29389
\(65\) −2.49255 0.527855i −0.309163 0.0654723i
\(66\) −23.0106 −2.83241
\(67\) −9.09751 + 5.25245i −1.11144 + 0.641689i −0.939201 0.343367i \(-0.888433\pi\)
−0.172236 + 0.985056i \(0.555099\pi\)
\(68\) −8.01224 13.8776i −0.971627 1.68291i
\(69\) −5.97041 + 10.3411i −0.718753 + 1.24492i
\(70\) 0 0
\(71\) −9.03045 5.21373i −1.07172 0.618756i −0.143067 0.989713i \(-0.545696\pi\)
−0.928650 + 0.370957i \(0.879030\pi\)
\(72\) −0.582527 0.336322i −0.0686515 0.0396360i
\(73\) 10.1732i 1.19068i 0.803474 + 0.595340i \(0.202983\pi\)
−0.803474 + 0.595340i \(0.797017\pi\)
\(74\) 1.63894 2.83873i 0.190523 0.329996i
\(75\) 3.99915 + 6.92674i 0.461782 + 0.799831i
\(76\) −9.05893 + 5.23018i −1.03913 + 0.599942i
\(77\) 0 0
\(78\) 10.2901 11.4456i 1.16513 1.29596i
\(79\) −10.5270 −1.18438 −0.592191 0.805798i \(-0.701737\pi\)
−0.592191 + 0.805798i \(0.701737\pi\)
\(80\) 1.63487 0.943894i 0.182784 0.105531i
\(81\) 4.72483 + 8.18365i 0.524981 + 0.909294i
\(82\) −5.42578 + 9.39773i −0.599177 + 1.03781i
\(83\) 3.20483i 0.351776i 0.984410 + 0.175888i \(0.0562797\pi\)
−0.984410 + 0.175888i \(0.943720\pi\)
\(84\) 0 0
\(85\) 2.60137 + 1.50190i 0.282158 + 0.162904i
\(86\) 18.1615i 1.95840i
\(87\) 2.27357 3.93794i 0.243752 0.422192i
\(88\) 11.4574 + 19.8449i 1.22137 + 2.11547i
\(89\) −1.75452 + 1.01297i −0.185979 + 0.107375i −0.590099 0.807331i \(-0.700911\pi\)
0.404120 + 0.914706i \(0.367578\pi\)
\(90\) 0.268580 0.0283109
\(91\) 0 0
\(92\) 25.3294 2.64077
\(93\) −13.4577 + 7.76983i −1.39550 + 0.805694i
\(94\) −0.104597 0.181168i −0.0107884 0.0186860i
\(95\) 0.980401 1.69810i 0.100587 0.174222i
\(96\) 3.70527i 0.378168i
\(97\) 4.62864 + 2.67235i 0.469968 + 0.271336i 0.716226 0.697868i \(-0.245868\pi\)
−0.246259 + 0.969204i \(0.579201\pi\)
\(98\) 0 0
\(99\) 0.852952i 0.0857249i
\(100\) 8.48317 14.6933i 0.848317 1.46933i
\(101\) −5.76467 9.98470i −0.573606 0.993515i −0.996192 0.0871919i \(-0.972211\pi\)
0.422585 0.906323i \(-0.361123\pi\)
\(102\) −15.7146 + 9.07282i −1.55598 + 0.898343i
\(103\) 1.65605 0.163175 0.0815877 0.996666i \(-0.474001\pi\)
0.0815877 + 0.996666i \(0.474001\pi\)
\(104\) −14.9946 3.17544i −1.47034 0.311378i
\(105\) 0 0
\(106\) −14.6536 + 8.46024i −1.42328 + 0.821731i
\(107\) 0.229732 + 0.397908i 0.0222091 + 0.0384672i 0.876916 0.480643i \(-0.159597\pi\)
−0.854707 + 0.519110i \(0.826263\pi\)
\(108\) 9.51903 16.4874i 0.915969 1.58650i
\(109\) 15.5929i 1.49353i −0.665088 0.746765i \(-0.731606\pi\)
0.665088 0.746765i \(-0.268394\pi\)
\(110\) −7.92385 4.57484i −0.755510 0.436194i
\(111\) −2.10023 1.21257i −0.199345 0.115092i
\(112\) 0 0
\(113\) −0.832761 + 1.44238i −0.0783396 + 0.135688i −0.902534 0.430619i \(-0.858295\pi\)
0.824194 + 0.566307i \(0.191629\pi\)
\(114\) 5.92249 + 10.2581i 0.554692 + 0.960755i
\(115\) −4.11190 + 2.37401i −0.383436 + 0.221377i
\(116\) −9.64558 −0.895570
\(117\) −0.424263 0.381432i −0.0392231 0.0352634i
\(118\) 15.0067 1.38148
\(119\) 0 0
\(120\) −2.66920 4.62318i −0.243663 0.422037i
\(121\) 9.02869 15.6381i 0.820790 1.42165i
\(122\) 30.7567i 2.78458i
\(123\) 6.95291 + 4.01426i 0.626923 + 0.361954i
\(124\) 28.5471 + 16.4817i 2.56361 + 1.48010i
\(125\) 6.71356i 0.600479i
\(126\) 0 0
\(127\) 4.81769 + 8.34449i 0.427501 + 0.740454i 0.996650 0.0817805i \(-0.0260607\pi\)
−0.569149 + 0.822234i \(0.692727\pi\)
\(128\) −17.9213 + 10.3469i −1.58404 + 0.914544i
\(129\) 13.4368 1.18304
\(130\) 5.81902 1.89554i 0.510362 0.166250i
\(131\) 21.3205 1.86278 0.931388 0.364027i \(-0.118599\pi\)
0.931388 + 0.364027i \(0.118599\pi\)
\(132\) 31.2747 18.0564i 2.72211 1.57161i
\(133\) 0 0
\(134\) 12.6165 21.8525i 1.08990 1.88777i
\(135\) 3.56870i 0.307145i
\(136\) 15.6492 + 9.03506i 1.34191 + 0.774750i
\(137\) −3.51107 2.02712i −0.299971 0.173188i 0.342459 0.939533i \(-0.388740\pi\)
−0.642430 + 0.766344i \(0.722074\pi\)
\(138\) 28.6822i 2.44159i
\(139\) 8.05661 13.9545i 0.683353 1.18360i −0.290599 0.956845i \(-0.593855\pi\)
0.973952 0.226756i \(-0.0728121\pi\)
\(140\) 0 0
\(141\) −0.134037 + 0.0773863i −0.0112880 + 0.00651710i
\(142\) 25.0471 2.10190
\(143\) 6.01982 + 18.4799i 0.503403 + 1.54537i
\(144\) 0.422718 0.0352265
\(145\) 1.56584 0.904036i 0.130036 0.0750761i
\(146\) −12.2181 21.1624i −1.01118 1.75142i
\(147\) 0 0
\(148\) 5.14431i 0.422860i
\(149\) −0.576390 0.332779i −0.0472197 0.0272623i 0.476204 0.879335i \(-0.342012\pi\)
−0.523424 + 0.852072i \(0.675346\pi\)
\(150\) −16.6382 9.60608i −1.35851 0.784333i
