Properties

Label 637.2.q.j.491.10
Level $637$
Weight $2$
Character 637.491
Analytic conductor $5.086$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 491.10
Character \(\chi\) \(=\) 637.491
Dual form 637.2.q.j.589.10

$q$-expansion

\(f(q)\) \(=\) \(q+(0.489742 - 0.282753i) q^{2} +(1.54556 + 2.67698i) q^{3} +(-0.840102 + 1.45510i) q^{4} -1.80514i q^{5} +(1.51385 + 0.874021i) q^{6} +2.08118i q^{8} +(-3.27749 + 5.67679i) q^{9} +O(q^{10})\) \(q+(0.489742 - 0.282753i) q^{2} +(1.54556 + 2.67698i) q^{3} +(-0.840102 + 1.45510i) q^{4} -1.80514i q^{5} +(1.51385 + 0.874021i) q^{6} +2.08118i q^{8} +(-3.27749 + 5.67679i) q^{9} +(-0.510408 - 0.884053i) q^{10} +(3.10412 - 1.79216i) q^{11} -5.19370 q^{12} +(-0.328042 + 3.59060i) q^{13} +(4.83233 - 2.78995i) q^{15} +(-1.09175 - 1.89096i) q^{16} +(-3.07459 + 5.32535i) q^{17} +3.70688i q^{18} +(-2.17438 - 1.25538i) q^{19} +(2.62666 + 1.51650i) q^{20} +(1.01348 - 1.75540i) q^{22} +(2.06593 + 3.57829i) q^{23} +(-5.57127 + 3.21657i) q^{24} +1.74147 q^{25} +(0.854595 + 1.85122i) q^{26} -10.9889 q^{27} +(-2.55567 - 4.42655i) q^{29} +(1.57773 - 2.73271i) q^{30} -4.55318i q^{31} +(-4.67405 - 2.69856i) q^{32} +(9.59518 + 5.53978i) q^{33} +3.47740i q^{34} +(-5.50686 - 9.53816i) q^{36} +(10.1511 - 5.86074i) q^{37} -1.41984 q^{38} +(-10.1190 + 4.67131i) q^{39} +3.75681 q^{40} +(1.61635 - 0.933202i) q^{41} +(-0.711568 + 1.23247i) q^{43} +6.02240i q^{44} +(10.2474 + 5.91634i) q^{45} +(2.02354 + 1.16829i) q^{46} +8.86595i q^{47} +(3.37471 - 5.84517i) q^{48} +(0.852870 - 0.492405i) q^{50} -19.0078 q^{51} +(-4.94909 - 3.49380i) q^{52} +2.02920 q^{53} +(-5.38171 + 3.10713i) q^{54} +(-3.23511 - 5.60337i) q^{55} -7.76102i q^{57} +(-2.50324 - 1.44524i) q^{58} +(-7.88734 - 4.55376i) q^{59} +9.37536i q^{60} +(2.73920 - 4.74444i) q^{61} +(-1.28742 - 2.22988i) q^{62} +1.31488 q^{64} +(6.48153 + 0.592162i) q^{65} +6.26555 q^{66} +(6.07998 - 3.51028i) q^{67} +(-5.16594 - 8.94768i) q^{68} +(-6.38601 + 11.0609i) q^{69} +(3.89200 + 2.24705i) q^{71} +(-11.8144 - 6.82104i) q^{72} +9.35564i q^{73} +(3.31428 - 5.74050i) q^{74} +(2.69154 + 4.66188i) q^{75} +(3.65339 - 2.10929i) q^{76} +(-3.63486 + 5.14890i) q^{78} +5.20970 q^{79} +(-3.41345 + 1.97075i) q^{80} +(-7.15145 - 12.3867i) q^{81} +(0.527731 - 0.914056i) q^{82} -9.42491i q^{83} +(9.61301 + 5.55007i) q^{85} +0.804791i q^{86} +(7.89986 - 13.6830i) q^{87} +(3.72981 + 6.46021i) q^{88} +(0.308000 - 0.177824i) q^{89} +6.69144 q^{90} -6.94235 q^{92} +(12.1888 - 7.03720i) q^{93} +(2.50687 + 4.34203i) q^{94} +(-2.26613 + 3.92505i) q^{95} -16.6831i q^{96} +(9.18293 + 5.30176i) q^{97} +23.4952i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 20 q^{4} - 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + 20 q^{4} - 28 q^{9} - 12 q^{15} - 28 q^{16} + 8 q^{22} + 24 q^{23} - 40 q^{25} - 24 q^{29} + 24 q^{30} - 60 q^{32} + 92 q^{36} - 32 q^{39} + 12 q^{43} - 24 q^{46} + 12 q^{50} + 72 q^{53} - 132 q^{58} + 32 q^{64} + 48 q^{67} - 48 q^{71} + 72 q^{72} + 24 q^{74} - 156 q^{78} + 96 q^{79} - 64 q^{81} + 12 q^{85} + 56 q^{88} + 168 q^{92} - 48 q^{93} + 84 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.489742 0.282753i 0.346300 0.199936i −0.316754 0.948508i \(-0.602593\pi\)
0.663054 + 0.748571i \(0.269260\pi\)
\(3\) 1.54556 + 2.67698i 0.892328 + 1.54556i 0.837077 + 0.547085i \(0.184262\pi\)
0.0552505 + 0.998473i \(0.482404\pi\)
\(4\) −0.840102 + 1.45510i −0.420051 + 0.727550i
\(5\) 1.80514i 0.807283i −0.914917 0.403642i \(-0.867744\pi\)
0.914917 0.403642i \(-0.132256\pi\)
\(6\) 1.51385 + 0.874021i 0.618026 + 0.356818i
\(7\) 0 0
\(8\) 2.08118i 0.735806i
\(9\) −3.27749 + 5.67679i −1.09250 + 1.89226i
\(10\) −0.510408 0.884053i −0.161405 0.279562i
\(11\) 3.10412 1.79216i 0.935927 0.540358i 0.0472456 0.998883i \(-0.484956\pi\)
0.888681 + 0.458526i \(0.151622\pi\)
\(12\) −5.19370 −1.49929
\(13\) −0.328042 + 3.59060i −0.0909825 + 0.995852i
\(14\) 0 0
\(15\) 4.83233 2.78995i 1.24770 0.720361i
\(16\) −1.09175 1.89096i −0.272936 0.472740i
\(17\) −3.07459 + 5.32535i −0.745699 + 1.29159i 0.204169 + 0.978936i \(0.434551\pi\)
−0.949868 + 0.312652i \(0.898783\pi\)
\(18\) 3.70688i 0.873720i
\(19\) −2.17438 1.25538i −0.498836 0.288003i 0.229397 0.973333i \(-0.426325\pi\)
−0.728233 + 0.685330i \(0.759658\pi\)
\(20\) 2.62666 + 1.51650i 0.587339 + 0.339100i
\(21\) 0 0
\(22\) 1.01348 1.75540i 0.216074 0.374252i
\(23\) 2.06593 + 3.57829i 0.430775 + 0.746125i 0.996940 0.0781674i \(-0.0249069\pi\)
−0.566165 + 0.824292i \(0.691574\pi\)
\(24\) −5.57127 + 3.21657i −1.13723 + 0.656581i
\(25\) 1.74147 0.348294
\(26\) 0.854595 + 1.85122i 0.167600 + 0.363054i
\(27\) −10.9889 −2.11481
\(28\) 0 0
\(29\) −2.55567 4.42655i −0.474576 0.821989i 0.525001 0.851102i \(-0.324065\pi\)
−0.999576 + 0.0291130i \(0.990732\pi\)
\(30\) 1.57773 2.73271i 0.288053 0.498922i
\(31\) 4.55318i 0.817775i −0.912585 0.408888i \(-0.865917\pi\)
0.912585 0.408888i \(-0.134083\pi\)
\(32\) −4.67405 2.69856i −0.826263 0.477043i
\(33\) 9.59518 + 5.53978i 1.67031 + 0.964352i
\(34\) 3.47740i 0.596369i
\(35\) 0 0
\(36\) −5.50686 9.53816i −0.917809 1.58969i
\(37\) 10.1511 5.86074i 1.66883 0.963500i 0.700561 0.713592i \(-0.252933\pi\)
0.968270 0.249908i \(-0.0804004\pi\)
\(38\) −1.41984 −0.230329
