Properties

Label 637.2.q.f.491.2
Level $637$
Weight $2$
Character 637.491
Analytic conductor $5.086$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(491,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.491");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 491.2
Root \(-0.895644 - 1.09445i\) of defining polynomial
Character \(\chi\) \(=\) 637.491
Dual form 637.2.q.f.589.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.89564 - 1.09445i) q^{2} +(-0.895644 - 1.55130i) q^{3} +(1.39564 - 2.41733i) q^{4} -2.18890i q^{5} +(-3.39564 - 1.96048i) q^{6} -1.73205i q^{8} +(-0.104356 + 0.180750i) q^{9} +O(q^{10})\) \(q+(1.89564 - 1.09445i) q^{2} +(-0.895644 - 1.55130i) q^{3} +(1.39564 - 2.41733i) q^{4} -2.18890i q^{5} +(-3.39564 - 1.96048i) q^{6} -1.73205i q^{8} +(-0.104356 + 0.180750i) q^{9} +(-2.39564 - 4.14938i) q^{10} +(-1.10436 + 0.637600i) q^{11} -5.00000 q^{12} +(-3.50000 - 0.866025i) q^{13} +(-3.39564 + 1.96048i) q^{15} +(0.895644 + 1.55130i) q^{16} +(1.50000 - 2.59808i) q^{17} +0.456850i q^{18} +(5.68693 + 3.28335i) q^{19} +(-5.29129 - 3.05493i) q^{20} +(-1.39564 + 2.41733i) q^{22} +(-3.79129 - 6.56670i) q^{23} +(-2.68693 + 1.55130i) q^{24} +0.208712 q^{25} +(-7.58258 + 2.18890i) q^{26} -5.00000 q^{27} +(1.10436 + 1.91280i) q^{29} +(-4.29129 + 7.43273i) q^{30} +8.66025i q^{31} +(6.39564 + 3.69253i) q^{32} +(1.97822 + 1.14213i) q^{33} -6.56670i q^{34} +(0.291288 + 0.504525i) q^{36} +(6.00000 - 3.46410i) q^{37} +14.3739 q^{38} +(1.79129 + 6.20520i) q^{39} -3.79129 q^{40} +(-2.20871 + 1.27520i) q^{41} +(2.18693 - 3.78788i) q^{43} +3.55945i q^{44} +(0.395644 + 0.228425i) q^{45} +(-14.3739 - 8.29875i) q^{46} -4.28245i q^{47} +(1.60436 - 2.77883i) q^{48} +(0.395644 - 0.228425i) q^{50} -5.37386 q^{51} +(-6.97822 + 7.25198i) q^{52} -12.1652 q^{53} +(-9.47822 + 5.47225i) q^{54} +(1.39564 + 2.41733i) q^{55} -11.7629i q^{57} +(4.18693 + 2.41733i) q^{58} +(7.66515 + 4.42548i) q^{59} +10.9445i q^{60} +(6.37386 - 11.0399i) q^{61} +(9.47822 + 16.4168i) q^{62} +12.5826 q^{64} +(-1.89564 + 7.66115i) q^{65} +5.00000 q^{66} +(9.87386 - 5.70068i) q^{67} +(-4.18693 - 7.25198i) q^{68} +(-6.79129 + 11.7629i) q^{69} +(-0.791288 - 0.456850i) q^{71} +(0.313068 + 0.180750i) q^{72} -3.46410i q^{73} +(7.58258 - 13.1334i) q^{74} +(-0.186932 - 0.323775i) q^{75} +(15.8739 - 9.16478i) q^{76} +(10.1869 + 9.80238i) q^{78} -6.00000 q^{79} +(3.39564 - 1.96048i) q^{80} +(4.79129 + 8.29875i) q^{81} +(-2.79129 + 4.83465i) q^{82} +3.55945i q^{83} +(-5.68693 - 3.28335i) q^{85} -9.57395i q^{86} +(1.97822 - 3.42638i) q^{87} +(1.10436 + 1.91280i) q^{88} +(2.52178 - 1.45595i) q^{89} +1.00000 q^{90} -21.1652 q^{92} +(13.4347 - 7.75650i) q^{93} +(-4.68693 - 8.11800i) q^{94} +(7.18693 - 12.4481i) q^{95} -13.2288i q^{96} +(13.1869 + 7.61348i) q^{97} -0.266150i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} + q^{3} + q^{4} - 9 q^{6} - 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 3 q^{2} + q^{3} + q^{4} - 9 q^{6} - 5 q^{9} - 5 q^{10} - 9 q^{11} - 20 q^{12} - 14 q^{13} - 9 q^{15} - q^{16} + 6 q^{17} + 9 q^{19} - 12 q^{20} - q^{22} - 6 q^{23} + 3 q^{24} + 10 q^{25} - 12 q^{26} - 20 q^{27} + 9 q^{29} - 8 q^{30} + 21 q^{32} - 15 q^{33} - 8 q^{36} + 24 q^{37} + 30 q^{38} - 2 q^{39} - 6 q^{40} - 18 q^{41} - 5 q^{43} - 3 q^{45} - 30 q^{46} + 11 q^{48} - 3 q^{50} + 6 q^{51} - 5 q^{52} - 12 q^{53} - 15 q^{54} + q^{55} + 3 q^{58} - 6 q^{59} - 2 q^{61} + 15 q^{62} + 32 q^{64} - 3 q^{65} + 20 q^{66} + 12 q^{67} - 3 q^{68} - 18 q^{69} + 6 q^{71} + 15 q^{72} + 12 q^{74} + 13 q^{75} + 36 q^{76} + 27 q^{78} - 24 q^{79} + 9 q^{80} + 10 q^{81} - 2 q^{82} - 9 q^{85} - 15 q^{87} + 9 q^{88} + 33 q^{89} + 4 q^{90} - 48 q^{92} - 15 q^{93} - 5 q^{94} + 15 q^{95} + 39 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.89564 1.09445i 1.34042 0.773893i 0.353553 0.935414i \(-0.384973\pi\)
0.986869 + 0.161521i \(0.0516399\pi\)
\(3\) −0.895644 1.55130i −0.517100 0.895644i −0.999803 0.0198595i \(-0.993678\pi\)
0.482703 0.875784i \(-0.339655\pi\)
\(4\) 1.39564 2.41733i 0.697822 1.20866i
\(5\) 2.18890i 0.978906i −0.872030 0.489453i \(-0.837196\pi\)
0.872030 0.489453i \(-0.162804\pi\)
\(6\) −3.39564 1.96048i −1.38627 0.800361i
\(7\) 0 0
\(8\) 1.73205i 0.612372i
\(9\) −0.104356 + 0.180750i −0.0347854 + 0.0602500i
\(10\) −2.39564 4.14938i −0.757569 1.31215i
\(11\) −1.10436 + 0.637600i −0.332976 + 0.192244i −0.657162 0.753750i \(-0.728243\pi\)
0.324186 + 0.945993i \(0.394910\pi\)
\(12\) −5.00000 −1.44338
\(13\) −3.50000 0.866025i −0.970725 0.240192i
\(14\) 0 0
\(15\) −3.39564 + 1.96048i −0.876751 + 0.506193i
\(16\) 0.895644 + 1.55130i 0.223911 + 0.387825i
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0.456850i 0.107681i
\(19\) 5.68693 + 3.28335i 1.30467 + 0.753253i 0.981202 0.192986i \(-0.0618172\pi\)
0.323470 + 0.946238i \(0.395150\pi\)
\(20\) −5.29129 3.05493i −1.18317 0.683102i
\(21\) 0 0
\(22\) −1.39564 + 2.41733i −0.297552 + 0.515376i
\(23\) −3.79129 6.56670i −0.790538 1.36925i −0.925634 0.378420i \(-0.876468\pi\)
0.135096 0.990833i \(-0.456866\pi\)
\(24\) −2.68693 + 1.55130i −0.548468 + 0.316658i
\(25\) 0.208712 0.0417424
\(26\) −7.58258 + 2.18890i −1.48707 + 0.429279i