\(151\) 3.58885i 0.292056i 0.989280 + 0.146028i \(0.0466490\pi\)
−0.989280 + 0.146028i \(0.953351\pi\)
\(152\) 5.89785 10.2154i 0.478378 0.828576i
\(153\) 0.336309 + 0.582504i 0.0271890 + 0.0470927i
\(154\) 0 0
\(155\) −6.17901 −0.496310
\(156\) −5.00437 + 23.6308i −0.400670 + 1.89198i
\(157\) 5.38387 0.429680 0.214840 0.976649i \(-0.431077\pi\)
0.214840 + 0.976649i \(0.431077\pi\)
\(158\) 21.8985 12.6431i 1.74215 1.00583i
\(159\) 6.25931 + 10.8414i 0.496396 + 0.859783i
\(160\) 0.736661 1.27593i 0.0582382 0.100871i
\(161\) 0 0
\(162\) −19.6574 11.3492i −1.54443 0.891676i
\(163\) 3.39879 + 1.96229i 0.266214 + 0.153699i 0.627166 0.778886i \(-0.284215\pi\)
−0.360952 + 0.932584i \(0.617548\pi\)
\(164\) 17.0304i 1.32985i
\(165\) −3.38470 + 5.86246i −0.263498 + 0.456392i
\(166\) −3.84905 6.66675i −0.298744 0.517440i
\(167\) 11.3252 6.53858i 0.876367 0.505971i 0.00690822 0.999976i \(-0.497801\pi\)
0.869459 + 0.494005i \(0.164468\pi\)
\(168\) 0 0
\(169\) −11.8840 5.26975i −0.914155 0.405366i
\(170\) −7.21522 −0.553382
\(171\) 0.380243 0.219534i 0.0290779 0.0167881i
\(172\) −14.2513 24.6840i −1.08665 1.88214i
\(173\) −0.786360 + 1.36202i −0.0597859 + 0.103552i −0.894369 0.447330i \(-0.852375\pi\)
0.834583 + 0.550882i \(0.185708\pi\)
\(174\) 10.9224i 0.828023i
\(175\) 0 0
\(176\) −12.4713 7.20032i −0.940061 0.542745i
\(177\) 11.1027i 0.834533i
\(178\) 2.43319 4.21441i 0.182376 0.315884i
\(179\) 8.61218 + 14.9167i 0.643704 + 1.11493i 0.984599 + 0.174827i \(0.0559367\pi\)
−0.340895 + 0.940101i \(0.610730\pi\)
\(180\) −0.365038 + 0.210755i −0.0272084 + 0.0157088i
\(181\) −23.0795 −1.71549 −0.857744 0.514076i \(-0.828135\pi\)
−0.857744 + 0.514076i \(0.828135\pi\)
\(182\) 0 0
\(183\) −22.7554 −1.68213
\(184\) −24.7362 + 14.2814i −1.82357 + 1.05284i
\(185\) −0.482153 0.835113i −0.0354486 0.0613987i
\(186\) 18.6634 32.3259i 1.36846 2.37025i
\(187\) 22.9140i 1.67563i
\(188\) 0.284325 + 0.164155i 0.0207365 + 0.0119722i
\(189\) 0 0
\(190\) 4.70990i 0.341692i
\(191\) 3.17530 5.49978i 0.229757 0.397950i −0.727979 0.685599i \(-0.759540\pi\)
0.957736 + 0.287649i \(0.0928737\pi\)
\(192\) 9.19771 + 15.9309i 0.663787 + 1.14971i
\(193\) −1.71129 + 0.988011i −0.123181 + 0.0711186i −0.560324 0.828273i \(-0.689324\pi\)
0.437143 + 0.899392i \(0.355990\pi\)
\(194\) −12.8381 −0.921724
\(195\) −1.40242 4.30520i −0.100429 0.308302i
\(196\) 0 0
\(197\) 14.7060 8.49053i 1.04776 0.604925i 0.125739 0.992063i \(-0.459870\pi\)
0.922022 + 0.387138i \(0.126536\pi\)
\(198\) −1.02441 1.77433i −0.0728015 0.126096i
\(199\) 6.15733 10.6648i 0.436482 0.756009i −0.560933 0.827861i \(-0.689558\pi\)
0.997415 + 0.0718521i \(0.0228910\pi\)
\(200\) 19.1322i 1.35285i
\(201\) −16.1676 9.33434i −1.14037 0.658394i
\(202\) 23.9835 + 13.8469i 1.68748 + 0.974265i
\(203\) 0 0
\(204\) 14.2389 24.6625i 0.996922 1.72672i
\(205\) 1.59619 + 2.76467i 0.111482 + 0.193093i
\(206\) −3.44494 + 1.98894i −0.240021 + 0.138576i
\(207\) −1.06319 −0.0738965
\(208\) 9.15853 2.98338i 0.635030 0.206860i
\(209\) −14.9576 −1.03464
\(210\) 0 0
\(211\) 3.23809 + 5.60854i 0.222919 + 0.386108i 0.955693 0.294365i \(-0.0951080\pi\)
−0.732774 + 0.680472i \(0.761775\pi\)
\(212\) 13.2775 22.9973i 0.911903 1.57946i
\(213\) 18.5311i 1.26973i
\(214\) −0.955787 0.551824i −0.0653362 0.0377219i
\(215\) 4.62703 + 2.67142i 0.315561 + 0.182189i
\(216\) 21.4684i 1.46074i
\(217\) 0 0
\(218\) 18.7273 + 32.4367i 1.26837 + 2.19689i
\(219\) −15.6570 + 9.03959i −1.05800 + 0.610839i
\(220\) 14.3595 0.968118
\(221\) 11.3975 + 10.2469i 0.766680 + 0.689281i
\(222\) 5.82526 0.390966
\(223\) −4.89368 + 2.82537i −0.327705 + 0.189200i −0.654822 0.755783i \(-0.727256\pi\)
0.327117 + 0.944984i \(0.393923\pi\)
\(224\) 0 0
\(225\) −0.356076 + 0.616741i −0.0237384 + 0.0411161i
\(226\) 4.00063i 0.266118i
\(227\) 24.0147 + 13.8649i 1.59391 + 0.920245i 0.992627 + 0.121211i \(0.0386776\pi\)
0.601285 + 0.799035i \(0.294656\pi\)
\(228\) −16.0990 9.29476i −1.06618 0.615561i
\(229\) 5.50360i 0.363688i 0.983327 + 0.181844i \(0.0582066\pi\)
−0.983327 + 0.181844i \(0.941793\pi\)
\(230\) 5.70243 9.87690i 0.376007 0.651264i
\(231\) 0 0
\(232\) 9.41968 5.43846i 0.618432 0.357052i
\(233\) −20.7142 −1.35703 −0.678516 0.734586i \(-0.737377\pi\)
−0.678516 + 0.734586i \(0.737377\pi\)
\(234\) 1.34066 + 0.283916i 0.0876420 + 0.0185602i
\(235\) −0.0615420 −0.00401455
\(236\) −20.3963 + 11.7758i −1.32768 + 0.766539i
\(237\) −9.35400 16.2016i −0.607608 1.05241i