\(39\) −10.1190 + 4.67131i −1.62033 + 0.748008i
\(40\) 3.75681 0.594004
\(41\) 1.61635 0.933202i 0.252432 0.145742i −0.368445 0.929649i \(-0.620110\pi\)
0.620877 + 0.783908i \(0.286777\pi\)
\(42\) 0 0
\(43\) −0.711568 + 1.23247i −0.108513 + 0.187950i −0.915168 0.403072i \(-0.867942\pi\)
0.806655 + 0.591023i \(0.201276\pi\)
\(44\) 6.02240i 0.907911i
\(45\) 10.2474 + 5.91634i 1.52759 + 0.881955i
\(46\) 2.02354 + 1.16829i 0.298355 + 0.172255i
\(47\) 8.86595i 1.29323i 0.762816 + 0.646616i \(0.223816\pi\)
−0.762816 + 0.646616i \(0.776184\pi\)
\(48\) 3.37471 5.84517i 0.487098 0.843678i
\(49\) 0 0
\(50\) 0.852870 0.492405i 0.120614 0.0696366i
\(51\) −19.0078 −2.66163
\(52\) −4.94909 3.49380i −0.686315 0.484503i
\(53\) 2.02920 0.278732 0.139366 0.990241i \(-0.455494\pi\)
0.139366 + 0.990241i \(0.455494\pi\)
\(54\) −5.38171 + 3.10713i −0.732358 + 0.422827i
\(55\) −3.23511 5.60337i −0.436222 0.755558i
\(56\) 0 0
\(57\) 7.76102i 1.02797i
\(58\) −2.50324 1.44524i −0.328691 0.189770i
\(59\) −7.88734 4.55376i −1.02684 0.592849i −0.110766 0.993847i \(-0.535330\pi\)
−0.916079 + 0.400997i \(0.868664\pi\)
\(60\) 9.37536i 1.21035i
\(61\) 2.73920 4.74444i 0.350719 0.607463i −0.635656 0.771972i \(-0.719271\pi\)
0.986376 + 0.164509i \(0.0526038\pi\)
\(62\) −1.28742 2.22988i −0.163503 0.283195i
\(63\) 0 0
\(64\) 1.31488 0.164360
\(65\) 6.48153 + 0.592162i 0.803935 + 0.0734486i
\(66\) 6.26555 0.771236
\(67\) 6.07998 3.51028i 0.742788 0.428849i −0.0802944 0.996771i \(-0.525586\pi\)
0.823082 + 0.567923i \(0.192253\pi\)
\(68\) −5.16594 8.94768i −0.626463 1.08507i
\(69\) −6.38601 + 11.0609i −0.768785 + 1.33158i
\(70\) 0 0
\(71\) 3.89200 + 2.24705i 0.461896 + 0.266676i 0.712841 0.701326i \(-0.247408\pi\)
−0.250945 + 0.968001i \(0.580741\pi\)
\(72\) −11.8144 6.82104i −1.39234 0.803867i
\(73\) 9.35564i 1.09499i 0.836807 + 0.547497i \(0.184419\pi\)
−0.836807 + 0.547497i \(0.815581\pi\)
\(74\) 3.31428 5.74050i 0.385277 0.667320i
\(75\) 2.69154 + 4.66188i 0.310792 + 0.538308i
\(76\) 3.65339 2.10929i 0.419073 0.241952i
\(77\) 0 0
\(78\) −3.63486 + 5.14890i −0.411567 + 0.582999i
\(79\) 5.20970 0.586137 0.293069 0.956091i \(-0.405324\pi\)
0.293069 + 0.956091i \(0.405324\pi\)
\(80\) −3.41345 + 1.97075i −0.381635 + 0.220337i
\(81\) −7.15145 12.3867i −0.794605 1.37630i
\(82\) 0.527731 0.914056i 0.0582781 0.100941i
\(83\) 9.42491i 1.03452i −0.855829 0.517259i \(-0.826952\pi\)
0.855829 0.517259i \(-0.173048\pi\)
\(84\) 0 0
\(85\) 9.61301 + 5.55007i 1.04268 + 0.601990i
\(86\) 0.804791i 0.0867829i
\(87\) 7.89986 13.6830i 0.846954 1.46697i
\(88\) 3.72981 + 6.46021i 0.397599 + 0.688661i
\(89\) 0.308000 0.177824i 0.0326479 0.0188493i −0.483587 0.875296i \(-0.660666\pi\)
0.516235 + 0.856447i \(0.327333\pi\)
\(90\) 6.69144 0.705340
\(91\) 0 0
\(92\) −6.94235 −0.723790
\(93\) 12.1888 7.03720i 1.26392 0.729723i
\(94\) 2.50687 + 4.34203i 0.258564 + 0.447846i
\(95\) −2.26613 + 3.92505i −0.232500 + 0.402702i
\(96\) 16.6831i 1.70272i
\(97\) 9.18293 + 5.30176i 0.932385 + 0.538313i 0.887565 0.460682i \(-0.152395\pi\)
0.0448198 + 0.998995i \(0.485729\pi\)
\(98\) 0 0
\(99\) 23.4952i 2.36136i
\(100\) −1.46301 + 2.53401i −0.146301 + 0.253401i
\(101\) 1.71254 + 2.96620i 0.170404 + 0.295148i 0.938561 0.345113i \(-0.112159\pi\)
−0.768157 + 0.640261i \(0.778826\pi\)
\(102\) −9.30894 + 5.37452i −0.921722 + 0.532157i
\(103\) 12.9558 1.27658 0.638288 0.769798i \(-0.279643\pi\)
0.638288 + 0.769798i \(0.279643\pi\)
\(104\) −7.47266 0.682713i −0.732755 0.0669455i
\(105\) 0 0
\(106\) 0.993783 0.573761i 0.0965248 0.0557286i
\(107\) 9.08482 + 15.7354i 0.878263 + 1.52120i 0.853246 + 0.521508i \(0.174630\pi\)
0.0250164 + 0.999687i \(0.492036\pi\)
\(108\) 9.23177 15.9899i 0.888328 1.53863i
\(109\) 13.9294i 1.33420i −0.744970 0.667098i \(-0.767536\pi\)
0.744970 0.667098i \(-0.232464\pi\)
\(110\) −3.16873 1.82947i −0.302127 0.174433i
\(111\) 31.3782 + 18.1162i 2.97829 + 1.71952i
\(112\) 0 0
\(113\) 5.06404 8.77118i 0.476385 0.825123i −0.523249 0.852180i \(-0.675280\pi\)
0.999634 + 0.0270569i \(0.00861353\pi\)
\(114\) −2.19445 3.80090i −0.205529 0.355987i
\(115\) 6.45931 3.72928i 0.602334 0.347758i
\(116\) 8.58808 0.797383
\(117\) −19.3079 13.6304i −1.78502 1.26013i
\(118\) −5.15035 −0.474128
\(119\) 0 0
\(120\) 5.80637 + 10.0569i 0.530047 + 0.918068i
\(121\) 0.923697 1.59989i 0.0839725 0.145445i
\(122\) 3.09807i 0.280486i
\(123\) 4.99633 + 2.88463i 0.450504 + 0.260099i
\(124\) 6.62533 + 3.82513i 0.594972 + 0.343507i
\(125\) 12.1693i 1.08845i
\(126\) 0 0
\(127\) 3.05109 + 5.28465i 0.270741 + 0.468937i 0.969052 0.246858i \(-0.0793980\pi\)
−0.698311 + 0.715795i \(0.746065\pi\)
\(128\) 9.99205 5.76891i 0.883181 0.509905i
\(129\) −4.39908 −0.387317
\(130\) 3.34171 1.54266i 0.293088 0.135301i
\(131\) −5.97266 −0.521833 −0.260917 0.965361i \(-0.584025\pi\)
−0.260917 + 0.965361i \(0.584025\pi\)
\(132\) −16.1219 + 9.30796i −1.40323 + 0.810154i
\(133\) 0 0
\(134\) 1.98508 3.43826i 0.171485 0.297020i
\(135\) 19.8365i 1.70725i
\(136\) −11.0830 6.39877i −0.950359 0.548690i
\(137\) −3.12407 1.80368i −0.266907 0.154099i 0.360574 0.932731i \(-0.382581\pi\)
−0.627481 + 0.778632i \(0.715914\pi\)
\(138\) 7.22265i 0.614833i
\(139\) 6.45833 11.1862i 0.547789 0.948798i −0.450637 0.892707i \(-0.648803\pi\)