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 1.10436 + 1.91280i 0.205074 + 0.355198i 0.950156 0.311774i \(-0.100923\pi\)
−0.745082 + 0.666972i \(0.767590\pi\)
\(30\) −4.29129 + 7.43273i −0.783478 + 1.35702i
\(31\) 8.66025i 1.55543i 0.628619 + 0.777714i \(0.283621\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 6.39564 + 3.69253i 1.13060 + 0.652753i
\(33\) 1.97822 + 1.14213i 0.344364 + 0.198819i
\(34\) 6.56670i 1.12618i
\(35\) 0 0
\(36\) 0.291288 + 0.504525i 0.0485480 + 0.0840876i
\(37\) 6.00000 3.46410i 0.986394 0.569495i 0.0821995 0.996616i \(-0.473806\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 14.3739 2.33175
\(39\) 1.79129 + 6.20520i 0.286836 + 0.993628i
\(40\) −3.79129 −0.599455
\(41\) −2.20871 + 1.27520i −0.344943 + 0.199153i −0.662456 0.749101i \(-0.730486\pi\)
0.317513 + 0.948254i \(0.397152\pi\)
\(42\) 0 0
\(43\) 2.18693 3.78788i 0.333504 0.577646i −0.649692 0.760197i \(-0.725102\pi\)
0.983196 + 0.182551i \(0.0584356\pi\)
\(44\) 3.55945i 0.536608i
\(45\) 0.395644 + 0.228425i 0.0589791 + 0.0340516i
\(46\) −14.3739 8.29875i −2.11931 1.22358i
\(47\) 4.28245i 0.624660i −0.949974 0.312330i \(-0.898891\pi\)
0.949974 0.312330i \(-0.101109\pi\)
\(48\) 1.60436 2.77883i 0.231569 0.401089i
\(49\) 0 0
\(50\) 0.395644 0.228425i 0.0559525 0.0323042i
\(51\) −5.37386 −0.752491
\(52\) −6.97822 + 7.25198i −0.967705 + 1.00567i
\(53\) −12.1652 −1.67101 −0.835506 0.549481i \(-0.814825\pi\)
−0.835506 + 0.549481i \(0.814825\pi\)
\(54\) −9.47822 + 5.47225i −1.28982 + 0.744679i
\(55\) 1.39564 + 2.41733i 0.188189 + 0.325952i
\(56\) 0 0
\(57\) 11.7629i 1.55803i
\(58\) 4.18693 + 2.41733i 0.549771 + 0.317410i
\(59\) 7.66515 + 4.42548i 0.997918 + 0.576148i 0.907632 0.419768i \(-0.137888\pi\)
0.0902862 + 0.995916i \(0.471222\pi\)
\(60\) 10.9445i 1.41293i
\(61\) 6.37386 11.0399i 0.816090 1.41351i −0.0924533 0.995717i \(-0.529471\pi\)
0.908543 0.417792i \(-0.137196\pi\)
\(62\) 9.47822 + 16.4168i 1.20374 + 2.08493i
\(63\) 0 0
\(64\) 12.5826 1.57282
\(65\) −1.89564 + 7.66115i −0.235126 + 0.950249i
\(66\) 5.00000 0.615457
\(67\) 9.87386 5.70068i 1.20628 0.696449i 0.244339 0.969690i \(-0.421429\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) −4.18693 7.25198i −0.507740 0.879432i
\(69\) −6.79129 + 11.7629i −0.817575 + 1.41608i
\(70\) 0 0
\(71\) −0.791288 0.456850i −0.0939086 0.0542181i 0.452310 0.891861i \(-0.350600\pi\)
−0.546219 + 0.837643i \(0.683933\pi\)
\(72\) 0.313068 + 0.180750i 0.0368954 + 0.0213016i
\(73\) 3.46410i 0.405442i −0.979236 0.202721i \(-0.935021\pi\)
0.979236 0.202721i \(-0.0649785\pi\)
\(74\) 7.58258 13.1334i 0.881457 1.52673i
\(75\) −0.186932 0.323775i −0.0215850 0.0373864i
\(76\) 15.8739 9.16478i 1.82086 1.05127i
\(77\) 0 0
\(78\) 10.1869 + 9.80238i 1.15344 + 1.10990i
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 3.39564 1.96048i 0.379645 0.219188i
\(81\) 4.79129 + 8.29875i 0.532365 + 0.922084i
\(82\) −2.79129 + 4.83465i −0.308246 + 0.533898i
\(83\) 3.55945i 0.390701i 0.980734 + 0.195350i \(0.0625844\pi\)
−0.980734 + 0.195350i \(0.937416\pi\)
\(84\) 0 0
\(85\) −5.68693 3.28335i −0.616834 0.356129i
\(86\) 9.57395i 1.03239i
\(87\) 1.97822 3.42638i 0.212087 0.367346i
\(88\) 1.10436 + 1.91280i 0.117725 + 0.203905i
\(89\) 2.52178 1.45595i 0.267308 0.154330i −0.360356 0.932815i \(-0.617345\pi\)
0.627664 + 0.778485i \(0.284011\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) −21.1652 −2.20662
\(93\) 13.4347 7.75650i 1.39311 0.804312i
\(94\) −4.68693 8.11800i −0.483420 0.837308i
\(95\) 7.18693 12.4481i 0.737364 1.27715i
\(96\) 13.2288i 1.35015i
\(97\) 13.1869 + 7.61348i 1.33893 + 0.773032i 0.986649 0.162863i \(-0.0520727\pi\)
0.352281 + 0.935894i \(0.385406\pi\)
\(98\) 0 0
\(99\) 0.266150i 0.0267491i
\(100\) 0.291288 0.504525i 0.0291288 0.0504525i
\(101\) 4.89564 + 8.47950i 0.487135 + 0.843742i 0.999891 0.0147923i \(-0.00470871\pi\)
−0.512756 + 0.858534i \(0.671375\pi\)
\(102\) −10.1869 + 5.88143i −1.00866 + 0.582348i
\(103\) 4.58258 0.451535 0.225767 0.974181i \(-0.427511\pi\)
0.225767 + 0.974181i \(0.427511\pi\)
\(104\) −1.50000 + 6.06218i −0.147087 + 0.594445i
\(105\) 0 0
\(106\) −23.0608 + 13.3142i −2.23986 + 1.29319i
\(107\) 4.89564 + 8.47950i 0.473280 + 0.819745i 0.999532 0.0305838i \(-0.00973664\pi\)
−0.526252 + 0.850328i \(0.676403\pi\)
\(108\) −6.97822 + 12.0866i −0.671479 + 1.16304i
\(109\) 7.93725i 0.760251i −0.924935 0.380126i \(-0.875881\pi\)
0.924935 0.380126i \(-0.124119\pi\)
\(110\) 5.29129 + 3.05493i 0.504505 + 0.291276i
\(111\) −10.7477 6.20520i −1.02013 0.588972i
\(112\) 0 0
\(113\) −0.708712 + 1.22753i −0.0666700 + 0.115476i −0.897434 0.441150i \(-0.854571\pi\)
0.830764 + 0.556625i \(0.187904\pi\)
\(114\) −12.8739 22.2982i −1.20575 2.08842i
\(115\) −14.3739 + 8.29875i −1.34037 + 0.773863i
\(116\) 6.16515 0.572420
\(117\) 0.521780 0.542250i 0.0482386 0.0501310i
\(118\) 19.3739 1.78351
\(119\) 0 0
\(120\) 3.39564 + 5.88143i 0.309978 + 0.536898i
\(121\) −4.68693 + 8.11800i −0.426085 + 0.738000i
\(122\) 27.9035i 2.52627i
\(123\) 3.95644 + 2.28425i 0.356740 + 0.205964i
\(124\) 20.9347 + 12.0866i 1.87999 + 1.08541i
\(125\) 11.4014i 1.01977i
\(126\) 0 0