\(238\) 0 0
\(239\) 12.3266i 0.797345i 0.917093 + 0.398672i \(0.130529\pi\)
−0.917093 + 0.398672i \(0.869471\pi\)
\(240\) 2.90540 + 1.67743i 0.187543 + 0.108278i
\(241\) −16.7246 9.65598i −1.07733 0.621996i −0.147154 0.989114i \(-0.547011\pi\)
−0.930175 + 0.367117i \(0.880345\pi\)
\(242\) 43.3743i 2.78821i
\(243\) −0.821359 + 1.42264i −0.0526902 + 0.0912621i
\(244\) 24.1348 + 41.8027i 1.54507 + 2.67615i
\(245\) 0 0
\(246\) −19.2848 −1.22955
\(247\) 6.68890 7.43999i 0.425605 0.473395i
\(248\) −37.1714 −2.36038
\(249\) −4.93240 + 2.84772i −0.312578 + 0.180467i
\(250\) −8.06309 13.9657i −0.509954 0.883267i
\(251\) 0.308490 0.534320i 0.0194717 0.0337260i −0.856125 0.516768i \(-0.827135\pi\)
0.875597 + 0.483042i \(0.160468\pi\)
\(252\) 0 0
\(253\) 31.3669 + 18.1097i 1.97202 + 1.13855i
\(254\) −20.0437 11.5722i −1.25765 0.726107i
\(255\) 5.33818i 0.334290i
\(256\) 14.5024 25.1189i 0.906401 1.56993i
\(257\) −10.9170 18.9089i −0.680987 1.17950i −0.974680 0.223604i \(-0.928218\pi\)
0.293694 0.955900i \(-0.405115\pi\)
\(258\) −27.9514 + 16.1378i −1.74018 + 1.00469i
\(259\) 0 0
\(260\) −6.42143 + 7.14249i −0.398240 + 0.442958i
\(261\) 0.404868 0.0250607
\(262\) −44.3512 + 25.6062i −2.74003 + 1.58195i
\(263\) 0.875972 + 1.51723i 0.0540147 + 0.0935563i 0.891768 0.452492i \(-0.149465\pi\)
−0.837754 + 0.546048i \(0.816132\pi\)
\(264\) −20.3615 + 35.2671i −1.25316 + 2.17054i
\(265\) 4.97776i 0.305781i
\(266\) 0 0
\(267\) −3.11804 1.80020i −0.190821 0.110170i
\(268\) 39.6008i 2.41900i
\(269\) −6.20308 + 10.7441i −0.378208 + 0.655076i −0.990802 0.135322i \(-0.956793\pi\)
0.612593 + 0.790398i \(0.290126\pi\)
\(270\) −4.28606 7.42367i −0.260841 0.451790i
\(271\) 9.26425 5.34872i 0.562763 0.324911i −0.191491 0.981494i \(-0.561332\pi\)
0.754254 + 0.656583i \(0.227999\pi\)
\(272\) −11.3560 −0.688559
\(273\) 0 0
\(274\) 9.73840 0.588318
\(275\) 21.0104 12.1304i 1.26698 0.731489i
\(276\) 22.5069 + 38.9832i 1.35476 + 2.34651i
\(277\) 3.19944 5.54159i 0.192236 0.332962i −0.753755 0.657155i \(-0.771760\pi\)
0.945991 + 0.324194i \(0.105093\pi\)
\(278\) 38.7044i 2.32134i
\(279\) −1.19825 0.691809i −0.0717372 0.0414175i
\(280\) 0 0
\(281\) 16.5440i 0.986934i −0.869764 0.493467i \(-0.835729\pi\)
0.869764 0.493467i \(-0.164271\pi\)
\(282\) 0.185884 0.321961i 0.0110692 0.0191725i
\(283\) 0.244022 + 0.422659i 0.0145056 + 0.0251245i 0.873187 0.487385i \(-0.162049\pi\)
−0.858681 + 0.512510i \(0.828716\pi\)
\(284\) −34.0425 + 19.6544i −2.02005 + 1.16628i
\(285\) 3.48462 0.206411
\(286\) −34.7172 31.2124i −2.05287 1.84563i
\(287\) 0 0
\(288\) 0.285710 0.164955i 0.0168356 0.00972005i
\(289\) −0.534703 0.926132i −0.0314531 0.0544784i
\(290\) −2.17152 + 3.76119i −0.127516 + 0.220864i
\(291\) 9.49829i 0.556799i
\(292\) 33.2123 + 19.1751i 1.94360 + 1.12214i
\(293\) −6.97836 4.02896i −0.407680 0.235374i 0.282112 0.959381i \(-0.408965\pi\)
−0.689793 + 0.724007i \(0.742298\pi\)
\(294\) 0 0
\(295\) 2.20738 3.82330i 0.128519 0.222601i
\(296\) −2.90051 5.02383i −0.168589 0.292004i
\(297\) 23.5760 13.6116i 1.36802 0.789824i
\(298\) 1.59869 0.0926096
\(299\) −23.0348 + 7.50357i −1.33214 + 0.433943i
\(300\) 30.1516 1.74080
\(301\) 0 0
\(302\) −4.31026 7.46559i −0.248027 0.429596i
\(303\) 10.2446 17.7442i 0.588539 1.01938i
\(304\) 7.41290i 0.425159i
\(305\) −7.83595 4.52409i −0.448685 0.259049i
\(306\) −1.39919 0.807824i −0.0799865 0.0461802i
\(307\) 11.4949i 0.656049i −0.944669 0.328024i \(-0.893617\pi\)
0.944669 0.328024i \(-0.106383\pi\)
\(308\) 0 0
\(309\) 1.47152 + 2.54874i 0.0837117 + 0.144993i
\(310\) 12.8537 7.42108i 0.730040 0.421489i
\(311\) −25.0375 −1.41975 −0.709873 0.704330i \(-0.751248\pi\)
−0.709873 + 0.704330i \(0.751248\pi\)
\(312\) −8.43658 25.8990i −0.477628 1.46624i
\(313\) −28.3704 −1.60359 −0.801796 0.597598i \(-0.796122\pi\)
−0.801796 + 0.597598i \(0.796122\pi\)
\(314\) −11.1996 + 6.46611i −0.632032 + 0.364904i
\(315\) 0 0
\(316\) −19.8421 + 34.3675i −1.11620 + 1.93332i
\(317\) 30.5773i 1.71739i −0.512485 0.858696i \(-0.671275\pi\)
0.512485 0.858696i \(-0.328725\pi\)
\(318\) −26.0415 15.0351i −1.46033 0.843124i
\(319\) −11.9447 6.89628i −0.668775 0.386117i
\(320\) 7.31454i 0.408895i
\(321\) −0.408267 + 0.707139i −0.0227872 + 0.0394687i
\(322\) 0 0
\(323\) −10.2150 + 5.89761i −0.568376 + 0.328152i
\(324\) 35.6228 1.97905
\(325\) −3.36195 + 15.8753i −0.186487 + 0.880602i
\(326\) −9.42697 −0.522112