0.998426 0.0560906i \(-0.0178636\pi\)
\(140\) 0 0
\(141\) −23.7340 + 13.7028i −1.99876 + 1.15399i
\(142\) 2.54144 0.213273
\(143\) 5.41665 + 11.7335i 0.452963 + 0.981208i
\(144\) 14.3128 1.19273
\(145\) −7.99054 + 4.61334i −0.663578 + 0.383117i
\(146\) 2.64533 + 4.58185i 0.218929 + 0.379197i
\(147\) 0 0
\(148\) 19.6945i 1.61888i
\(149\) 1.90020 + 1.09708i 0.155670 + 0.0898763i 0.575812 0.817582i \(-0.304686\pi\)
−0.420141 + 0.907459i \(0.638019\pi\)
\(150\) 2.63632 + 1.52208i 0.215255 + 0.124277i
\(151\) 1.94893i 0.158602i 0.996851 + 0.0793009i \(0.0252688\pi\)
−0.996851 + 0.0793009i \(0.974731\pi\)
\(152\) 2.61266 4.52526i 0.211915 0.367047i
\(153\) −20.1539 34.9076i −1.62935 2.82211i
\(154\) 0 0
\(155\) −8.21913 −0.660176
\(156\) 1.70375 18.6485i 0.136409 1.49307i
\(157\) −18.3508 −1.46455 −0.732275 0.681009i \(-0.761541\pi\)
−0.732275 + 0.681009i \(0.761541\pi\)
\(158\) 2.55141 1.47306i 0.202979 0.117190i
\(159\) 3.13624 + 5.43213i 0.248720 + 0.430796i
\(160\) −4.87128 + 8.43731i −0.385109 + 0.667028i
\(161\) 0 0
\(162\) −7.00473 4.04418i −0.550344 0.317741i
\(163\) −19.1044 11.0299i −1.49637 0.863931i −0.496380 0.868105i \(-0.665338\pi\)
−0.999991 + 0.00417469i \(0.998671\pi\)
\(164\) 3.13594i 0.244876i
\(165\) 10.0001 17.3206i 0.778505 1.34841i
\(166\) −2.66492 4.61578i −0.206838 0.358254i
\(167\) −2.45846 + 1.41939i −0.190241 + 0.109836i −0.592096 0.805868i \(-0.701699\pi\)
0.401854 + 0.915704i \(0.368366\pi\)
\(168\) 0 0
\(169\) −12.7848 2.35573i −0.983444 0.181210i
\(170\) 6.27719 0.481439
\(171\) 14.2530 8.22898i 1.08995 0.629286i
\(172\) −1.19558 2.07080i −0.0911621 0.157897i
\(173\) 1.76411 3.05553i 0.134123 0.232308i −0.791139 0.611636i \(-0.790512\pi\)
0.925262 + 0.379329i \(0.123845\pi\)
\(174\) 8.93483i 0.677347i
\(175\) 0 0
\(176\) −6.77781 3.91317i −0.510897 0.294967i
\(177\) 28.1524i 2.11606i
\(178\) 0.100560 0.174176i 0.00753732 0.0130550i
\(179\) −3.34735 5.79778i −0.250193 0.433346i 0.713386 0.700771i \(-0.247161\pi\)
−0.963579 + 0.267425i \(0.913827\pi\)
\(180\) −17.2177 + 9.94065i −1.28333 + 0.740932i
\(181\) 12.5317 0.931476 0.465738 0.884923i \(-0.345789\pi\)
0.465738 + 0.884923i \(0.345789\pi\)
\(182\) 0 0
\(183\) 16.9344 1.25183
\(184\) −7.44704 + 4.29955i −0.549003 + 0.316967i
\(185\) −10.5795 18.3242i −0.777817 1.34722i
\(186\) 3.97957 6.89282i 0.291797 0.505406i
\(187\) 22.0407i 1.61178i
\(188\) −12.9008 7.44830i −0.940890 0.543223i
\(189\) 0 0
\(190\) 2.56302i 0.185941i
\(191\) −1.51821 + 2.62961i −0.109854 + 0.190272i −0.915711 0.401838i \(-0.868372\pi\)
0.805857 + 0.592110i \(0.201705\pi\)
\(192\) 2.03222 + 3.51991i 0.146663 + 0.254028i
\(193\) −23.3350 + 13.4725i −1.67969 + 0.969769i −0.717833 + 0.696215i \(0.754866\pi\)
−0.961857 + 0.273554i \(0.911801\pi\)
\(194\) 5.99635 0.430513
\(195\) 8.43237 + 18.2662i 0.603855 + 1.30807i
\(196\) 0 0
\(197\) −8.05315 + 4.64949i −0.573763 + 0.331262i −0.758651 0.651497i \(-0.774141\pi\)
0.184888 + 0.982760i \(0.440808\pi\)
\(198\) 6.64333 + 11.5066i 0.472121 + 0.817738i
\(199\) 8.69242 15.0557i 0.616190 1.06727i −0.373985 0.927435i \(-0.622009\pi\)
0.990175 0.139837i \(-0.0446578\pi\)
\(200\) 3.62430i 0.256277i
\(201\) 18.7939 + 10.8507i 1.32562 + 0.765347i
\(202\) 1.67740 + 0.968450i 0.118022 + 0.0681399i
\(203\) 0 0
\(204\) 15.9685 27.6583i 1.11802 1.93647i
\(205\) −1.68456 2.91774i −0.117655 0.203784i
\(206\) 6.34501 3.66329i 0.442078 0.255234i
\(207\) −27.0842 −1.88248
\(208\) 7.14781 3.29971i 0.495612 0.228793i
\(209\) −8.99936 −0.622499
\(210\) 0 0
\(211\) −10.9118 18.8998i −0.751199 1.30112i −0.947242 0.320520i \(-0.896142\pi\)
0.196042 0.980595i \(-0.437191\pi\)
\(212\) −1.70473 + 2.95268i −0.117082 + 0.202791i
\(213\) 13.8918i 0.951849i
\(214\) 8.89844 + 5.13751i 0.608285 + 0.351193i
\(215\) 2.22479 + 1.28448i 0.151729 + 0.0876009i
\(216\) 22.8698i 1.55609i
\(217\) 0 0
\(218\) −3.93858 6.82182i −0.266754 0.462032i
\(219\) −25.0449 + 14.4597i −1.69238 + 0.977094i
\(220\) 10.8713 0.732941
\(221\) −18.1126 12.7866i −1.21839 0.860118i
\(222\) 20.4896 1.37517
\(223\) 1.65573 0.955937i 0.110876 0.0640143i −0.443536 0.896256i \(-0.646276\pi\)
0.554413 + 0.832242i \(0.312943\pi\)
\(224\) 0 0
\(225\) −5.70765 + 9.88594i −0.380510 + 0.659063i
\(226\) 5.72749i 0.380987i
\(227\) −8.95012 5.16735i −0.594040 0.342969i 0.172653 0.984983i \(-0.444766\pi\)
−0.766693 + 0.642013i \(0.778099\pi\)
\(228\) 11.2931 + 6.52005i 0.747901 + 0.431801i
\(229\) 6.10394i 0.403360i 0.979451 + 0.201680i \(0.0646401\pi\)
−0.979451 + 0.201680i \(0.935360\pi\)
\(230\) 2.10893 3.65278i 0.139059 0.240857i
\(231\) 0 0
\(232\) 9.21242 5.31879i 0.604825 0.349196i
\(233\) −7.12776 −0.466955 −0.233478 0.972362i \(-0.575011\pi\)
−0.233478 + 0.972362i \(0.575011\pi\)
\(234\) −13.3099 1.21601i −0.870096 0.0794932i
\(235\) 16.0043 1.04400
\(236\) 13.2523 7.65124i 0.862654 0.498054i
\(237\) 8.05189 + 13.9463i 0.523027 + 0.905909i
\(238\) 0 0
\(239\) 7.32349i 0.473717i −0.971544 0.236859i \(-0.923882\pi\)
0.971544 0.236859i \(-0.0761178\pi\)
\(240\) −10.5514 6.09183i −0.681087 0.393226i
\(241\) 0.227850 + 0.131549i 0.0146771 + 0.00847383i 0.507321 0.861757i \(-0.330636\pi\)
−0.492643 + 0.870231i \(0.663969\pi\)
\(242\) 1.04471i 0.0671566i
\(243\) 5.62264 9.73869i 0.360692 0.624737i