\(127\) 7.97822 + 13.8187i 0.707953 + 1.22621i 0.965615 + 0.259975i \(0.0837143\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(128\) 11.0608 6.38595i 0.977645 0.564444i
\(129\) −7.83485 −0.689820
\(130\) 4.79129 + 16.5975i 0.420224 + 1.45570i
\(131\) 3.62614 0.316817 0.158409 0.987374i \(-0.449364\pi\)
0.158409 + 0.987374i \(0.449364\pi\)
\(132\) 5.52178 3.18800i 0.480609 0.277480i
\(133\) 0 0
\(134\) 12.4782 21.6129i 1.07795 1.86707i
\(135\) 10.9445i 0.941953i
\(136\) −4.50000 2.59808i −0.385872 0.222783i
\(137\) −14.8521 8.57485i −1.26890 0.732599i −0.294119 0.955769i \(-0.595026\pi\)
−0.974780 + 0.223169i \(0.928360\pi\)
\(138\) 29.7309i 2.53086i
\(139\) −0.395644 + 0.685275i −0.0335581 + 0.0581243i −0.882317 0.470656i \(-0.844017\pi\)
0.848759 + 0.528781i \(0.177351\pi\)
\(140\) 0 0
\(141\) −6.64337 + 3.83555i −0.559473 + 0.323012i
\(142\) −2.00000 −0.167836
\(143\) 4.41742 1.27520i 0.369404 0.106638i
\(144\) −0.373864 −0.0311553
\(145\) 4.18693 2.41733i 0.347706 0.200748i
\(146\) −3.79129 6.56670i −0.313769 0.543464i
\(147\) 0 0
\(148\) 19.3386i 1.58962i
\(149\) 1.89564 + 1.09445i 0.155297 + 0.0896609i 0.575635 0.817707i \(-0.304755\pi\)
−0.420338 + 0.907368i \(0.638088\pi\)
\(150\) −0.708712 0.409175i −0.0578661 0.0334090i
\(151\) 12.1244i 0.986666i 0.869841 + 0.493333i \(0.164222\pi\)
−0.869841 + 0.493333i \(0.835778\pi\)
\(152\) 5.68693 9.85005i 0.461271 0.798945i
\(153\) 0.313068 + 0.542250i 0.0253101 + 0.0438383i
\(154\) 0 0
\(155\) 18.9564 1.52262
\(156\) 17.5000 + 4.33013i 1.40112 + 0.346688i
\(157\) −21.9564 −1.75231 −0.876157 0.482025i \(-0.839901\pi\)
−0.876157 + 0.482025i \(0.839901\pi\)
\(158\) −11.3739 + 6.56670i −0.904856 + 0.522419i
\(159\) 10.8956 + 18.8718i 0.864081 + 1.49663i
\(160\) 8.08258 13.9994i 0.638984 1.10675i
\(161\) 0 0
\(162\) 18.1652 + 10.4877i 1.42719 + 0.823988i
\(163\) 6.00000 + 3.46410i 0.469956 + 0.271329i 0.716221 0.697873i \(-0.245870\pi\)
−0.246265 + 0.969202i \(0.579203\pi\)
\(164\) 7.11890i 0.555893i
\(165\) 2.50000 4.33013i 0.194625 0.337100i
\(166\) 3.89564 + 6.74745i 0.302361 + 0.523704i
\(167\) −17.2913 + 9.98313i −1.33804 + 0.772518i −0.986517 0.163661i \(-0.947670\pi\)
−0.351523 + 0.936179i \(0.614336\pi\)
\(168\) 0 0
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) −14.3739 −1.10243
\(171\) −1.18693 + 0.685275i −0.0907669 + 0.0524043i
\(172\) −6.10436 10.5731i −0.465453 0.806188i
\(173\) −3.87386 + 6.70973i −0.294524 + 0.510131i −0.974874 0.222756i \(-0.928495\pi\)
0.680350 + 0.732888i \(0.261828\pi\)
\(174\) 8.66025i 0.656532i
\(175\) 0 0
\(176\) −1.97822 1.14213i −0.149114 0.0860910i
\(177\) 15.8546i 1.19171i
\(178\) 3.18693 5.51993i 0.238871 0.413736i
\(179\) 4.50000 + 7.79423i 0.336346 + 0.582568i 0.983742 0.179585i \(-0.0574756\pi\)
−0.647397 + 0.762153i \(0.724142\pi\)
\(180\) 1.10436 0.637600i 0.0823138 0.0475239i
\(181\) −9.16515 −0.681240 −0.340620 0.940201i \(-0.610637\pi\)
−0.340620 + 0.940201i \(0.610637\pi\)
\(182\) 0 0
\(183\) −22.8348 −1.68800
\(184\) −11.3739 + 6.56670i −0.838492 + 0.484104i
\(185\) −7.58258 13.1334i −0.557482 0.965587i
\(186\) 16.9782 29.4071i 1.24490 2.15624i
\(187\) 3.82560i 0.279756i
\(188\) −10.3521 5.97678i −0.755003 0.435901i
\(189\) 0 0
\(190\) 31.4630i 2.28256i
\(191\) 0.313068 0.542250i 0.0226528 0.0392358i −0.854477 0.519490i \(-0.826122\pi\)
0.877130 + 0.480254i \(0.159455\pi\)
\(192\) −11.2695 19.5194i −0.813307 1.40869i
\(193\) −10.7477 + 6.20520i −0.773638 + 0.446660i −0.834171 0.551506i \(-0.814053\pi\)
0.0605327 + 0.998166i \(0.480720\pi\)
\(194\) 33.3303 2.39298
\(195\) 13.5826 3.92095i 0.972668 0.280785i
\(196\) 0 0
\(197\) −9.47822 + 5.47225i −0.675295 + 0.389882i −0.798080 0.602551i \(-0.794151\pi\)
0.122785 + 0.992433i \(0.460817\pi\)
\(198\) −0.291288 0.504525i −0.0207009 0.0358551i
\(199\) −5.50000 + 9.52628i −0.389885 + 0.675300i −0.992434 0.122782i \(-0.960818\pi\)
0.602549 + 0.798082i \(0.294152\pi\)
\(200\) 0.361500i 0.0255619i
\(201\) −17.6869 10.2116i −1.24754 0.720268i
\(202\) 18.5608 + 10.7161i 1.30593 + 0.753981i
\(203\) 0 0
\(204\) −7.50000 + 12.9904i −0.525105 + 0.909509i
\(205\) 2.79129 + 4.83465i 0.194952 + 0.337667i
\(206\) 8.68693 5.01540i 0.605247 0.349440i
\(207\) 1.58258 0.109997
\(208\) −1.79129 6.20520i −0.124203 0.430253i
\(209\) −8.37386 −0.579232
\(210\) 0 0
\(211\) −0.708712 1.22753i −0.0487898 0.0845063i 0.840599 0.541658i \(-0.182203\pi\)
−0.889389 + 0.457151i \(0.848870\pi\)
\(212\) −16.9782 + 29.4071i −1.16607 + 2.01969i
\(213\) 1.63670i 0.112145i
\(214\) 18.5608 + 10.7161i 1.26879 + 0.732536i
\(215\) −8.29129 4.78698i −0.565461 0.326469i
\(216\) 8.66025i 0.589256i
\(217\) 0 0
\(218\) −8.68693 15.0462i −0.588353 1.01906i
\(219\) −5.37386 + 3.10260i −0.363132 + 0.209654i
\(220\) 7.79129 0.525289
\(221\) −7.50000 + 7.79423i −0.504505 + 0.524297i
\(222\) −27.1652 −1.82321
\(223\) 17.9347 10.3546i 1.20099 0.693394i 0.240217 0.970719i \(-0.422781\pi\)
0.960776 + 0.277325i \(0.0894479\pi\)
\(224\) 0 0
\(225\) −0.0217804 + 0.0377247i −0.00145203 + 0.00251498i
\(226\) 3.10260i 0.206382i
\(227\) −10.6652 6.15753i −0.707871 0.408689i 0.102401 0.994743i \(-0.467347\pi\)
−0.810272 + 0.586054i \(0.800681\pi\)
\(228\) −28.4347 16.4168i −1.88313 1.08723i
\(229\) 6.92820i 0.457829i −0.973447 0.228914i \(-0.926482\pi\)