\(327\) 23.9983 13.8554i 1.32711 0.766206i
\(328\) 9.60225 + 16.6316i 0.530196 + 0.918326i
\(329\) 0 0
\(330\) 16.2603i 0.895099i
\(331\) 20.2727 + 11.7044i 1.11429 + 0.643334i 0.939936 0.341350i \(-0.110884\pi\)
0.174350 + 0.984684i \(0.444217\pi\)
\(332\) 10.4628 + 6.04070i 0.574221 + 0.331527i
\(333\) 0.215929i 0.0118329i
\(334\) −15.7059 + 27.2034i −0.859387 + 1.48850i
\(335\) −3.71160 6.42868i −0.202786 0.351236i
\(336\) 0 0
\(337\) −14.3821 −0.783442 −0.391721 0.920084i \(-0.628120\pi\)
−0.391721 + 0.920084i \(0.628120\pi\)
\(338\) 31.0504 3.31063i 1.68892 0.180075i
\(339\) −2.95987 −0.160758
\(340\) 9.80650 5.66178i 0.531832 0.307053i
\(341\) 23.5677 + 40.8205i 1.27626 + 2.21055i
\(342\) −0.527326 + 0.913355i −0.0285145 + 0.0493886i
\(343\) 0 0
\(344\) 27.8351 + 16.0706i 1.50077 + 0.866468i
\(345\) −7.30743 4.21894i −0.393419 0.227140i
\(346\) 3.77772i 0.203092i
\(347\) −4.63467 + 8.02749i −0.248802 + 0.430938i −0.963194 0.268808i \(-0.913370\pi\)
0.714392 + 0.699746i \(0.246704\pi\)
\(348\) −8.57078 14.8450i −0.459442 0.795777i
\(349\) 13.4954 7.79157i 0.722392 0.417073i −0.0932406 0.995644i \(-0.529723\pi\)
0.815632 + 0.578571i \(0.196389\pi\)
\(350\) 0 0
\(351\) −3.77247 + 17.8138i −0.201359 + 0.950829i
\(352\) −11.2390 −0.599039
\(353\) −16.5863 + 9.57612i −0.882801 + 0.509686i −0.871581 0.490251i \(-0.836905\pi\)
−0.0112204 + 0.999937i \(0.503572\pi\)
\(354\) 13.3346 + 23.0961i 0.708724 + 1.22755i
\(355\) 3.68424 6.38129i 0.195539 0.338684i
\(356\) 7.63731i 0.404777i
\(357\) 0 0
\(358\) −35.8304 20.6867i −1.89370 1.09333i
\(359\) 22.1893i 1.17111i −0.810634 0.585553i \(-0.800877\pi\)
0.810634 0.585553i \(-0.199123\pi\)
\(360\) 0.237659 0.411638i 0.0125258 0.0216952i
\(361\) −5.65020 9.78643i −0.297379 0.515075i
\(362\) 48.0105 27.7189i 2.52338 1.45687i
\(363\) 32.0905 1.68432
\(364\) 0 0
\(365\) −7.18879 −0.376279
\(366\) 47.3362 27.3295i 2.47430 1.42854i
\(367\) −7.25517 12.5663i −0.378717 0.655956i 0.612159 0.790735i \(-0.290301\pi\)
−0.990876 + 0.134778i \(0.956968\pi\)
\(368\) 8.97503 15.5452i 0.467856 0.810350i
\(369\) 0.714843i 0.0372132i
\(370\) 2.00597 + 1.15814i 0.104285 + 0.0602091i
\(371\) 0 0
\(372\) 58.5805i 3.03726i
\(373\) −7.43888 + 12.8845i −0.385170 + 0.667135i −0.991793 0.127855i \(-0.959191\pi\)
0.606622 + 0.794990i \(0.292524\pi\)
\(374\) 27.5200 + 47.6660i 1.42303 + 2.46475i
\(375\) −10.3325 + 5.96548i −0.533568 + 0.308056i
\(376\) −0.370221 −0.0190927
\(377\) 8.77179 2.85741i 0.451770 0.147164i
\(378\) 0 0
\(379\) 32.1983 18.5897i 1.65392 0.954889i 0.678477 0.734622i \(-0.262640\pi\)
0.975439 0.220268i \(-0.0706931\pi\)
\(380\) −3.69586 6.40142i −0.189594 0.328386i
\(381\) −8.56172 + 14.8293i −0.438630 + 0.759730i
\(382\) 15.2543i 0.780479i
\(383\) −11.4736 6.62431i −0.586276 0.338486i 0.177348 0.984148i \(-0.443248\pi\)
−0.763623 + 0.645662i \(0.776582\pi\)
\(384\) −31.8488 18.3879i −1.62528 0.938353i
\(385\) 0 0
\(386\) 2.37323 4.11056i 0.120794 0.209222i
\(387\) 0.598190 + 1.03610i 0.0304077 + 0.0526677i
\(388\) 17.4488 10.0741i 0.885829 0.511434i
\(389\) 14.6519 0.742883 0.371441 0.928456i \(-0.378864\pi\)
0.371441 + 0.928456i \(0.378864\pi\)
\(390\) 8.08794 + 7.27144i 0.409549 + 0.368203i
\(391\) 28.5617 1.44443
\(392\) 0 0
\(393\) 18.9447 + 32.8132i 0.955635 + 1.65521i
\(394\) −20.3945 + 35.3243i −1.02746 + 1.77961i
\(395\) 7.43883i 0.374288i
\(396\) 2.78463 + 1.60771i 0.139933 + 0.0807903i
\(397\) −15.2278 8.79175i −0.764259 0.441245i 0.0665638 0.997782i \(-0.478796\pi\)
−0.830823 + 0.556537i \(0.812130\pi\)
\(398\) 29.5802i 1.48272i
\(399\) 0 0
\(400\) −6.01173 10.4126i −0.300587 0.520631i
\(401\) −24.5986 + 14.2020i −1.22839 + 0.709214i −0.966694 0.255935i \(-0.917617\pi\)
−0.261701 + 0.965149i \(0.584283\pi\)
\(402\) 44.8427 2.23655
\(403\) −30.8436 6.53182i −1.53643 0.325373i
\(404\) −43.4627 −2.16235
\(405\) −5.78291 + 3.33876i −0.287355 + 0.165904i
\(406\) 0 0
\(407\) −3.67801 + 6.37051i −0.182312 + 0.315774i
\(408\) 32.1132i 1.58984i
\(409\) −8.86247 5.11675i −0.438221 0.253007i 0.264622 0.964352i \(-0.414753\pi\)
−0.702843 + 0.711345i \(0.748086\pi\)
\(410\) −6.64083 3.83408i −0.327967 0.189352i
\(411\) 7.20496i 0.355394i
\(412\) 3.12144 5.40650i 0.153782 0.266359i
\(413\) 0 0
\(414\) 2.21166 1.27690i 0.108697 0.0627563i
\(415\) −2.26467 −0.111168
\(416\) 5.02596 5.59032i 0.246418 0.274088i
\(417\) 28.6355 1.40228
\(418\) 31.1151 17.9643i 1.52189 0.878664i