\(244\) 4.60242 + 7.97163i 0.294640 + 0.510331i
\(245\) 0 0
\(246\) 3.26255 0.208013
\(247\) 5.22084 7.39549i 0.332194 0.470564i
\(248\) 9.47596 0.601724
\(249\) 25.2303 14.5667i 1.59891 0.923130i
\(250\) −3.44090 5.95982i −0.217622 0.376932i
\(251\) −6.64096 + 11.5025i −0.419173 + 0.726030i −0.995857 0.0909383i \(-0.971013\pi\)
0.576683 + 0.816968i \(0.304347\pi\)
\(252\) 0 0
\(253\) 12.8257 + 7.40495i 0.806348 + 0.465545i
\(254\) 2.98850 + 1.72541i 0.187515 + 0.108262i
\(255\) 34.3118i 2.14869i
\(256\) 1.94747 3.37312i 0.121717 0.210820i
\(257\) −8.70718 15.0813i −0.543139 0.940745i −0.998721 0.0505509i \(-0.983902\pi\)
0.455582 0.890194i \(-0.349431\pi\)
\(258\) −2.15441 + 1.24385i −0.134128 + 0.0774388i
\(259\) 0 0
\(260\) −6.30680 + 8.93379i −0.391131 + 0.554050i
\(261\) 33.5047 2.07389
\(262\) −2.92506 + 1.68878i −0.180711 + 0.104333i
\(263\) 6.36382 + 11.0225i 0.392410 + 0.679674i 0.992767 0.120058i \(-0.0383081\pi\)
−0.600357 + 0.799732i \(0.704975\pi\)
\(264\) −11.5293 + 19.9693i −0.709577 + 1.22902i
\(265\) 3.66299i 0.225015i
\(266\) 0 0
\(267\) 0.952063 + 0.549674i 0.0582653 + 0.0336395i
\(268\) 11.7960i 0.720553i
\(269\) 1.08082 1.87203i 0.0658985 0.114140i −0.831194 0.555983i \(-0.812342\pi\)
0.897092 + 0.441843i \(0.145675\pi\)
\(270\) 5.60881 + 9.71475i 0.341341 + 0.591221i
\(271\) −5.04864 + 2.91483i −0.306683 + 0.177063i −0.645441 0.763810i \(-0.723326\pi\)
0.338758 + 0.940873i \(0.389993\pi\)
\(272\) 13.4267 0.814113
\(273\) 0 0
\(274\) −2.03999 −0.123240
\(275\) 5.40572 3.12100i 0.325977 0.188203i
\(276\) −10.7298 18.5846i −0.645858 1.11866i
\(277\) −5.82366 + 10.0869i −0.349910 + 0.606062i −0.986233 0.165361i \(-0.947121\pi\)
0.636323 + 0.771423i \(0.280455\pi\)
\(278\) 7.30445i 0.438092i
\(279\) 25.8474 + 14.9230i 1.54744 + 0.893418i
\(280\) 0 0
\(281\) 24.7940i 1.47908i −0.673110 0.739542i \(-0.735042\pi\)
0.673110 0.739542i \(-0.264958\pi\)
\(282\) −7.74903 + 13.4217i −0.461448 + 0.799251i
\(283\) 7.57162 + 13.1144i 0.450086 + 0.779572i 0.998391 0.0567067i \(-0.0180600\pi\)
−0.548305 + 0.836279i \(0.684727\pi\)
\(284\) −6.53936 + 3.77550i −0.388040 + 0.224035i
\(285\) −14.0097 −0.829865
\(286\) 5.97045 + 4.21483i 0.353040 + 0.249228i
\(287\) 0 0
\(288\) 30.6383 17.6890i 1.80538 1.04234i
\(289\) −10.4063 18.0242i −0.612133 1.06025i
\(290\) −2.60887 + 4.51869i −0.153198 + 0.265347i
\(291\) 32.7767i 1.92141i
\(292\) −13.6134 7.85969i −0.796663 0.459954i
\(293\) −21.5816 12.4601i −1.26081 0.727929i −0.287579 0.957757i \(-0.592851\pi\)
−0.973231 + 0.229827i \(0.926184\pi\)
\(294\) 0 0
\(295\) −8.22018 + 14.2378i −0.478597 + 0.828955i
\(296\) 12.1972 + 21.1262i 0.708950 + 1.22794i
\(297\) −34.1107 + 19.6939i −1.97931 + 1.14275i
\(298\) 1.24081 0.0718782
\(299\) −13.5259 + 6.24408i −0.782223 + 0.361104i
\(300\) −9.04467 −0.522194
\(301\) 0 0
\(302\) 0.551066 + 0.954474i 0.0317103 + 0.0549238i
\(303\) −5.29365 + 9.16888i −0.304112 + 0.526738i
\(304\) 5.48221i 0.314426i
\(305\) −8.56438 4.94465i −0.490395 0.283130i
\(306\) −19.7404 11.3972i −1.12849 0.651532i
\(307\) 3.90158i 0.222675i 0.993783 + 0.111337i \(0.0355134\pi\)
−0.993783 + 0.111337i \(0.964487\pi\)
\(308\) 0 0
\(309\) 20.0240 + 34.6825i 1.13912 + 1.97302i
\(310\) −4.02525 + 2.32398i −0.228619 + 0.131993i
\(311\) −19.7180 −1.11810 −0.559052 0.829132i \(-0.688835\pi\)
−0.559052 + 0.829132i \(0.688835\pi\)
\(312\) −9.72181 21.0594i −0.550389 1.19225i
\(313\) 2.89235 0.163485 0.0817427 0.996653i \(-0.473951\pi\)
0.0817427 + 0.996653i \(0.473951\pi\)
\(314\) −8.98714 + 5.18873i −0.507173 + 0.292817i
\(315\) 0 0
\(316\) −4.37668 + 7.58063i −0.246207 + 0.426444i
\(317\) 15.9537i 0.896046i 0.894022 + 0.448023i \(0.147872\pi\)
−0.894022 + 0.448023i \(0.852128\pi\)
\(318\) 3.07190 + 1.77356i 0.172263 + 0.0994564i
\(319\) −15.8662 9.16035i −0.888336 0.512881i
\(320\) 2.37354i 0.132685i
\(321\) −28.0822 + 48.6398i −1.56740 + 2.71481i
\(322\) 0 0
\(323\) 13.3706 7.71955i 0.743963 0.429527i
\(324\) 24.0318 1.33510
\(325\) −0.571275 + 6.25291i −0.0316886 + 0.346849i
\(326\) −12.4750 −0.690924
\(327\) 37.2888 21.5287i 2.06208 1.19054i
\(328\) 1.94216 + 3.36391i 0.107238 + 0.185741i
\(329\) 0 0
\(330\) 11.3102i 0.622606i
\(331\) 3.31409 + 1.91339i 0.182159 + 0.105169i 0.588307 0.808638i \(-0.299795\pi\)
−0.406148 + 0.913807i \(0.633128\pi\)
\(332\) 13.7142 + 7.91789i 0.752664 + 0.434551i
\(333\) 76.8342i 4.21049i
\(334\) −0.802674 + 1.39027i −0.0439204 + 0.0760723i
\(335\) −6.33654 10.9752i −0.346202 0.599640i
\(336\) 0 0
\(337\) 9.78172 0.532844 0.266422 0.963856i \(-0.414158\pi\)
0.266422 + 0.963856i \(0.414158\pi\)
\(338\) −6.92733 + 2.46123i −0.376797 + 0.133873i
\(339\) 31.3071 1.70037
\(340\) −16.1518 + 9.32525i −0.875955 + 0.505733i
\(341\) −8.16004 14.1336i −0.441891 0.765378i
\(342\) 4.65353 8.06015i 0.251634 0.435843i
\(343\) 0 0
\(344\) −2.56499 1.48090i −0.138295 0.0798447i
\(345\) 19.9665 + 11.5276i 1.07496 + 0.620628i
\(346\) 1.99523i 0.107264i
\(347\) −2.66702 + 4.61941i −0.143173 + 0.247983i −0.928690 0.370857i \(-0.879064\pi\)
0.785517 + 0.618840i \(0.212397\pi\)
\(348\) 13.2734 + 22.9902i 0.711527 + 1.23240i
\(349\) 12.7332 7.35149i 0.681590 0.393516i −0.118864 0.992911i \(-0.537925\pi\)