0.973447 0.228914i \(-0.0735176\pi\)
\(230\) −18.1652 + 31.4630i −1.19777 + 2.07461i
\(231\) 0 0
\(232\) 3.31307 1.91280i 0.217514 0.125582i
\(233\) −6.95644 −0.455731 −0.227866 0.973693i \(-0.573175\pi\)
−0.227866 + 0.973693i \(0.573175\pi\)
\(234\) 0.395644 1.59898i 0.0258641 0.104528i
\(235\) −9.37386 −0.611483
\(236\) 21.3956 12.3528i 1.39274 0.804098i
\(237\) 5.37386 + 9.30780i 0.349070 + 0.604607i
\(238\) 0 0
\(239\) 13.2288i 0.855697i 0.903850 + 0.427849i \(0.140728\pi\)
−0.903850 + 0.427849i \(0.859272\pi\)
\(240\) −6.08258 3.51178i −0.392629 0.226684i
\(241\) 3.56080 + 2.05583i 0.229371 + 0.132427i 0.610282 0.792184i \(-0.291056\pi\)
−0.380911 + 0.924612i \(0.624390\pi\)
\(242\) 20.5185i 1.31898i
\(243\) 1.08258 1.87508i 0.0694473 0.120286i
\(244\) −17.7913 30.8154i −1.13897 1.97275i
\(245\) 0 0
\(246\) 10.0000 0.637577
\(247\) −17.0608 16.4168i −1.08555 1.04457i
\(248\) 15.0000 0.952501
\(249\) 5.52178 3.18800i 0.349929 0.202031i
\(250\) −12.4782 21.6129i −0.789192 1.36692i
\(251\) 10.5826 18.3296i 0.667966 1.15695i −0.310506 0.950572i \(-0.600498\pi\)
0.978472 0.206380i \(-0.0661683\pi\)
\(252\) 0 0
\(253\) 8.37386 + 4.83465i 0.526460 + 0.303952i
\(254\) 30.2477 + 17.4635i 1.89791 + 1.09576i
\(255\) 11.7629i 0.736619i
\(256\) 1.39564 2.41733i 0.0872277 0.151083i
\(257\) −13.9782 24.2110i −0.871937 1.51024i −0.859990 0.510311i \(-0.829530\pi\)
−0.0119476 0.999929i \(-0.503803\pi\)
\(258\) −14.8521 + 8.57485i −0.924650 + 0.533847i
\(259\) 0 0
\(260\) 15.8739 + 15.2746i 0.984455 + 0.947292i
\(261\) −0.460985 −0.0285343
\(262\) 6.87386 3.96863i 0.424669 0.245183i
\(263\) 13.6652 + 23.6687i 0.842629 + 1.45948i 0.887664 + 0.460491i \(0.152327\pi\)
−0.0450348 + 0.998985i \(0.514340\pi\)
\(264\) 1.97822 3.42638i 0.121751 0.210879i
\(265\) 26.6283i 1.63576i
\(266\) 0 0
\(267\) −4.51723 2.60803i −0.276450 0.159609i
\(268\) 31.8245i 1.94399i
\(269\) 5.60436 9.70703i 0.341704 0.591848i −0.643046 0.765828i \(-0.722329\pi\)
0.984749 + 0.173980i \(0.0556628\pi\)
\(270\) 11.9782 + 20.7469i 0.728971 + 1.26262i
\(271\) −24.8739 + 14.3609i −1.51098 + 0.872364i −0.511062 + 0.859544i \(0.670748\pi\)
−0.999918 + 0.0128205i \(0.995919\pi\)
\(272\) 5.37386 0.325838
\(273\) 0 0
\(274\) −37.5390 −2.26781
\(275\) −0.230493 + 0.133075i −0.0138992 + 0.00802472i
\(276\) 18.9564 + 32.8335i 1.14104 + 1.97635i
\(277\) 7.87386 13.6379i 0.473095 0.819424i −0.526431 0.850218i \(-0.676470\pi\)
0.999526 + 0.0307939i \(0.00980354\pi\)
\(278\) 1.73205i 0.103882i
\(279\) −1.56534 0.903750i −0.0937145 0.0541061i
\(280\) 0 0
\(281\) 6.39590i 0.381548i 0.981634 + 0.190774i \(0.0610997\pi\)
−0.981634 + 0.190774i \(0.938900\pi\)
\(282\) −8.39564 + 14.5417i −0.499953 + 0.865945i
\(283\) 12.3739 + 21.4322i 0.735550 + 1.27401i 0.954482 + 0.298270i \(0.0964094\pi\)
−0.218932 + 0.975740i \(0.570257\pi\)
\(284\) −2.20871 + 1.27520i −0.131063 + 0.0756692i
\(285\) −25.7477 −1.52516
\(286\) 6.97822 7.25198i 0.412631 0.428818i
\(287\) 0 0
\(288\) −1.33485 + 0.770675i −0.0786567 + 0.0454125i
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 5.29129 9.16478i 0.310715 0.538174i
\(291\) 27.2759i 1.59894i
\(292\) −8.37386 4.83465i −0.490043 0.282927i
\(293\) 6.79129 + 3.92095i 0.396751 + 0.229064i 0.685081 0.728467i \(-0.259767\pi\)
−0.288330 + 0.957531i \(0.593100\pi\)
\(294\) 0 0
\(295\) 9.68693 16.7783i 0.563995 0.976868i
\(296\) −6.00000 10.3923i −0.348743 0.604040i
\(297\) 5.52178 3.18800i 0.320406 0.184987i
\(298\) 4.79129 0.277552
\(299\) 7.58258 + 26.2668i 0.438512 + 1.51905i
\(300\) −1.04356 −0.0602500
\(301\) 0 0
\(302\) 13.2695 + 22.9835i 0.763574 + 1.32255i
\(303\) 8.76951 15.1892i 0.503795 0.872599i
\(304\) 11.7629i 0.674646i
\(305\) −24.1652 13.9518i −1.38369 0.798875i
\(306\) 1.18693 + 0.685275i 0.0678524 + 0.0391746i
\(307\) 24.1733i 1.37964i 0.723980 + 0.689820i \(0.242311\pi\)
−0.723980 + 0.689820i \(0.757689\pi\)
\(308\) 0 0
\(309\) −4.10436 7.10895i −0.233489 0.404414i
\(310\) 35.9347 20.7469i 2.04095 1.17834i
\(311\) −5.53901 −0.314089 −0.157044 0.987592i \(-0.550197\pi\)
−0.157044 + 0.987592i \(0.550197\pi\)
\(312\) 10.7477 3.10260i 0.608470 0.175650i
\(313\) 20.7477 1.17273 0.586365 0.810047i \(-0.300558\pi\)
0.586365 + 0.810047i \(0.300558\pi\)
\(314\) −41.6216 + 24.0302i −2.34884 + 1.35610i
\(315\) 0 0
\(316\) −8.37386 + 14.5040i −0.471067 + 0.815911i
\(317\) 18.5203i 1.04020i −0.854105 0.520101i \(-0.825894\pi\)
0.854105 0.520101i \(-0.174106\pi\)
\(318\) 41.3085 + 23.8495i 2.31647 + 1.33741i
\(319\) −2.43920 1.40828i −0.136569 0.0788483i
\(320\) 27.5420i 1.53965i
\(321\) 8.76951 15.1892i 0.489466 0.847780i
\(322\) 0 0
\(323\) 17.0608 9.85005i 0.949288 0.548072i
\(324\) 26.7477 1.48598
\(325\) −0.730493 0.180750i −0.0405204 0.0100262i
\(326\) 15.1652 0.839920
\(327\) −12.3131 + 7.10895i −0.680914 + 0.393126i
\(328\) 2.20871 + 3.82560i 0.121956 + 0.211234i
\(329\) 0 0
\(330\) 10.9445i 0.602475i
\(331\) 0.939205 + 0.542250i 0.0516234 + 0.0298048i 0.525590 0.850738i \(-0.323845\pi\)
−0.473966 + 0.880543i \(0.657178\pi\)
\(332\) 8.60436 + 4.96773i 0.472225 + 0.272639i
\(333\) 1.44600i 0.0792403i
\(334\) −21.8521 + 37.8489i −1.19569 + 2.07100i