\(419\) 6.22291 + 10.7784i 0.304009 + 0.526559i 0.977040 0.213055i \(-0.0683413\pi\)
−0.673031 + 0.739614i \(0.735008\pi\)
\(420\) 0 0
\(421\) 2.04054i 0.0994498i −0.998763 0.0497249i \(-0.984166\pi\)
0.998763 0.0497249i \(-0.0158345\pi\)
\(422\) −13.4719 7.77799i −0.655801 0.378627i
\(423\) −0.0119344 0.00689031i −0.000580269 0.000335018i
\(424\) 29.9450i 1.45426i
\(425\) 9.56572 16.5683i 0.464006 0.803682i
\(426\) 22.2561 + 38.5487i 1.07831 + 1.86769i
\(427\) 0 0
\(428\) 1.73206 0.0837225
\(429\) −23.0925 + 25.6855i −1.11492 + 1.24011i
\(430\) −12.8337 −0.618894
\(431\) 12.2992 7.10095i 0.592432 0.342041i −0.173626 0.984812i \(-0.555549\pi\)
0.766059 + 0.642771i \(0.222215\pi\)
\(432\) −6.74581 11.6841i −0.324558 0.562151i
\(433\) −8.41174 + 14.5696i −0.404242 + 0.700168i −0.994233 0.107242i \(-0.965798\pi\)
0.589991 + 0.807410i \(0.299131\pi\)
\(434\) 0 0
\(435\) 2.78271 + 1.60660i 0.133421 + 0.0770306i
\(436\) −50.9061 29.3907i −2.43796 1.40756i
\(437\) 18.6443i 0.891879i
\(438\) 21.7134 37.6087i 1.03750 1.79701i
\(439\) −12.3476 21.3867i −0.589320 1.02073i −0.994322 0.106416i \(-0.966062\pi\)
0.405002 0.914316i \(-0.367271\pi\)
\(440\) −14.0232 + 8.09630i −0.668530 + 0.385976i
\(441\) 0 0
\(442\) −36.0160 7.62720i −1.71311 0.362789i
\(443\) 2.95105 0.140208 0.0701042 0.997540i \(-0.477667\pi\)
0.0701042 + 0.997540i \(0.477667\pi\)
\(444\) −7.91735 + 4.57108i −0.375741 + 0.216934i
\(445\) −0.715810 1.23982i −0.0339326 0.0587731i
\(446\) 6.78661 11.7548i 0.321355 0.556604i
\(447\) 1.18279i 0.0559441i
\(448\) 0 0
\(449\) −4.47161 2.58168i −0.211028 0.121837i 0.390761 0.920492i \(-0.372212\pi\)
−0.601789 + 0.798655i \(0.705545\pi\)
\(450\) 1.71061i 0.0806389i
\(451\) 12.1762 21.0898i 0.573355 0.993081i
\(452\) 3.13930 + 5.43742i 0.147660 + 0.255755i
\(453\) −5.52341 + 3.18894i −0.259513 + 0.149830i
\(454\) −66.6078 −3.12606
\(455\) 0 0
\(456\) 20.9626 0.981664
\(457\) 3.92542 2.26634i 0.183623 0.106015i −0.405371 0.914152i \(-0.632858\pi\)
0.588994 + 0.808137i \(0.299524\pi\)
\(458\) −6.60991 11.4487i −0.308861 0.534962i
\(459\) 10.7338 18.5914i 0.501010 0.867774i
\(460\) 17.8988i 0.834536i
\(461\) −33.2778 19.2130i −1.54990 0.894837i −0.998148 0.0608314i \(-0.980625\pi\)
−0.551756 0.834006i \(-0.686042\pi\)
\(462\) 0 0
\(463\) 2.53217i 0.117680i −0.998267 0.0588400i \(-0.981260\pi\)
0.998267 0.0588400i \(-0.0187402\pi\)
\(464\) −3.41775 + 5.91971i −0.158665 + 0.274816i
\(465\) −5.49049 9.50980i −0.254615 0.441006i
\(466\) 43.0900 24.8781i 1.99611 1.15245i
\(467\) −11.7357 −0.543065 −0.271533 0.962429i \(-0.587530\pi\)
−0.271533 + 0.962429i \(0.587530\pi\)
\(468\) −2.04494 + 0.666138i −0.0945274 + 0.0307922i
\(469\) 0 0
\(470\) 0.128021 0.0739128i 0.00590516 0.00340934i
\(471\) 4.78395 + 8.28605i 0.220433 + 0.381801i
\(472\) 13.2791 23.0000i 0.611218 1.05866i
\(473\) 40.7569i 1.87400i
\(474\) 38.9167 + 22.4686i 1.78750 + 1.03202i
\(475\) −10.8154 6.24425i −0.496243 0.286506i
\(476\) 0 0
\(477\) −0.557315 + 0.965299i −0.0255177 + 0.0441980i
\(478\) −14.8045 25.6421i −0.677141 1.17284i
\(479\) −24.7786 + 14.3060i −1.13216 + 0.653656i −0.944478 0.328573i \(-0.893432\pi\)
−0.187686 + 0.982229i \(0.560099\pi\)
\(480\) 2.61830 0.119509
\(481\) −1.52395 4.67829i −0.0694861 0.213312i
\(482\) 46.3879 2.11291
\(483\) 0 0
\(484\) −34.0359 58.9518i −1.54708 2.67963i
\(485\) −1.88839 + 3.27079i −0.0857475 + 0.148519i
\(486\) 3.94586i 0.178988i
\(487\) −2.37282 1.36995i −0.107523 0.0620782i 0.445274 0.895394i \(-0.353106\pi\)
−0.552797 + 0.833316i \(0.686439\pi\)
\(488\) −47.1391 27.2158i −2.13389 1.23200i
\(489\) 6.97455i 0.315400i
\(490\) 0 0
\(491\) −19.1633 33.1917i −0.864825 1.49792i −0.867220 0.497924i \(-0.834096\pi\)
0.00239500 0.999997i \(-0.499238\pi\)
\(492\) 26.2107 15.1328i 1.18167 0.682237i
\(493\) −10.8765 −0.489852
\(494\) −4.97883 + 23.5103i −0.224008 + 1.05778i
\(495\) −0.602732 −0.0270908
\(496\) 20.2304 11.6800i 0.908370 0.524448i
\(497\) 0 0
\(498\) 6.84031 11.8478i 0.306522 0.530911i
\(499\) 27.9009i 1.24902i 0.781018 + 0.624509i \(0.214701\pi\)
−0.781018 + 0.624509i \(0.785299\pi\)
\(500\) 21.9177 + 12.6542i 0.980191 + 0.565913i
\(501\) 20.1264 + 11.6200i 0.899182 + 0.519143i
\(502\) 1.48200i 0.0661451i
\(503\) 1.18942 2.06014i 0.0530336 0.0918569i −0.838290 0.545225i \(-0.816444\pi\)
0.891323 + 0.453368i \(0.149778\pi\)
\(504\) 0 0
\(505\) 7.05561 4.07356i 0.313970 0.181271i
\(506\) −86.9999 −3.86762