0.800454 + 0.599394i \(0.204592\pi\)
\(350\) 0 0
\(351\) 3.60481 39.4566i 0.192411 2.10604i
\(352\) −19.3451 −1.03110
\(353\) 30.7588 17.7586i 1.63713 0.945196i 0.655313 0.755357i \(-0.272537\pi\)
0.981815 0.189839i \(-0.0607966\pi\)
\(354\) −7.96016 13.7874i −0.423078 0.732792i
\(355\) 4.05624 7.02561i 0.215283 0.372881i
\(356\) 0.597560i 0.0316706i
\(357\) 0 0
\(358\) −3.27867 1.89294i −0.173283 0.100045i
\(359\) 15.9147i 0.839945i 0.907537 + 0.419972i \(0.137960\pi\)
−0.907537 + 0.419972i \(0.862040\pi\)
\(360\) −12.3129 + 21.3266i −0.648948 + 1.12401i
\(361\) −6.34806 10.9952i −0.334108 0.578693i
\(362\) 6.13731 3.54338i 0.322570 0.186236i
\(363\) 5.71051 0.299724
\(364\) 0 0
\(365\) 16.8882 0.883971
\(366\) 8.29348 4.78824i 0.433507 0.250286i
\(367\) 9.12231 + 15.8003i 0.476181 + 0.824769i 0.999628 0.0272893i \(-0.00868752\pi\)
−0.523447 + 0.852058i \(0.675354\pi\)
\(368\) 4.51093 7.81316i 0.235149 0.407289i
\(369\) 12.2343i 0.636890i
\(370\) −10.3624 5.98274i −0.538716 0.311028i
\(371\) 0 0
\(372\) 23.6479i 1.22608i
\(373\) 6.78720 11.7558i 0.351428 0.608691i −0.635072 0.772453i \(-0.719030\pi\)
0.986500 + 0.163762i \(0.0523629\pi\)
\(374\) 6.23207 + 10.7943i 0.322252 + 0.558158i
\(375\) 32.5770 18.8083i 1.68227 0.971259i
\(376\) −18.4516 −0.951568
\(377\) 16.7323 7.72428i 0.861758 0.397821i
\(378\) 0 0
\(379\) −6.26632 + 3.61786i −0.321879 + 0.185837i −0.652230 0.758021i \(-0.726166\pi\)
0.330351 + 0.943858i \(0.392833\pi\)
\(380\) −3.80756 6.59489i −0.195324 0.338311i
\(381\) −9.43128 + 16.3355i −0.483179 + 0.836891i
\(382\) 1.71711i 0.0878549i
\(383\) −17.6205 10.1732i −0.900367 0.519827i −0.0230476 0.999734i \(-0.507337\pi\)
−0.877319 + 0.479907i \(0.840670\pi\)
\(384\) 30.8866 + 17.8324i 1.57617 + 0.910004i
\(385\) 0 0
\(386\) −7.61875 + 13.1961i −0.387784 + 0.671662i
\(387\) −4.66432 8.07884i −0.237101 0.410671i
\(388\) −15.4292 + 8.90804i −0.783298 + 0.452237i
\(389\) −2.48306 −0.125896 −0.0629481 0.998017i \(-0.520050\pi\)
−0.0629481 + 0.998017i \(0.520050\pi\)
\(390\) 9.29450 + 6.56144i 0.470645 + 0.332251i
\(391\) −25.4075 −1.28491
\(392\) 0 0
\(393\) −9.23108 15.9887i −0.465646 0.806523i
\(394\) −2.62931 + 4.55410i −0.132463 + 0.229432i
\(395\) 9.40424i 0.473179i
\(396\) −34.1879 19.7384i −1.71800 0.991890i
\(397\) −9.30034 5.36955i −0.466771 0.269490i 0.248116 0.968730i \(-0.420188\pi\)
−0.714887 + 0.699240i \(0.753522\pi\)
\(398\) 9.83122i 0.492795i
\(399\) 0 0
\(400\) −1.90124 3.29305i −0.0950621 0.164652i
\(401\) 12.7773 7.37698i 0.638068 0.368389i −0.145802 0.989314i \(-0.546576\pi\)
0.783870 + 0.620925i \(0.213243\pi\)
\(402\) 12.2722 0.612083
\(403\) 16.3486 + 1.49363i 0.814383 + 0.0744032i
\(404\) −5.75483 −0.286313
\(405\) −22.3597 + 12.9094i −1.11106 + 0.641472i
\(406\) 0 0
\(407\) 21.0068 36.3849i 1.04127 1.80353i
\(408\) 39.5586i 1.95844i
\(409\) 5.49448 + 3.17224i 0.271685 + 0.156857i 0.629653 0.776877i \(-0.283197\pi\)
−0.357968 + 0.933734i \(0.616530\pi\)
\(410\) −1.65000 0.952628i −0.0814877 0.0470469i
\(411\) 11.1508i 0.550028i
\(412\) −10.8842 + 18.8520i −0.536227 + 0.928772i
\(413\) 0 0
\(414\) −13.2643 + 7.65814i −0.651904 + 0.376377i
\(415\) −17.0133 −0.835150
\(416\) 11.2227 15.8974i 0.550240 0.779433i
\(417\) 39.9269 1.95523
\(418\) −4.40736 + 2.54459i −0.215571 + 0.124460i
\(419\) −9.04253 15.6621i −0.441756 0.765144i 0.556064 0.831140i \(-0.312311\pi\)
−0.997820 + 0.0659953i \(0.978978\pi\)
\(420\) 0 0
\(421\) 19.7043i 0.960327i −0.877179 0.480164i \(-0.840577\pi\)
0.877179 0.480164i \(-0.159423\pi\)
\(422\) −10.6879 6.17068i −0.520281 0.300384i
\(423\) −50.3301 29.0581i −2.44713 1.41285i
\(424\) 4.22312i 0.205093i
\(425\) −5.35431 + 9.27394i −0.259722 + 0.449852i
\(426\) 3.92794 + 6.80338i 0.190309 + 0.329625i
\(427\) 0 0
\(428\) −30.5287 −1.47566
\(429\) −23.0387 + 32.6352i −1.11232 + 1.57564i
\(430\) 1.45276 0.0700584
\(431\) −9.09662 + 5.25193i −0.438169 + 0.252977i −0.702820 0.711367i \(-0.748076\pi\)
0.264652 + 0.964344i \(0.414743\pi\)
\(432\) 11.9971 + 20.7795i 0.577209 + 0.999755i
\(433\) −4.55903 + 7.89646i −0.219093 + 0.379480i −0.954531 0.298112i \(-0.903643\pi\)
0.735438 + 0.677592i \(0.236976\pi\)
\(434\) 0 0
\(435\) −24.6997 14.2604i −1.18426 0.683732i
\(436\) 20.2687 + 11.7021i 0.970694 + 0.560430i
\(437\) 10.3741i 0.496258i
\(438\) −8.17703 + 14.1630i −0.390713 + 0.676735i
\(439\) 14.6400 + 25.3573i 0.698731 + 1.21024i 0.968907 + 0.247427i \(0.0795851\pi\)
−0.270175 + 0.962811i \(0.587082\pi\)
\(440\) 11.6616 6.73282i 0.555944 0.320975i
\(441\) 0 0
\(442\) −12.4859 1.14073i −0.593896 0.0542591i
\(443\) −26.7353 −1.27023 −0.635117 0.772416i \(-0.719048\pi\)
−0.635117 + 0.772416i \(0.719048\pi\)
\(444\) −52.7218 + 30.4389i −2.50207 + 1.44457i
\(445\) −0.320997 0.555983i −0.0152167 0.0263561i
\(446\) 0.540588 0.936325i 0.0255976 0.0443363i
\(447\) 6.78240i 0.320797i
\(448\) 0 0
\(449\) −18.3732 10.6077i −0.867083 0.500611i −0.000705260 1.00000i \(-0.500224\pi\)
−0.866378 + 0.499389i \(0.833558\pi\)
\(450\) 6.45542i 0.304311i
\(451\) 3.34490 5.79354i 0.157505 0.272807i
\(452\) 8.50862 + 14.7374i 0.400212 + 0.693187i
\(453\) −5.21726 + 3.01219i −0.245128 + 0.141525i
\(454\) −5.84433 −0.274288
\(455\) 0 0
\(456\) 16.1521 0.756389