\(335\) −12.4782 21.6129i −0.681758 1.18084i
\(336\) 0 0
\(337\) −12.9564 −0.705782 −0.352891 0.935664i \(-0.614801\pi\)
−0.352891 + 0.935664i \(0.614801\pi\)
\(338\) 28.4347 1.09445i 1.54664 0.0595303i
\(339\) 2.53901 0.137900
\(340\) −15.8739 + 9.16478i −0.860881 + 0.497030i
\(341\) −5.52178 9.56400i −0.299021 0.517920i
\(342\) −1.50000 + 2.59808i −0.0811107 + 0.140488i
\(343\) 0 0
\(344\) −6.56080 3.78788i −0.353734 0.204229i
\(345\) 25.7477 + 14.8655i 1.38621 + 0.800329i
\(346\) 16.9590i 0.911722i
\(347\) 2.20871 3.82560i 0.118570 0.205369i −0.800631 0.599157i \(-0.795502\pi\)
0.919201 + 0.393788i \(0.128836\pi\)
\(348\) −5.52178 9.56400i −0.295998 0.512684i
\(349\) 9.24773 5.33918i 0.495019 0.285800i −0.231635 0.972803i \(-0.574407\pi\)
0.726654 + 0.687003i \(0.241074\pi\)
\(350\) 0 0
\(351\) 17.5000 + 4.33013i 0.934081 + 0.231125i
\(352\) −9.41742 −0.501950
\(353\) −23.2259 + 13.4095i −1.23619 + 0.713716i −0.968314 0.249737i \(-0.919656\pi\)
−0.267879 + 0.963453i \(0.586323\pi\)
\(354\) −17.3521 30.0547i −0.922253 1.59739i
\(355\) −1.00000 + 1.73205i −0.0530745 + 0.0919277i
\(356\) 8.12795i 0.430781i
\(357\) 0 0
\(358\) 17.0608 + 9.85005i 0.901691 + 0.520592i
\(359\) 12.6766i 0.669043i −0.942388 0.334522i \(-0.891425\pi\)
0.942388 0.334522i \(-0.108575\pi\)
\(360\) 0.395644 0.685275i 0.0208523 0.0361172i
\(361\) 12.0608 + 20.8899i 0.634779 + 1.09947i
\(362\) −17.3739 + 10.0308i −0.913150 + 0.527207i
\(363\) 16.7913 0.881314
\(364\) 0 0
\(365\) −7.58258 −0.396890
\(366\) −43.2867 + 24.9916i −2.26263 + 1.30633i
\(367\) 9.00000 + 15.5885i 0.469796 + 0.813711i 0.999404 0.0345320i \(-0.0109941\pi\)
−0.529607 + 0.848243i \(0.677661\pi\)
\(368\) 6.79129 11.7629i 0.354020 0.613181i
\(369\) 0.532300i 0.0277104i
\(370\) −28.7477 16.5975i −1.49452 0.862863i
\(371\) 0 0
\(372\) 43.3013i 2.24507i
\(373\) −18.3956 + 31.8622i −0.952490 + 1.64976i −0.212481 + 0.977165i \(0.568154\pi\)
−0.740009 + 0.672596i \(0.765179\pi\)
\(374\) 4.18693 + 7.25198i 0.216501 + 0.374991i
\(375\) −17.6869 + 10.2116i −0.913349 + 0.527322i
\(376\) −7.41742 −0.382524
\(377\) −2.20871 7.65120i −0.113754 0.394057i
\(378\) 0 0
\(379\) −3.93920 + 2.27430i −0.202343 + 0.116823i −0.597748 0.801684i \(-0.703938\pi\)
0.395405 + 0.918507i \(0.370604\pi\)
\(380\) −20.0608 34.7463i −1.02910 1.78245i
\(381\) 14.2913 24.7532i 0.732165 1.26815i
\(382\) 1.37055i 0.0701235i
\(383\) 3.39564 + 1.96048i 0.173509 + 0.100176i 0.584240 0.811581i \(-0.301393\pi\)
−0.410730 + 0.911757i \(0.634726\pi\)
\(384\) −19.8131 11.4391i −1.01108 0.583748i
\(385\) 0 0
\(386\) −13.5826 + 23.5257i −0.691335 + 1.19743i
\(387\) 0.456439 + 0.790576i 0.0232021 + 0.0401872i
\(388\) 36.8085 21.2514i 1.86867 1.07888i
\(389\) 36.3303 1.84202 0.921010 0.389540i \(-0.127366\pi\)
0.921010 + 0.389540i \(0.127366\pi\)
\(390\) 21.4564 22.2982i 1.08649 1.12911i
\(391\) −22.7477 −1.15040
\(392\) 0 0
\(393\) −3.24773 5.62523i −0.163826 0.283755i
\(394\) −11.9782 + 20.7469i −0.603454 + 1.04521i
\(395\) 13.1334i 0.660813i
\(396\) −0.643371 0.371450i −0.0323306 0.0186661i
\(397\) −13.1216 7.57575i −0.658554 0.380216i 0.133172 0.991093i \(-0.457484\pi\)
−0.791726 + 0.610877i \(0.790817\pi\)
\(398\) 24.0779i 1.20692i
\(399\) 0 0
\(400\) 0.186932 + 0.323775i 0.00934659 + 0.0161888i
\(401\) −25.5998 + 14.7801i −1.27839 + 0.738081i −0.976553 0.215278i \(-0.930934\pi\)
−0.301841 + 0.953358i \(0.597601\pi\)
\(402\) −44.7042 −2.22964
\(403\) 7.50000 30.3109i 0.373602 1.50989i
\(404\) 27.3303 1.35973
\(405\) 18.1652 10.4877i 0.902634 0.521136i
\(406\) 0 0
\(407\) −4.41742 + 7.65120i −0.218964 + 0.379256i
\(408\) 9.30780i 0.460805i
\(409\) 0.313068 + 0.180750i 0.0154802 + 0.00893751i 0.507720 0.861522i \(-0.330488\pi\)
−0.492240 + 0.870460i \(0.663822\pi\)
\(410\) 10.5826 + 6.10985i 0.522636 + 0.301744i
\(411\) 30.7201i 1.51531i
\(412\) 6.39564 11.0776i 0.315091 0.545753i
\(413\) 0 0
\(414\) 3.00000 1.73205i 0.147442 0.0851257i
\(415\) 7.79129 0.382459
\(416\) −19.1869 18.4626i −0.940717 0.905205i
\(417\) 1.41742 0.0694116
\(418\) −15.8739 + 9.16478i −0.776416 + 0.448264i
\(419\) −12.8739 22.2982i −0.628929 1.08934i −0.987767 0.155938i \(-0.950160\pi\)
0.358838 0.933400i \(-0.383173\pi\)
\(420\) 0 0
\(421\) 20.0616i 0.977743i −0.872356 0.488872i \(-0.837409\pi\)
0.872356 0.488872i \(-0.162591\pi\)
\(422\) −2.68693 1.55130i −0.130798 0.0755161i
\(423\) 0.774053 + 0.446900i 0.0376358 + 0.0217290i
\(424\) 21.0707i 1.02328i
\(425\) 0.313068 0.542250i 0.0151860 0.0263030i
\(426\) 1.79129 + 3.10260i 0.0867882 + 0.150322i
\(427\) 0 0
\(428\) 27.3303 1.32106
\(429\) −5.93466 5.71063i −0.286528 0.275712i
\(430\) −20.9564 −1.01061
\(431\) −13.5172 + 7.80418i −0.651102 + 0.375914i −0.788878 0.614549i \(-0.789338\pi\)
0.137776 + 0.990463i \(0.456005\pi\)
\(432\) −4.47822 7.75650i −0.215458 0.373185i
\(433\) −11.2477 + 19.4816i −0.540531 + 0.936228i 0.458342 + 0.888776i \(0.348443\pi\)
−0.998874 + 0.0474518i \(0.984890\pi\)
\(434\) 0 0
\(435\) −7.50000 4.33013i −0.359597 0.207614i
\(436\) −19.1869 11.0776i −0.918887 0.530520i
\(437\) 49.7925i 2.38190i
\(438\) −6.79129 + 11.7629i −0.324500 + 0.562051i
\(439\) −5.76951 9.99308i −0.275364 0.476944i 0.694863 0.719142i \(-0.255465\pi\)