\(507\) −2.44937 22.9726i −0.108780 1.02025i
\(508\) 36.3230 1.61157
\(509\) 22.6522 13.0783i 1.00404 0.579684i 0.0945998 0.995515i \(-0.469843\pi\)
0.909442 + 0.415832i \(0.136510\pi\)
\(510\) −6.41123 11.1046i −0.283894 0.491719i
\(511\) 0 0
\(512\) 28.2829i 1.24994i
\(513\) −12.1360 7.00672i −0.535817 0.309354i
\(514\) 45.4197 + 26.2231i 2.00338 + 1.15665i
\(515\) 1.17023i 0.0515666i
\(516\) 25.3266 43.8670i 1.11494 1.93114i
\(517\) 0.234731 + 0.406566i 0.0103235 + 0.0178807i
\(518\) 0 0
\(519\) −2.79495 −0.122685
\(520\) 2.24390 10.5958i 0.0984015 0.464656i
\(521\) 24.0380 1.05313 0.526563 0.850136i \(-0.323481\pi\)
0.526563 + 0.850136i \(0.323481\pi\)
\(522\) −0.842213 + 0.486252i −0.0368627 + 0.0212827i
\(523\) 5.86969 + 10.1666i 0.256664 + 0.444554i 0.965346 0.260973i \(-0.0840434\pi\)
−0.708682 + 0.705528i \(0.750710\pi\)
\(524\) 40.1863 69.6048i 1.75555 3.04070i
\(525\) 0 0
\(526\) −3.64443 2.10411i −0.158905 0.0917436i
\(527\) 32.1901 + 18.5849i 1.40222 + 0.809573i
\(528\) 25.5920i 1.11375i
\(529\) −11.0733 + 19.1795i −0.481447 + 0.833891i
\(530\) −5.97836 10.3548i −0.259683 0.449785i
\(531\) 0.856121 0.494282i 0.0371525 0.0214500i
\(532\) 0 0
\(533\) 5.04510 + 15.4877i 0.218527 + 0.670845i
\(534\) 8.64826 0.374247
\(535\) −0.281178 + 0.162338i −0.0121564 + 0.00701850i
\(536\) −22.3281 38.6733i −0.964425 1.67043i
\(537\) −15.3051 + 26.5091i −0.660462 + 1.14395i
\(538\) 29.8000i 1.28477i
\(539\) 0 0
\(540\) 11.6507 + 6.72654i 0.501367 + 0.289464i
\(541\) 30.7507i 1.32208i 0.750352 + 0.661038i \(0.229884\pi\)
−0.750352 + 0.661038i \(0.770116\pi\)
\(542\) −12.8478 + 22.2530i −0.551859 + 0.955848i
\(543\) −20.5078 35.5206i −0.880074 1.52433i
\(544\) −7.67540 + 4.43139i −0.329080 + 0.189994i
\(545\) 11.0186 0.471985
\(546\) 0 0
\(547\) −26.7184 −1.14240 −0.571199 0.820812i \(-0.693522\pi\)
−0.571199 + 0.820812i \(0.693522\pi\)
\(548\) −13.2359 + 7.64172i −0.565408 + 0.326438i
\(549\) −1.01304 1.75464i −0.0432357 0.0748864i
\(550\) −29.1375 + 50.4677i −1.24243 + 2.15195i
\(551\) 7.09987i 0.302465i
\(552\) −43.9597 25.3801i −1.87105 1.08025i
\(553\) 0 0
\(554\) 15.3703i 0.653021i
\(555\) 0.856853 1.48411i 0.0363714 0.0629971i
\(556\) −30.3714 52.6047i −1.28803 2.23094i
\(557\) 7.45486 4.30406i 0.315872 0.182369i −0.333679 0.942687i \(-0.608290\pi\)
0.649551 + 0.760318i \(0.274957\pi\)
\(558\) 3.32349 0.140695
\(559\) 20.2727 + 18.2261i 0.857443 + 0.770881i
\(560\) 0 0
\(561\) 35.2657 20.3607i 1.48892 0.859628i
\(562\) 19.8696 + 34.4152i 0.838150 + 1.45172i
\(563\) 2.55291 4.42177i 0.107592 0.186355i −0.807202 0.590275i \(-0.799019\pi\)
0.914794 + 0.403920i \(0.132353\pi\)
\(564\) 0.583453i 0.0245678i
\(565\) −1.01925 0.588464i −0.0428801 0.0247569i
\(566\) −1.01524 0.586149i −0.0426737 0.0246377i
\(567\) 0 0
\(568\) 22.1635 38.3883i 0.929958 1.61074i
\(569\) −1.27969 2.21650i −0.0536476 0.0929204i 0.837954 0.545740i \(-0.183751\pi\)
−0.891602 + 0.452820i \(0.850418\pi\)
\(570\) −7.24877 + 4.18508i −0.303618 + 0.175294i
\(571\) −33.2677 −1.39221 −0.696106 0.717939i \(-0.745085\pi\)
−0.696106 + 0.717939i \(0.745085\pi\)
\(572\) 71.6779 + 15.1794i 2.99700 + 0.634684i
\(573\) 11.2859 0.471476
\(574\) 0 0
\(575\) 15.1202 + 26.1890i 0.630557 + 1.09216i
\(576\) −0.818944 + 1.41845i −0.0341227 + 0.0591022i
\(577\) 40.9053i 1.70291i 0.524428 + 0.851455i \(0.324279\pi\)
−0.524428 + 0.851455i \(0.675721\pi\)
\(578\) 2.22460 + 1.28437i 0.0925310 + 0.0534228i
\(579\) −3.04120 1.75584i −0.126388 0.0729701i
\(580\) 6.81597i 0.283018i
\(581\) 0 0
\(582\) −11.4076 19.7585i −0.472860 0.819017i
\(583\) 32.8847 18.9860i 1.36194 0.786318i
\(584\) −43.2460 −1.78953
\(585\) 0.269536 0.299802i 0.0111439 0.0123953i
\(586\) 19.3554 0.799563
\(587\) −5.49704 + 3.17372i −0.226887 + 0.130993i −0.609135 0.793066i \(-0.708483\pi\)
0.382248 + 0.924060i \(0.375150\pi\)
\(588\) 0 0
\(589\) 12.1318 21.0128i 0.499880 0.865818i
\(590\) 10.6044i 0.436576i
\(591\) 26.1347 + 15.0889i 1.07504 + 0.620673i
\(592\) 3.15718 + 1.82280i 0.129759 + 0.0749166i
\(593\) 38.8012i 1.59337i −0.604392 0.796687i \(-0.706584\pi\)
0.604392 0.796687i \(-0.293416\pi\)
\(594\) −32.6954 + 56.6301i −1.34151 + 2.32356i
\(595\) 0 0
\(596\) −2.17284 + 1.25449i −0.0890032 + 0.0513860i
\(597\) 21.8849 0.895690
\(598\) 38.9055 43.2742i 1.59096 1.76961i
\(599\) 14.7088 0.600987 0.300493 0.953784i \(-0.402849\pi\)
0.300493 + 0.953784i \(0.402849\pi\)
\(600\) −29.4454 + 17.0003i −1.20210 + 0.694035i