\(457\) −12.6826 + 7.32231i −0.593267 + 0.342523i −0.766388 0.642377i \(-0.777948\pi\)
0.173121 + 0.984901i \(0.444615\pi\)
\(458\) 1.72591 + 2.98936i 0.0806463 + 0.139684i
\(459\) 33.7863 58.5196i 1.57701 2.73146i
\(460\) 12.5319i 0.584304i
\(461\) −21.5594 12.4473i −1.00412 0.579729i −0.0946548 0.995510i \(-0.530175\pi\)
−0.909464 + 0.415782i \(0.863508\pi\)
\(462\) 0 0
\(463\) 10.1069i 0.469706i 0.972031 + 0.234853i \(0.0754608\pi\)
−0.972031 + 0.234853i \(0.924539\pi\)
\(464\) −5.58028 + 9.66533i −0.259058 + 0.448701i
\(465\) −12.7031 22.0025i −0.589094 1.02034i
\(466\) −3.49076 + 2.01539i −0.161706 + 0.0933613i
\(467\) −11.4825 −0.531346 −0.265673 0.964063i \(-0.585594\pi\)
−0.265673 + 0.964063i \(0.585594\pi\)
\(468\) 36.0542 16.6440i 1.66660 0.769369i
\(469\) 0 0
\(470\) 7.83797 4.52525i 0.361539 0.208734i
\(471\) −28.3621 49.1247i −1.30686 2.26354i
\(472\) 9.47717 16.4149i 0.436222 0.755559i
\(473\) 5.10099i 0.234544i
\(474\) 7.88670 + 4.55339i 0.362248 + 0.209144i
\(475\) −3.78661 2.18620i −0.173741 0.100310i
\(476\) 0 0
\(477\) −6.65068 + 11.5193i −0.304514 + 0.527433i
\(478\) −2.07074 3.58662i −0.0947133 0.164048i
\(479\) 0.936316 0.540582i 0.0427814 0.0246998i −0.478457 0.878111i \(-0.658804\pi\)
0.521238 + 0.853411i \(0.325470\pi\)
\(480\) −30.1154 −1.37457
\(481\) 17.7136 + 38.3711i 0.807670 + 1.74957i
\(482\) 0.148784 0.00677691
\(483\) 0 0
\(484\) 1.55200 + 2.68814i 0.0705454 + 0.122188i
\(485\) 9.57043 16.5765i 0.434571 0.752699i
\(486\) 6.35926i 0.288462i
\(487\) 21.8824 + 12.6338i 0.991588 + 0.572493i 0.905748 0.423816i \(-0.139310\pi\)
0.0858391 + 0.996309i \(0.472643\pi\)
\(488\) 9.87401 + 5.70076i 0.446976 + 0.258061i
\(489\) 68.1895i 3.08364i
\(490\) 0 0
\(491\) 20.8590 + 36.1289i 0.941355 + 1.63047i 0.762891 + 0.646527i \(0.223779\pi\)
0.178464 + 0.983946i \(0.442887\pi\)
\(492\) −8.39485 + 4.84677i −0.378469 + 0.218509i
\(493\) 31.4306 1.41556
\(494\) 0.465769 5.09809i 0.0209559 0.229374i
\(495\) 42.4122 1.90628
\(496\) −8.60988 + 4.97091i −0.386595 + 0.223201i
\(497\) 0 0
\(498\) 8.23757 14.2679i 0.369134 0.639360i
\(499\) 10.4684i 0.468628i −0.972161 0.234314i \(-0.924716\pi\)
0.972161 0.234314i \(-0.0752844\pi\)
\(500\) 17.7075 + 10.2234i 0.791905 + 0.457206i
\(501\) −7.59938 4.38750i −0.339515 0.196019i
\(502\) 7.51099i 0.335232i
\(503\) −1.28735 + 2.22976i −0.0574001 + 0.0994199i −0.893298 0.449466i \(-0.851614\pi\)
0.835897 + 0.548886i \(0.184948\pi\)
\(504\) 0 0
\(505\) 5.35441 3.09137i 0.238268 0.137564i
\(506\) 8.37508 0.372318
\(507\) −13.4533 37.8656i −0.597484 1.68167i
\(508\) −10.2529 −0.454900
\(509\) 6.51841 3.76340i 0.288923 0.166810i −0.348533 0.937297i \(-0.613320\pi\)
0.637456 + 0.770487i \(0.279987\pi\)
\(510\) 9.70176 + 16.8039i 0.429601 + 0.744091i
\(511\) 0 0
\(512\) 20.8730i 0.922467i
\(513\) 23.8939 + 13.7952i 1.05494 + 0.609072i
\(514\) −8.52855 4.92396i −0.376178 0.217187i
\(515\) 23.3871i 1.03056i
\(516\) 3.69567 6.40109i 0.162693 0.281792i
\(517\) 15.8892 + 27.5210i 0.698807 + 1.21037i
\(518\) 0 0
\(519\) 10.9061 0.478726
\(520\) −1.23239 + 13.4892i −0.0540440 + 0.591541i
\(521\) 0.0156677 0.000686413 0.000343207 1.00000i \(-0.499891\pi\)
0.000343207 1.00000i \(0.499891\pi\)
\(522\) 16.4087 9.47355i 0.718188 0.414646i
\(523\) −12.0357 20.8465i −0.526286 0.911554i −0.999531 0.0306229i \(-0.990251\pi\)
0.473245 0.880931i \(-0.343082\pi\)
\(524\) 5.01764 8.69081i 0.219197 0.379660i
\(525\) 0 0
\(526\) 6.23326 + 3.59878i 0.271783 + 0.156914i
\(527\) 24.2473 + 13.9992i 1.05623 + 0.609814i
\(528\) 24.1921i 1.05283i
\(529\) 2.96391 5.13363i 0.128865 0.223202i
\(530\) −1.03572 1.79392i −0.0449888 0.0779228i
\(531\) 51.7014 29.8498i 2.24365 1.29537i
\(532\) 0 0
\(533\) 2.82052 + 6.10980i 0.122170 + 0.264645i
\(534\) 0.621687 0.0269030
\(535\) 28.4045 16.3994i 1.22804 0.709007i
\(536\) 7.30550 + 12.6535i 0.315550 + 0.546548i
\(537\) 10.3470 17.9216i 0.446508 0.773374i
\(538\) 1.22241i 0.0527020i
\(539\) 0 0
\(540\) −28.8640 16.6646i −1.24211 0.717132i
\(541\) 37.7763i 1.62413i 0.583567 + 0.812065i \(0.301656\pi\)
−0.583567 + 0.812065i \(0.698344\pi\)
\(542\) −1.64835 + 2.85503i −0.0708028 + 0.122634i
\(543\) 19.3685 + 33.5472i 0.831182 + 1.43965i
\(544\) 28.7416 16.5940i 1.23229 0.711461i
\(545\) −25.1445 −1.07707
\(546\) 0 0
\(547\) 28.4925 1.21825 0.609126 0.793074i \(-0.291521\pi\)
0.609126 + 0.793074i \(0.291521\pi\)
\(548\) 5.24908 3.03056i 0.224229 0.129459i
\(549\) 17.9554 + 31.0998i 0.766320 + 1.32731i
\(550\) 1.76494 3.05697i 0.0752573 0.130349i
\(551\) 12.8333i 0.546717i
\(552\) −23.0197 13.2904i −0.979782 0.565677i
\(553\) 0 0
\(554\) 6.58663i 0.279839i
\(555\) 32.7023 56.6421i 1.38814 2.40432i
\(556\) 10.8513 + 18.7950i 0.460198 + 0.797087i
\(557\) −17.2033 + 9.93232i −0.728927 + 0.420846i −0.818029 0.575177i \(-0.804933\pi\)
0.0891028 + 0.996022i \(0.471600\pi\)
\(558\) 16.8781 0.714507
\(559\) −4.19189 2.95926i −0.177298 0.125163i
\(560\) 0 0
\(561\) −59.0026 + 34.0652i −2.49109 + 1.43823i
\(562\) −7.01056 12.1427i −0.295723 0.512207i
\(563\) −7.76983 + 13.4577i −0.327459 + 0.567176i −0.982007 0.188844i \(-0.939526\pi\)
0.654548 + 0.756021i \(0.272859\pi\)
\(564\) 46.0471i 1.93893i
\(565\) −15.8332 9.14131i −0.666108 0.384578i
\(566\) 7.41628 + 4.28179i 0.311729 + 0.179977i