−0.970227 + 0.242198i \(0.922132\pi\)
\(440\) 4.18693 2.41733i 0.199604 0.115242i
\(441\) 0 0
\(442\) −5.68693 + 22.9835i −0.270500 + 1.09321i
\(443\) 3.16515 0.150381 0.0751904 0.997169i \(-0.476044\pi\)
0.0751904 + 0.997169i \(0.476044\pi\)
\(444\) −30.0000 + 17.3205i −1.42374 + 0.821995i
\(445\) −3.18693 5.51993i −0.151075 0.261670i
\(446\) 22.6652 39.2572i 1.07323 1.85888i
\(447\) 3.92095i 0.185455i
\(448\) 0 0
\(449\) −17.2087 9.93545i −0.812129 0.468883i 0.0355654 0.999367i \(-0.488677\pi\)
−0.847695 + 0.530484i \(0.822010\pi\)
\(450\) 0.0953502i 0.00449485i
\(451\) 1.62614 2.81655i 0.0765718 0.132626i
\(452\) 1.97822 + 3.42638i 0.0930476 + 0.161163i
\(453\) 18.8085 10.8591i 0.883701 0.510205i
\(454\) −26.9564 −1.26513
\(455\) 0 0
\(456\) −20.3739 −0.954094
\(457\) −7.74773 + 4.47315i −0.362423 + 0.209245i −0.670143 0.742232i \(-0.733767\pi\)
0.307720 + 0.951477i \(0.400434\pi\)
\(458\) −7.58258 13.1334i −0.354310 0.613684i
\(459\) −7.50000 + 12.9904i −0.350070 + 0.606339i
\(460\) 46.3284i 2.16007i
\(461\) 15.4782 + 8.93635i 0.720893 + 0.416208i 0.815081 0.579347i \(-0.196692\pi\)
−0.0941885 + 0.995554i \(0.530026\pi\)
\(462\) 0 0
\(463\) 7.93725i 0.368875i 0.982844 + 0.184438i \(0.0590464\pi\)
−0.982844 + 0.184438i \(0.940954\pi\)
\(464\) −1.97822 + 3.42638i −0.0918365 + 0.159066i
\(465\) −16.9782 29.4071i −0.787346 1.36372i
\(466\) −13.1869 + 7.61348i −0.610873 + 0.352688i
\(467\) 11.8348 0.547651 0.273826 0.961779i \(-0.411711\pi\)
0.273826 + 0.961779i \(0.411711\pi\)
\(468\) −0.582576 2.01810i −0.0269296 0.0932868i
\(469\) 0 0
\(470\) −17.7695 + 10.2592i −0.819646 + 0.473223i
\(471\) 19.6652 + 34.0610i 0.906122 + 1.56945i
\(472\) 7.66515 13.2764i 0.352817 0.611097i
\(473\) 5.57755i 0.256456i
\(474\) 20.3739 + 11.7629i 0.935803 + 0.540286i
\(475\) 1.18693 + 0.685275i 0.0544602 + 0.0314426i
\(476\) 0 0
\(477\) 1.26951 2.19885i 0.0581268 0.100678i
\(478\) 14.4782 + 25.0770i 0.662218 + 1.14700i
\(479\) 8.85208 5.11075i 0.404462 0.233516i −0.283945 0.958840i \(-0.591643\pi\)
0.688407 + 0.725324i \(0.258310\pi\)
\(480\) −28.9564 −1.32167
\(481\) −24.0000 + 6.92820i −1.09431 + 0.315899i
\(482\) 9.00000 0.409939
\(483\) 0 0
\(484\) 13.0826 + 22.6597i 0.594663 + 1.02999i
\(485\) 16.6652 28.8649i 0.756726 1.31069i
\(486\) 4.73930i 0.214979i
\(487\) −8.93466 5.15843i −0.404868 0.233751i 0.283714 0.958909i \(-0.408433\pi\)
−0.688582 + 0.725158i \(0.741767\pi\)
\(488\) −19.1216 11.0399i −0.865594 0.499751i
\(489\) 12.4104i 0.561218i
\(490\) 0 0
\(491\) −18.5608 32.1482i −0.837637 1.45083i −0.891865 0.452301i \(-0.850603\pi\)
0.0542283 0.998529i \(-0.482730\pi\)
\(492\) 11.0436 6.37600i 0.497882 0.287452i
\(493\) 6.62614 0.298426
\(494\) −50.3085 12.4481i −2.26349 0.560068i
\(495\) −0.582576 −0.0261848
\(496\) −13.4347 + 7.75650i −0.603234 + 0.348277i
\(497\) 0 0
\(498\) 6.97822 12.0866i 0.312701 0.541615i
\(499\) 42.2168i 1.88988i −0.327240 0.944941i \(-0.606119\pi\)
0.327240 0.944941i \(-0.393881\pi\)
\(500\) −27.5608 15.9122i −1.23256 0.711617i
\(501\) 30.9737 + 17.8827i 1.38380 + 0.798938i
\(502\) 46.3284i 2.06774i
\(503\) 11.0608 19.1579i 0.493176 0.854207i −0.506793 0.862068i \(-0.669169\pi\)
0.999969 + 0.00786127i \(0.00250235\pi\)
\(504\) 0 0
\(505\) 18.5608 10.7161i 0.825945 0.476859i
\(506\) 21.1652 0.940906
\(507\) −0.895644 23.2695i −0.0397769 1.03344i
\(508\) 44.5390 1.97610
\(509\) 19.0390 10.9922i 0.843890 0.487220i −0.0146949 0.999892i \(-0.504678\pi\)
0.858584 + 0.512672i \(0.171344\pi\)
\(510\) 12.8739 + 22.2982i 0.570064 + 0.987380i
\(511\) 0 0
\(512\) 19.4340i 0.858868i
\(513\) −28.4347 16.4168i −1.25542 0.724818i
\(514\) −52.9955 30.5969i −2.33753 1.34957i
\(515\) 10.0308i 0.442010i
\(516\) −10.9347 + 18.9394i −0.481372 + 0.833760i
\(517\) 2.73049 + 4.72935i 0.120087 + 0.207997i
\(518\) 0 0
\(519\) 13.8784 0.609195
\(520\) 13.2695 + 3.28335i 0.581906 + 0.143984i
\(521\) 25.5826 1.12079 0.560396 0.828224i \(-0.310649\pi\)
0.560396 + 0.828224i \(0.310649\pi\)
\(522\) −0.873864 + 0.504525i −0.0382480 + 0.0220825i
\(523\) 6.16515 + 10.6784i 0.269583 + 0.466932i 0.968754 0.248023i \(-0.0797807\pi\)
−0.699171 + 0.714954i \(0.746447\pi\)
\(524\) 5.06080 8.76555i 0.221082 0.382925i
\(525\) 0 0
\(526\) 51.8085 + 29.9117i 2.25896 + 1.30421i
\(527\) 22.5000 + 12.9904i 0.980115 + 0.565870i
\(528\) 4.09175i 0.178071i
\(529\) −17.2477 + 29.8739i −0.749901 + 1.29887i
\(530\) 29.1434 + 50.4778i 1.26591 + 2.19262i
\(531\) −1.59981 + 0.923651i −0.0694259 + 0.0400830i
\(532\) 0 0
\(533\) 8.83485 2.55040i 0.382680 0.110470i
\(534\) −11.4174 −0.494080
\(535\) 18.5608 10.7161i 0.802453 0.463297i
\(536\) −9.87386 17.1020i −0.426486 0.738695i
\(537\) 8.06080 13.9617i 0.347849 0.602492i
\(538\) 24.5348i 1.05777i
\(539\) 0 0
\(540\) 26.4564 + 15.2746i 1.13850 + 0.657316i
\(541\) 30.0924i 1.29377i −0.762586 0.646887i \(-0.776071\pi\)
0.762586 0.646887i \(-0.223929\pi\)
\(542\) −31.4347 + 54.4464i −1.35023 + 2.33867i
\(543\) 8.20871 + 14.2179i 0.352270 + 0.610149i
\(544\) 19.1869 11.0776i 0.822633 0.474947i
\(545\) −17.3739 −0.744215
\(546\) 0 0
\(547\) 15.7477 0.673324 0.336662 0.941626i \(-0.390702\pi\)
0.336662 + 0.941626i \(0.390702\pi\)
\(548\) −41.4564 + 23.9349i −1.77093 + 1.02245i