\(601\) −7.70501 13.3455i −0.314294 0.544373i 0.664993 0.746849i \(-0.268434\pi\)
−0.979287 + 0.202476i \(0.935101\pi\)
\(602\) 0 0
\(603\) 1.66222i 0.0676908i
\(604\) 11.7165 + 6.76452i 0.476737 + 0.275244i
\(605\) 11.0506 + 6.38005i 0.449269 + 0.259386i
\(606\) 49.2158i 1.99926i
\(607\) −14.9868 + 25.9579i −0.608295 + 1.05360i 0.383227 + 0.923654i \(0.374813\pi\)
−0.991521 + 0.129943i \(0.958521\pi\)
\(608\) 2.89269 + 5.01029i 0.117314 + 0.203194i
\(609\) 0 0
\(610\) 21.7340 0.879984
\(611\) −0.307197 0.0650560i −0.0124279 0.00263188i
\(612\) 2.53560 0.102496
\(613\) −13.1043 + 7.56575i −0.529276 + 0.305578i −0.740722 0.671812i \(-0.765516\pi\)
0.211446 + 0.977390i \(0.432183\pi\)
\(614\) 13.8055 + 23.9119i 0.557146 + 0.965006i
\(615\) −2.83665 + 4.91322i −0.114385 + 0.198120i
\(616\) 0 0
\(617\) −30.7475 17.7521i −1.23785 0.714673i −0.269195 0.963086i \(-0.586758\pi\)
−0.968654 + 0.248413i \(0.920091\pi\)
\(618\) −6.12215 3.53463i −0.246269 0.142184i
\(619\) 33.3794i 1.34163i −0.741624 0.670815i \(-0.765944\pi\)
0.741624 0.670815i \(-0.234056\pi\)
\(620\) −11.6466 + 20.1726i −0.467740 + 0.810150i
\(621\) 16.9665 + 29.3869i 0.680843 + 1.17926i
\(622\) 52.0834 30.0704i 2.08836 1.20571i
\(623\) 0 0
\(624\) 12.7296 + 11.4445i 0.509591 + 0.458146i
\(625\) 17.7592 0.710368
\(626\) 59.0167 34.0733i 2.35878 1.36184i
\(627\) −13.2909 23.0205i −0.530788 0.919351i
\(628\) 10.1479 17.5767i 0.404946 0.701387i
\(629\) 5.80079i 0.231293i
\(630\) 0 0
\(631\) 16.8909 + 9.75195i 0.672415 + 0.388219i 0.796991 0.603991i \(-0.206424\pi\)
−0.124576 + 0.992210i \(0.539757\pi\)
\(632\) 44.7502i 1.78007i
\(633\) −5.75455 + 9.96717i −0.228723 + 0.396159i
\(634\) 36.7238 + 63.6075i 1.45849 + 2.52618i
\(635\) −5.89657 + 3.40438i −0.233998 + 0.135099i
\(636\) 47.1920 1.87129
\(637\) 0 0
\(638\) 33.1301 1.31163
\(639\) 1.42891 0.824983i 0.0565269 0.0326358i
\(640\) −7.31154 12.6640i −0.289014 0.500587i
\(641\) −4.41475 + 7.64657i −0.174372 + 0.302022i −0.939944 0.341329i \(-0.889123\pi\)
0.765572 + 0.643351i \(0.222456\pi\)
\(642\) 1.96134i 0.0774078i
\(643\) 18.0992 + 10.4496i 0.713763 + 0.412091i 0.812453 0.583027i \(-0.198132\pi\)
−0.0986898 + 0.995118i \(0.531465\pi\)
\(644\) 0 0
\(645\) 9.49498i 0.373865i
\(646\) 14.1662 24.5366i 0.557363 0.965381i
\(647\) −10.8790 18.8430i −0.427697 0.740793i 0.568971 0.822358i \(-0.307342\pi\)
−0.996668 + 0.0815643i \(0.974008\pi\)
\(648\) −34.7885 + 20.0852i −1.36662 + 0.789020i
\(649\) −33.6772 −1.32195
\(650\) −12.0728 37.0618i −0.473536 1.45368i
\(651\) 0 0
\(652\) 12.8126 7.39735i 0.501779 0.289702i
\(653\) 13.3195 + 23.0701i 0.521232 + 0.902801i 0.999695 + 0.0246930i \(0.00786083\pi\)
−0.478463 + 0.878108i \(0.658806\pi\)
\(654\) −33.2811 + 57.6446i −1.30139 + 2.25408i
\(655\) 15.0659i 0.588674i
\(656\) −10.4520 6.03445i −0.408081 0.235606i
\(657\) −1.39407 0.804865i −0.0543878 0.0314008i
\(658\) 0 0
\(659\) −10.0593 + 17.4232i −0.391855 + 0.678713i −0.992694 0.120657i \(-0.961500\pi\)
0.600839 + 0.799370i \(0.294833\pi\)
\(660\) 12.7594 + 22.1000i 0.496661 + 0.860241i
\(661\) 7.21323 4.16456i 0.280562 0.161983i −0.353116 0.935580i \(-0.614878\pi\)
0.633678 + 0.773597i \(0.281544\pi\)
\(662\) −56.2288 −2.18539
\(663\) −5.64299 + 26.6464i −0.219155 + 1.03486i
\(664\) −13.6237 −0.528701
\(665\) 0 0
\(666\) 0.259334 + 0.449180i 0.0100490 + 0.0174054i
\(667\) 8.59605 14.8888i 0.332840 0.576496i
\(668\) 49.2976i 1.90738i
\(669\) −8.69676 5.02107i −0.336236 0.194126i
\(670\) 15.4419 + 8.91537i 0.596572 + 0.344431i
\(671\) 69.0224i 2.66458i
\(672\) 0 0
\(673\) −16.3774 28.3665i −0.631303 1.09345i −0.987286 0.158957i \(-0.949187\pi\)
0.355982 0.934493i \(-0.384146\pi\)
\(674\) 29.9179 17.2731i 1.15239 0.665335i
\(675\) 22.7293 0.874852
\(676\) −39.6040 + 28.8649i −1.52323 + 1.11019i
\(677\) −47.3896 −1.82133 −0.910666 0.413144i \(-0.864431\pi\)
−0.910666 + 0.413144i \(0.864431\pi\)
\(678\) 6.15717 3.55485i 0.236465 0.136523i
\(679\) 0 0
\(680\) −6.38455 + 11.0584i −0.244836 + 0.424069i
\(681\) 49.2798i 1.88840i
\(682\) −98.0520 56.6104i −3.75461 2.16772i
\(683\) 12.8486 + 7.41815i 0.491638 + 0.283848i 0.725254 0.688482i \(-0.241722\pi\)
−0.233616 + 0.972329i \(0.575056\pi\)
\(684\) 1.65517i 0.0632870i
\(685\) 1.43245 2.48107i 0.0547310 0.0947968i
\(686\) 0 0
\(687\) −8.47032 + 4.89034i −0.323163 + 0.186578i
\(688\) −20.1988 −0.770074
\(689\) −5.26198 + 24.8473i −0.200466 + 0.946608i