\(567\) 0 0
\(568\) −4.67650 + 8.09994i −0.196222 + 0.339866i
\(569\) −15.5544 26.9410i −0.652075 1.12943i −0.982618 0.185637i \(-0.940565\pi\)
0.330543 0.943791i \(-0.392768\pi\)
\(570\) −6.86116 + 3.96129i −0.287382 + 0.165920i
\(571\) 0.602653 0.0252202 0.0126101 0.999920i \(-0.495986\pi\)
0.0126101 + 0.999920i \(0.495986\pi\)
\(572\) −21.6240 1.97560i −0.904145 0.0826040i
\(573\) −9.38590 −0.392102
\(574\) 0 0
\(575\) 3.59774 + 6.23148i 0.150036 + 0.259871i
\(576\) −4.30951 + 7.46429i −0.179563 + 0.311012i
\(577\) 5.21634i 0.217159i −0.994088 0.108580i \(-0.965370\pi\)
0.994088 0.108580i \(-0.0346302\pi\)
\(578\) −10.1928 5.88479i −0.423963 0.244775i
\(579\) −72.1311 41.6449i −2.99767 1.73070i
\(580\) 15.5027i 0.643714i
\(581\) 0 0
\(582\) 9.26771 + 16.0521i 0.384159 + 0.665383i
\(583\) 6.29887 3.63665i 0.260872 0.150615i
\(584\) −19.4707 −0.805704
\(585\) −24.6048 + 34.8535i −1.01728 + 1.44101i
\(586\) −14.0926 −0.582158
\(587\) 14.8865 8.59475i 0.614433 0.354743i −0.160265 0.987074i \(-0.551235\pi\)
0.774699 + 0.632331i \(0.217902\pi\)
\(588\) 0 0
\(589\) −5.71595 + 9.90032i −0.235522 + 0.407936i
\(590\) 9.29711i 0.382756i
\(591\) −24.8932 14.3721i −1.02397 0.591189i
\(592\) −22.1648 12.7969i −0.910970 0.525949i
\(593\) 10.6452i 0.437147i 0.975820 + 0.218574i \(0.0701404\pi\)
−0.975820 + 0.218574i \(0.929860\pi\)
\(594\) −11.1370 + 19.2898i −0.456956 + 0.791471i
\(595\) 0 0
\(596\) −3.19272 + 1.84332i −0.130779 + 0.0755053i
\(597\) 53.7385 2.19937
\(598\) −4.85867 + 6.88247i −0.198686 + 0.281445i
\(599\) 25.1472 1.02749 0.513744 0.857944i \(-0.328258\pi\)
0.513744 + 0.857944i \(0.328258\pi\)
\(600\) −9.70219 + 5.60156i −0.396090 + 0.228683i
\(601\) 1.62334 + 2.81170i 0.0662172 + 0.114692i 0.897233 0.441557i \(-0.145574\pi\)
−0.831016 + 0.556248i \(0.812240\pi\)
\(602\) 0 0
\(603\) 46.0196i 1.87406i
\(604\) −2.83589 1.63730i −0.115391 0.0666208i
\(605\) −2.88803 1.66740i −0.117415 0.0677896i
\(606\) 5.98718i 0.243213i
\(607\) −8.55622 + 14.8198i −0.347286 + 0.601517i −0.985766 0.168121i \(-0.946230\pi\)
0.638480 + 0.769638i \(0.279563\pi\)
\(608\) 6.77543 + 11.7354i 0.274780 + 0.475933i
\(609\) 0 0
\(610\) −5.59245 −0.226432
\(611\) −31.8341 2.90840i −1.28787 0.117661i
\(612\) 67.7254 2.73764
\(613\) 24.2857 14.0214i 0.980891 0.566318i 0.0783519 0.996926i \(-0.475034\pi\)
0.902539 + 0.430608i \(0.141701\pi\)
\(614\) 1.10318 + 1.91077i 0.0445208 + 0.0771122i
\(615\) 5.20717 9.01908i 0.209973 0.363684i
\(616\) 0 0
\(617\) −36.4533 21.0463i −1.46755 0.847293i −0.468214 0.883615i \(-0.655102\pi\)
−0.999340 + 0.0363226i \(0.988436\pi\)
\(618\) 19.6132 + 11.3237i 0.788957 + 0.455504i
\(619\) 27.1308i 1.09048i 0.838280 + 0.545239i \(0.183561\pi\)
−0.838280 + 0.545239i \(0.816439\pi\)
\(620\) 6.90490 11.9596i 0.277308 0.480311i
\(621\) −22.7022 39.3213i −0.911007 1.57791i
\(622\) −9.65673 + 5.57531i −0.387200 + 0.223550i
\(623\) 0 0
\(624\) 19.8806 + 14.0347i 0.795861 + 0.561837i
\(625\) −13.2599 −0.530398
\(626\) 1.41651 0.817820i 0.0566150 0.0326867i
\(627\) −13.9090 24.0911i −0.555473 0.962107i
\(628\) 15.4165 26.7022i 0.615185 1.06553i
\(629\) 72.0776i 2.87392i
\(630\) 0 0
\(631\) 13.8647 + 8.00476i 0.551943 + 0.318665i 0.749905 0.661545i \(-0.230099\pi\)
−0.197962 + 0.980210i \(0.563432\pi\)
\(632\) 10.8423i 0.431284i
\(633\) 33.7296 58.4214i 1.34063 2.32204i
\(634\) 4.51094 + 7.81317i 0.179152 + 0.310301i
\(635\) 9.53954 5.50765i 0.378565 0.218565i
\(636\) −10.5390 −0.417900
\(637\) 0 0
\(638\) −10.3604 −0.410174
\(639\) −25.5120 + 14.7294i −1.00924 + 0.582685i
\(640\) −10.4137 18.0370i −0.411637 0.712977i
\(641\) −7.34069 + 12.7145i −0.289940 + 0.502191i −0.973795 0.227427i \(-0.926969\pi\)
0.683855 + 0.729618i \(0.260302\pi\)
\(642\) 31.7613i 1.25352i
\(643\) 32.1673 + 18.5718i 1.26855 + 0.732399i 0.974714 0.223456i \(-0.0717338\pi\)
0.293839 + 0.955855i \(0.405067\pi\)
\(644\) 0 0
\(645\) 7.94095i 0.312675i
\(646\) 4.36545 7.56117i 0.171756 0.297490i
\(647\) 7.11422 + 12.3222i 0.279689 + 0.484435i 0.971307 0.237828i \(-0.0764354\pi\)
−0.691619 + 0.722263i \(0.743102\pi\)
\(648\) 25.7788 14.8834i 1.01269 0.584676i
\(649\) −32.6443 −1.28140
\(650\) 1.48825 + 3.22384i 0.0583740 + 0.126450i
\(651\) 0 0
\(652\) 32.0993 18.5325i 1.25710 0.725790i
\(653\) 10.9227 + 18.9188i 0.427440 + 0.740348i 0.996645 0.0818478i \(-0.0260821\pi\)
−0.569205 + 0.822196i \(0.692749\pi\)
\(654\) 12.1746 21.0870i 0.476064 0.824568i
\(655\) 10.7815i 0.421267i
\(656\) −3.52929 2.03764i −0.137796 0.0795564i
\(657\) −53.1100 30.6631i −2.07202 1.19628i
\(658\) 0 0
\(659\) −16.5525 + 28.6698i −0.644796 + 1.11682i 0.339553 + 0.940587i \(0.389724\pi\)
−0.984349 + 0.176232i \(0.943609\pi\)
\(660\) 16.8022 + 29.1022i 0.654024 + 1.13280i
\(661\) 20.2155 11.6714i 0.786290 0.453965i −0.0523646 0.998628i \(-0.516676\pi\)
0.838655 + 0.544663i \(0.183342\pi\)
\(662\) 2.16406 0.0841087
\(663\) 6.23537 68.2495i 0.242162 2.65059i
\(664\) 19.6149 0.761206
\(665\) 0 0
\(666\) 21.7251 + 37.6289i 0.841829 + 1.45809i
\(667\) 10.5596 18.2898i 0.408871 0.708185i
\(668\) 4.76974i 0.184547i
\(669\) 5.11806 + 2.95491i 0.197876 + 0.114243i
\(670\) −6.20654 3.58335i −0.239780 0.138437i
\(671\) 19.6364i 0.758055i
\(672\) 0 0