\(549\) 1.33030 + 2.30415i 0.0567759 + 0.0983388i
\(550\) −0.291288 + 0.504525i −0.0124206 + 0.0215130i
\(551\) 14.5040i 0.617889i
\(552\) 20.3739 + 11.7629i 0.867169 + 0.500660i
\(553\) 0 0
\(554\) 34.4702i 1.46450i
\(555\) −13.5826 + 23.5257i −0.576548 + 0.998611i
\(556\) 1.10436 + 1.91280i 0.0468351 + 0.0811208i
\(557\) 24.0998 13.9140i 1.02114 0.589556i 0.106707 0.994290i \(-0.465969\pi\)
0.914434 + 0.404734i \(0.132636\pi\)
\(558\) −3.95644 −0.167489
\(559\) −10.9347 + 11.3636i −0.462487 + 0.480630i
\(560\) 0 0
\(561\) 5.93466 3.42638i 0.250561 0.144662i
\(562\) 7.00000 + 12.1244i 0.295277 + 0.511435i
\(563\) 0.165151 0.286051i 0.00696030 0.0120556i −0.862524 0.506016i \(-0.831118\pi\)
0.869485 + 0.493960i \(0.164451\pi\)
\(564\) 21.4123i 0.901619i
\(565\) 2.68693 + 1.55130i 0.113040 + 0.0652637i
\(566\) 46.9129 + 27.0852i 1.97190 + 1.13847i
\(567\) 0 0
\(568\) −0.791288 + 1.37055i −0.0332017 + 0.0575070i
\(569\) 5.37386 + 9.30780i 0.225284 + 0.390203i 0.956405 0.292045i \(-0.0943356\pi\)
−0.731121 + 0.682248i \(0.761002\pi\)
\(570\) −48.8085 + 28.1796i −2.04436 + 1.18031i
\(571\) −24.9564 −1.04439 −0.522197 0.852825i \(-0.674888\pi\)
−0.522197 + 0.852825i \(0.674888\pi\)
\(572\) 3.08258 12.4581i 0.128889 0.520899i
\(573\) −1.12159 −0.0468551
\(574\) 0 0
\(575\) −0.791288 1.37055i −0.0329990 0.0571559i
\(576\) −1.31307 + 2.27430i −0.0547112 + 0.0947625i
\(577\) 19.7756i 0.823267i −0.911349 0.411634i \(-0.864958\pi\)
0.911349 0.411634i \(-0.135042\pi\)
\(578\) 15.1652 + 8.75560i 0.630787 + 0.364185i
\(579\) 19.2523 + 11.1153i 0.800097 + 0.461936i
\(580\) 13.4949i 0.560345i
\(581\) 0 0
\(582\) −29.8521 51.7053i −1.23741 2.14325i
\(583\) 13.4347 7.75650i 0.556407 0.321242i
\(584\) −6.00000 −0.248282
\(585\) −1.18693 1.14213i −0.0490736 0.0472211i
\(586\) 17.1652 0.709086
\(587\) 30.7259 17.7396i 1.26820 0.732193i 0.293549 0.955944i \(-0.405164\pi\)
0.974646 + 0.223751i \(0.0718302\pi\)
\(588\) 0 0
\(589\) −28.4347 + 49.2503i −1.17163 + 2.02932i
\(590\) 42.4075i 1.74589i
\(591\) 16.9782 + 9.80238i 0.698391 + 0.403216i
\(592\) 10.7477 + 6.20520i 0.441729 + 0.255032i
\(593\) 19.6048i 0.805071i −0.915404 0.402535i \(-0.868129\pi\)
0.915404 0.402535i \(-0.131871\pi\)
\(594\) 6.97822 12.0866i 0.286320 0.495920i
\(595\) 0 0
\(596\) 5.29129 3.05493i 0.216740 0.125135i
\(597\) 19.7042 0.806438
\(598\) 43.1216 + 41.4938i 1.76337 + 1.69681i
\(599\) −20.3739 −0.832453 −0.416227 0.909261i \(-0.636648\pi\)
−0.416227 + 0.909261i \(0.636648\pi\)
\(600\) −0.560795 + 0.323775i −0.0228944 + 0.0132181i
\(601\) −0.686932 1.18980i −0.0280205 0.0485330i 0.851675 0.524070i \(-0.175587\pi\)
−0.879696 + 0.475537i \(0.842254\pi\)
\(602\) 0 0
\(603\) 2.37960i 0.0969049i
\(604\) 29.3085 + 16.9213i 1.19255 + 0.688517i
\(605\) 17.7695 + 10.2592i 0.722433 + 0.417097i
\(606\) 38.3912i 1.55953i
\(607\) −3.87386 + 6.70973i −0.157235 + 0.272339i −0.933871 0.357611i \(-0.883591\pi\)
0.776635 + 0.629950i \(0.216925\pi\)
\(608\) 24.2477 + 41.9983i 0.983375 + 1.70326i
\(609\) 0 0
\(610\) −61.0780 −2.47298
\(611\) −3.70871 + 14.9886i −0.150038 + 0.606373i
\(612\) 1.74773 0.0706477
\(613\) 32.3085 18.6533i 1.30493 0.753401i 0.323684 0.946165i \(-0.395079\pi\)
0.981245 + 0.192764i \(0.0617453\pi\)
\(614\) 26.4564 + 45.8239i 1.06769 + 1.84930i
\(615\) 5.00000 8.66025i 0.201619 0.349215i
\(616\) 0 0
\(617\) −24.0826 13.9041i −0.969528 0.559757i −0.0704357 0.997516i \(-0.522439\pi\)
−0.899092 + 0.437759i \(0.855772\pi\)
\(618\) −15.5608 8.98403i −0.625947 0.361391i
\(619\) 12.4104i 0.498816i 0.968398 + 0.249408i \(0.0802361\pi\)
−0.968398 + 0.249408i \(0.919764\pi\)
\(620\) 26.4564 45.8239i 1.06252 1.84033i
\(621\) 18.9564 + 32.8335i 0.760696 + 1.31756i
\(622\) −10.5000 + 6.06218i −0.421012 + 0.243071i
\(623\) 0 0
\(624\) −8.02178 + 8.33648i −0.321128 + 0.333726i
\(625\) −23.9129 −0.956515
\(626\) 39.3303 22.7074i 1.57196 0.907569i
\(627\) 7.50000 + 12.9904i 0.299521 + 0.518786i
\(628\) −30.6434 + 53.0759i −1.22280 + 2.11796i
\(629\) 20.7846i 0.828737i
\(630\) 0 0
\(631\) −10.4347 6.02445i −0.415397 0.239830i 0.277709 0.960665i \(-0.410425\pi\)
−0.693106 + 0.720836i \(0.743758\pi\)
\(632\) 10.3923i 0.413384i
\(633\) −1.26951 + 2.19885i −0.0504584 + 0.0873965i
\(634\) −20.2695 35.1078i −0.805005 1.39431i
\(635\) 30.2477 17.4635i 1.20034 0.693019i
\(636\) 60.8258 2.41190
\(637\) 0 0
\(638\) −6.16515 −0.244081
\(639\) 0.165151 0.0953502i 0.00653329 0.00377200i
\(640\) −13.9782 24.2110i −0.552538 0.957023i
\(641\) −7.81307 + 13.5326i −0.308598 + 0.534507i −0.978056 0.208343i \(-0.933193\pi\)
0.669458 + 0.742850i \(0.266526\pi\)
\(642\) 38.3912i 1.51518i
\(643\) 11.7523 + 6.78518i 0.463464 + 0.267581i 0.713500 0.700655i \(-0.247109\pi\)
−0.250035 + 0.968237i \(0.580442\pi\)
\(644\) 0 0
\(645\) 17.1497i 0.675269i
\(646\) 21.5608 37.3444i 0.848298 1.46930i
\(647\) 14.5390 + 25.1823i 0.571588 + 0.990019i 0.996403 + 0.0847389i \(0.0270056\pi\)
−0.424816 + 0.905280i \(0.639661\pi\)
\(648\) 14.3739 8.29875i 0.564659 0.326006i
\(649\) −11.2867 −0.443043
\(650\) −1.58258 + 0.456850i −0.0620737 + 0.0179191i
\(651\) 0 0
\(652\) 16.7477 9.66930i 0.655892 0.378679i