\(690\) 20.2681 0.771592
\(691\) 26.9106 15.5369i 1.02373 0.591050i 0.108547 0.994091i \(-0.465380\pi\)
0.915182 + 0.403041i \(0.132047\pi\)
\(692\) 2.96438 + 5.13445i 0.112689 + 0.195183i
\(693\) 0 0
\(694\) 22.2652i 0.845177i
\(695\) 9.86080 + 5.69314i 0.374041 + 0.215953i
\(696\) 16.7401 + 9.66491i 0.634532 + 0.366347i
\(697\) 19.2037i 0.727394i
\(698\) −18.7156 + 32.4163i −0.708395 + 1.22698i
\(699\) −18.4060 31.8802i −0.696180 1.20582i
\(700\) 0 0
\(701\) 0.358985 0.0135587 0.00677934 0.999977i \(-0.497842\pi\)
0.00677934 + 0.999977i \(0.497842\pi\)
\(702\) −13.5470 41.5873i −0.511300 1.56961i
\(703\) 3.78660 0.142814
\(704\) 48.3222 27.8988i 1.82121 1.05148i
\(705\) −0.0546844 0.0947161i −0.00205953 0.00356722i
\(706\) 23.0021 39.8409i 0.865697 1.49943i
\(707\) 0 0
\(708\) −36.2471 20.9273i −1.36225 0.786494i
\(709\) 6.93547 + 4.00420i 0.260467 + 0.150381i 0.624548 0.780987i \(-0.285283\pi\)
−0.364081 + 0.931367i \(0.618617\pi\)
\(710\) 17.6993i 0.664243i
\(711\) 0.832860 1.44256i 0.0312347 0.0541001i
\(712\) −4.30613 7.45844i −0.161379 0.279517i
\(713\) −50.8818 + 29.3766i −1.90554 + 1.10016i
\(714\) 0 0
\(715\) −13.0587 + 4.25386i −0.488367 + 0.159085i
\(716\) 64.9314 2.42660
\(717\) −18.9713 + 10.9531i −0.708497 + 0.409051i
\(718\) 26.6497 + 46.1586i 0.994557 + 1.72262i
\(719\) 24.0945 41.7330i 0.898575 1.55638i 0.0692573 0.997599i \(-0.477937\pi\)
0.829317 0.558778i \(-0.188730\pi\)
\(720\) 0.298710i 0.0111323i
\(721\) 0 0
\(722\) 23.5073 + 13.5719i 0.874851 + 0.505095i
\(723\) 34.3201i 1.27638i
\(724\) −43.5020 + 75.3477i −1.61674 + 2.80027i
\(725\) −5.75788 9.97294i −0.213842 0.370386i
\(726\) −66.7553 + 38.5412i −2.47752 + 1.43040i
\(727\) −13.7547 −0.510135 −0.255068 0.966923i \(-0.582098\pi\)
−0.255068 + 0.966923i \(0.582098\pi\)
\(728\) 0 0
\(729\) 25.4296 0.941839
\(730\) 14.9543 8.63385i 0.553482 0.319553i
\(731\) −16.0700 27.8340i −0.594369 1.02948i
\(732\) −42.8910 + 74.2894i −1.58530 + 2.74581i
\(733\) 48.3294i 1.78509i −0.450961 0.892544i \(-0.648918\pi\)
0.450961 0.892544i \(-0.351082\pi\)
\(734\) 30.1847 + 17.4271i 1.11414 + 0.643247i
\(735\) 0 0
\(736\) 14.0091i 0.516383i
\(737\) −28.3133 + 49.0400i −1.04293 + 1.80641i
\(738\) −0.858537 1.48703i −0.0316032 0.0547383i
\(739\) −13.5388 + 7.81663i −0.498033 + 0.287539i −0.727901 0.685683i \(-0.759504\pi\)
0.229868 + 0.973222i \(0.426171\pi\)
\(740\) −3.63518 −0.133632
\(741\) 17.3941 + 3.68359i 0.638988 + 0.135320i
\(742\) 0 0
\(743\) 1.48979 0.860131i 0.0546551 0.0315551i −0.472423 0.881372i \(-0.656621\pi\)
0.527079 + 0.849817i \(0.323287\pi\)
\(744\) −33.0294 57.2086i −1.21092 2.09737i
\(745\) 0.235156 0.407301i 0.00861543 0.0149224i
\(746\) 35.7368i 1.30842i
\(747\) −0.439170 0.253555i −0.0160684 0.00927709i
\(748\) −74.8071 43.1899i −2.73522 1.57918i
\(749\) 0 0
\(750\) 14.3292 24.8190i 0.523230 0.906261i
\(751\) 10.0993 + 17.4925i 0.368529 + 0.638312i 0.989336 0.145652i \(-0.0465281\pi\)
−0.620806 + 0.783964i \(0.713195\pi\)
\(752\) 0.201491 0.116331i 0.00734763 0.00424216i
\(753\) 1.09646 0.0399573
\(754\) −14.8155 + 16.4791i −0.539547 + 0.600133i
\(755\) −2.53603 −0.0922955
\(756\) 0 0
\(757\) 12.6094 + 21.8401i 0.458296 + 0.793792i 0.998871 0.0475040i \(-0.0151267\pi\)
−0.540575 + 0.841296i \(0.681793\pi\)
\(758\) −44.6530 + 77.3413i −1.62187 + 2.80916i
\(759\) 64.3669i 2.33637i
\(760\) 7.21861 + 4.16766i 0.261846 + 0.151177i
\(761\) 17.5671 + 10.1424i 0.636807 + 0.367661i 0.783383 0.621539i \(-0.213492\pi\)
−0.146577 + 0.989199i \(0.546825\pi\)
\(762\) 41.1310i 1.49002i
\(763\) 0 0
\(764\) −11.9701 20.7328i −0.433062 0.750085i
\(765\) −0.411622 + 0.237650i −0.0148822 + 0.00859225i
\(766\) 31.8236 1.14983
\(767\) 15.0601 16.7512i 0.543790 0.604851i
\(768\) 51.5457 1.85999
\(769\) −15.3936 + 8.88748i −0.555106 + 0.320491i −0.751179 0.660099i \(-0.770514\pi\)
0.196073 + 0.980589i \(0.437181\pi\)
\(770\) 0 0
\(771\) 19.4011 33.6038i 0.698715 1.21021i
\(772\) 7.44910i 0.268099i
\(773\) 17.2312 + 9.94846i 0.619765 + 0.357821i 0.776777 0.629775i \(-0.216853\pi\)
−0.157013 + 0.987597i \(0.550186\pi\)
\(774\) −2.48873 1.43687i −0.0894557 0.0516472i
\(775\) 39.3546i 1.41366i
\(776\) −11.3601 + 19.6763i −0.407804 + 0.706337i
\(777\) 0 0
\(778\) −30.4792 + 17.5972i −1.09273 + 0.630890i
\(779\) −12.5357 −0.449138
\(780\) −16.6985 3.53630i −0.597904 0.126620i
\(781\) −56.2091 −2.01132
\(782\) −59.4146 + 34.3030i −2.12466 + 1.22667i