\(673\) −24.2424 41.9890i −0.934474 1.61856i −0.775569 0.631263i \(-0.782537\pi\)
−0.158906 0.987294i \(-0.550797\pi\)
\(674\) 4.79052 2.76581i 0.184524 0.106535i
\(675\) −19.1368 −0.736575
\(676\) 14.1683 16.6241i 0.544936 0.639387i
\(677\) −43.8976 −1.68712 −0.843560 0.537034i \(-0.819545\pi\)
−0.843560 + 0.537034i \(0.819545\pi\)
\(678\) 15.3324 8.85216i 0.588837 0.339965i
\(679\) 0 0
\(680\) −11.5507 + 20.0064i −0.442948 + 0.767209i
\(681\) 31.9458i 1.22416i
\(682\) −7.99263 4.61455i −0.306054 0.176700i
\(683\) −38.9086 22.4639i −1.48880 0.859558i −0.488879 0.872351i \(-0.662594\pi\)
−0.999918 + 0.0127938i \(0.995927\pi\)
\(684\) 27.6527i 1.05733i
\(685\) −3.25590 + 5.63939i −0.124402 + 0.215470i
\(686\) 0 0
\(687\) −16.3402 + 9.43400i −0.623416 + 0.359929i
\(688\) 3.10741 0.118469
\(689\) −0.665662 + 7.28603i −0.0253597 + 0.277576i
\(690\) 13.0379 0.496344
\(691\) 39.3602 22.7246i 1.49733 0.864486i 0.497339 0.867556i \(-0.334311\pi\)
0.999995 + 0.00306990i \(0.000977182\pi\)
\(692\) 2.96406 + 5.13391i 0.112677 + 0.195162i
\(693\) 0 0
\(694\) 3.01643i 0.114502i
\(695\) −20.1926 11.6582i −0.765949 0.442221i
\(696\) 28.4766 + 16.4410i 1.07940 + 0.623194i
\(697\) 11.4769i 0.434717i
\(698\) 4.15731 7.20067i 0.157356 0.272549i
\(699\) −11.0164 19.0809i −0.416677 0.721706i
\(700\) 0 0
\(701\) 28.7914 1.08744 0.543718 0.839268i \(-0.317016\pi\)
0.543718 + 0.839268i \(0.317016\pi\)
\(702\) −9.39104 20.3428i −0.354442 0.767791i
\(703\) −29.4298 −1.10996
\(704\) 4.08154 2.35648i 0.153829 0.0888131i
\(705\) 24.7355 + 42.8432i 0.931594 + 1.61357i
\(706\) 10.0426 17.3943i 0.377958 0.654643i
\(707\) 0 0
\(708\) 40.9645 + 23.6509i 1.53954 + 0.888854i
\(709\) 15.0365 + 8.68132i 0.564707 + 0.326034i 0.755033 0.655687i \(-0.227621\pi\)
−0.190325 + 0.981721i \(0.560954\pi\)
\(710\) 4.58765i 0.172171i
\(711\) −17.0748 + 29.5744i −0.640354 + 1.10913i
\(712\) 0.370082 + 0.641002i 0.0138694 + 0.0240226i
\(713\) 16.2926 9.40653i 0.610162 0.352277i
\(714\) 0 0
\(715\) 21.1807 9.77782i 0.792113 0.365670i
\(716\) 11.2485 0.420374
\(717\) 19.6049 11.3189i 0.732157 0.422711i
\(718\) 4.49992 + 7.79409i 0.167935 + 0.290873i
\(719\) 4.99354 8.64906i 0.186228 0.322556i −0.757762 0.652531i \(-0.773707\pi\)
0.943989 + 0.329976i \(0.107040\pi\)
\(720\) 25.8365i 0.962871i
\(721\) 0 0
\(722\) −6.21782 3.58986i −0.231403 0.133601i
\(723\) 0.813267i 0.0302457i
\(724\) −10.5279 + 18.2349i −0.391267 + 0.677695i
\(725\) −4.45061 7.70869i −0.165292 0.286294i
\(726\) 2.79668 1.61466i 0.103794 0.0599257i
\(727\) 8.00409 0.296855 0.148428 0.988923i \(-0.452579\pi\)
0.148428 + 0.988923i \(0.452579\pi\)
\(728\) 0 0
\(729\) −8.14827 −0.301788
\(730\) 8.27088 4.77520i 0.306119 0.176738i
\(731\) −4.37557 7.57871i −0.161836 0.280309i
\(732\) −14.2266 + 24.6412i −0.525831 + 0.910765i
\(733\) 44.8461i 1.65643i −0.560412 0.828214i \(-0.689357\pi\)
0.560412 0.828214i \(-0.310643\pi\)
\(734\) 8.93516 + 5.15871i 0.329803 + 0.190412i
\(735\) 0 0
\(736\) 22.3001i 0.821993i
\(737\) 12.5820 21.7926i 0.463463 0.802742i
\(738\) 3.45927 + 5.99163i 0.127337 + 0.220555i
\(739\) −21.7161 + 12.5378i −0.798840 + 0.461210i −0.843065 0.537811i \(-0.819251\pi\)
0.0442255 + 0.999022i \(0.485918\pi\)
\(740\) 35.5513 1.30689
\(741\) 27.8667 + 2.54594i 1.02371 + 0.0935275i
\(742\) 0 0
\(743\) 15.9514 9.20957i 0.585202 0.337866i −0.177996 0.984031i \(-0.556961\pi\)
0.763198 + 0.646165i \(0.223628\pi\)
\(744\) 14.6456 + 25.3670i 0.536935 + 0.929999i
\(745\) 1.98038 3.43013i 0.0725556 0.125670i
\(746\) 7.67639i 0.281053i
\(747\) 53.5032 + 30.8901i 1.95758 + 1.13021i
\(748\) −32.0714 18.5164i −1.17265 0.677028i
\(749\) 0 0
\(750\) 10.6362 18.4225i 0.388380 0.672694i
\(751\) 5.84588 + 10.1254i 0.213319 + 0.369480i 0.952751 0.303752i \(-0.0982393\pi\)
−0.739432 + 0.673231i \(0.764906\pi\)
\(752\) 16.7651 9.67936i 0.611362 0.352970i
\(753\) −41.0559 −1.49616
\(754\) 6.01045 8.51401i 0.218888 0.310062i
\(755\) 3.51810 0.128037
\(756\) 0 0
\(757\) −7.77449 13.4658i −0.282569 0.489423i 0.689448 0.724335i \(-0.257853\pi\)
−0.972017 + 0.234912i \(0.924520\pi\)
\(758\) −2.04592 + 3.54364i −0.0743112 + 0.128711i
\(759\) 45.7791i 1.66168i
\(760\) −8.16872 4.71621i −0.296311 0.171075i
\(761\) 27.6700 + 15.9753i 1.00304 + 0.579103i 0.909145 0.416479i \(-0.136736\pi\)
0.0938908 + 0.995582i \(0.470070\pi\)
\(762\) 10.6669i 0.386420i
\(763\) 0 0
\(764\) −2.55090 4.41828i −0.0922882 0.159848i
\(765\) −63.0132 + 36.3807i −2.27825 + 1.31535i
\(766\) −11.5060 −0.415729
\(767\) 18.9381 26.8265i 0.683815 0.968647i
\(768\) 12.0397 0.434446
\(769\) −12.5835 + 7.26510i −0.453773 + 0.261986i −0.709422 0.704783i \(-0.751044\pi\)
0.255649 + 0.966770i \(0.417711\pi\)
\(770\) 0 0
\(771\) 26.9149 46.6180i 0.969316 1.67891i
\(772\) 45.2730i 1.62941i
\(773\) −36.4686 21.0551i −1.31168 0.757301i −0.329308 0.944222i \(-0.606816\pi\)
−0.982375 + 0.186922i \(0.940149\pi\)
\(774\) −4.56863 2.63770i −0.164216 0.0948101i
\(775\) 7.92922i 0.284826i
\(776\) −11.0339 + 19.1113i −0.396094 + 0.686055i
\(777\) 0 0
\(778\) −1.21606 + 0.702092i −0.0435978 + 0.0251712i
\(779\) −4.68608 −0.167896
\(780\) −33.6631 3.07551i −1.20533 0.110121i
\(781\) 16.1083 0.576401
\(782\) −12.4431 + 7.18405i −0.444966 + 0.256901i
\(783\) 28.0839 +