\(653\) −5.60436 9.70703i −0.219315 0.379865i 0.735283 0.677760i \(-0.237049\pi\)
−0.954599 + 0.297894i \(0.903716\pi\)
\(654\) −15.5608 + 26.9521i −0.608475 + 1.05391i
\(655\) 7.93725i 0.310134i
\(656\) −3.95644 2.28425i −0.154473 0.0891850i
\(657\) 0.626136 + 0.361500i 0.0244279 + 0.0141035i
\(658\) 0 0
\(659\) −3.00000 + 5.19615i −0.116863 + 0.202413i −0.918523 0.395367i \(-0.870617\pi\)
0.801660 + 0.597781i \(0.203951\pi\)
\(660\) −6.97822 12.0866i −0.271627 0.470471i
\(661\) −16.2523 + 9.38325i −0.632140 + 0.364966i −0.781580 0.623804i \(-0.785586\pi\)
0.149440 + 0.988771i \(0.452253\pi\)
\(662\) 2.37386 0.0922628
\(663\) 18.8085 + 4.65390i 0.730462 + 0.180743i
\(664\) 6.16515 0.239254
\(665\) 0 0
\(666\) 1.58258 + 2.74110i 0.0613236 + 0.106216i
\(667\) 8.37386 14.5040i 0.324237 0.561595i
\(668\) 55.7316i 2.15632i
\(669\) −32.1261 18.5480i −1.24207 0.717108i
\(670\) −47.3085 27.3136i −1.82769 1.05522i
\(671\) 16.2559i 0.627552i
\(672\) 0 0
\(673\) 14.2477 + 24.6778i 0.549210 + 0.951259i 0.998329 + 0.0577870i \(0.0184044\pi\)
−0.449119 + 0.893472i \(0.648262\pi\)
\(674\) −24.5608 + 14.1802i −0.946046 + 0.546200i
\(675\) −1.04356 −0.0401667
\(676\) 30.7042 19.3386i 1.18093 0.743793i
\(677\) −33.7913 −1.29870 −0.649352 0.760488i \(-0.724960\pi\)
−0.649352 + 0.760488i \(0.724960\pi\)
\(678\) 4.81307 2.77883i 0.184845 0.106720i
\(679\) 0 0
\(680\) −5.68693 + 9.85005i −0.218084 + 0.377732i
\(681\) 22.0598i 0.845334i
\(682\) −20.9347 12.0866i −0.801630 0.462821i
\(683\) 21.7087 + 12.5335i 0.830661 + 0.479582i 0.854079 0.520144i \(-0.174122\pi\)
−0.0234181 + 0.999726i \(0.507455\pi\)
\(684\) 3.82560i 0.146276i
\(685\) −18.7695 + 32.5097i −0.717146 + 1.24213i
\(686\) 0 0
\(687\) −10.7477 + 6.20520i −0.410051 + 0.236743i
\(688\) 7.83485 0.298701
\(689\) 42.5780 + 10.5353i 1.62209 + 0.401364i
\(690\) 65.0780 2.47748
\(691\) 25.4347 14.6847i 0.967580 0.558633i 0.0690824 0.997611i \(-0.477993\pi\)
0.898498 + 0.438978i \(0.144660\pi\)
\(692\) 10.8131 + 18.7288i 0.411051 + 0.711962i
\(693\) 0 0
\(694\) 9.66930i 0.367042i
\(695\) 1.50000 + 0.866025i 0.0568982 + 0.0328502i
\(696\) −5.93466 3.42638i −0.224953 0.129876i
\(697\) 7.65120i 0.289810i
\(698\) 11.6869 20.2424i 0.442357 0.766185i
\(699\) 6.23049 + 10.7915i 0.235659 + 0.408173i
\(700\) 0 0
\(701\) 31.9129 1.20533 0.602666 0.797993i \(-0.294105\pi\)
0.602666 + 0.797993i \(0.294105\pi\)
\(702\) 37.9129 10.9445i 1.43093 0.413074i
\(703\) 45.4955 1.71589
\(704\) −13.8956 + 8.02265i −0.523712 + 0.302365i
\(705\) 8.39564 + 14.5417i 0.316198 + 0.547671i
\(706\) −29.3521 + 50.8393i −1.10468 + 1.91336i
\(707\) 0 0
\(708\) −38.3258 22.1274i −1.44037 0.831598i
\(709\) −6.31307 3.64485i −0.237092 0.136885i 0.376747 0.926316i \(-0.377043\pi\)
−0.613840 + 0.789431i \(0.710376\pi\)
\(710\) 4.37780i 0.164296i
\(711\) 0.626136 1.08450i 0.0234820 0.0406719i
\(712\) −2.52178 4.36785i −0.0945077 0.163692i
\(713\) 56.8693 32.8335i 2.12977 1.22962i
\(714\) 0 0
\(715\) −2.79129 9.66930i −0.104388 0.361611i
\(716\) 25.1216 0.938838
\(717\) 20.5218 11.8483i 0.766400 0.442481i
\(718\) −13.8739 24.0302i −0.517768 0.896800i
\(719\) −2.91742 + 5.05313i −0.108802 + 0.188450i −0.915285 0.402807i \(-0.868035\pi\)
0.806483 + 0.591257i \(0.201368\pi\)
\(720\) 0.818350i 0.0304981i
\(721\) 0 0
\(722\) 45.7259 + 26.3999i 1.70174 + 0.982502i
\(723\) 7.36515i 0.273913i
\(724\) −12.7913 + 22.1552i −0.475384 + 0.823390i
\(725\) 0.230493 + 0.399225i 0.00856028 + 0.0148268i
\(726\) 31.8303 18.3772i 1.18133 0.682043i
\(727\) −27.7477 −1.02911 −0.514553 0.857459i \(-0.672042\pi\)
−0.514553 + 0.857459i \(0.672042\pi\)
\(728\) 0 0
\(729\) 24.8693 0.921086
\(730\) −14.3739 + 8.29875i −0.532001 + 0.307151i
\(731\) −6.56080 11.3636i −0.242660 0.420299i
\(732\) −31.8693 + 55.1993i −1.17792 + 2.04022i
\(733\) 9.02175i 0.333226i −0.986022 0.166613i \(-0.946717\pi\)
0.986022 0.166613i \(-0.0532831\pi\)
\(734\) 34.1216 + 19.7001i 1.25945 + 0.727144i
\(735\) 0 0
\(736\) 55.9977i 2.06410i
\(737\) −7.26951 + 12.5912i −0.267776 + 0.463801i
\(738\) −0.582576 1.00905i −0.0214449 0.0371437i
\(739\) −10.7477 + 6.20520i −0.395362 + 0.228262i −0.684481 0.729031i \(-0.739971\pi\)
0.289119 + 0.957293i \(0.406638\pi\)
\(740\) −42.3303 −1.55609
\(741\) −10.1869 + 41.1700i −0.374226 + 1.51242i
\(742\) 0 0
\(743\) 4.64792 2.68348i 0.170516 0.0984472i −0.412313 0.911042i \(-0.635279\pi\)
0.582829 + 0.812595i \(0.301946\pi\)
\(744\) −13.4347 23.2695i −0.492538 0.853102i
\(745\) 2.39564 4.14938i 0.0877696 0.152021i
\(746\) 80.5325i 2.94850i
\(747\) −0.643371 0.371450i −0.0235397 0.0135907i
\(748\) 9.24773 + 5.33918i 0.338130 + 0.195220i
\(749\) 0 0
\(750\) −22.3521 + 38.7149i −0.816183 + 1.41367i
\(751\) 1.87386 + 3.24563i 0.0683783 + 0.118435i 0.898188 0.439612i \(-0.144884\pi\)
−0.829809 + 0.558047i \(0.811551\pi\)
\(752\) 6.64337 3.83555i 0.242259 0.139868i
\(753\) −37.9129 −1.38162
\(754\) −12.5608 12.0866i −0.457437 0.440169i
\(755\) 26.5390 0.965854
\(756\) 0 0
\(757\) −3.00000 5.19615i −0.109037 0.188857i 0.806343 0.591448i \(-0.201443\pi\)
−0.915380 + 0.402590i \(0.868110\pi\)
\(758\) −4.97822 + 8.62253i −0.180817 + 0.313184i
\(759\) 17.3205i 0.628695i
\(760\) −21.5608 12.4481i −0.782092 0.451541i
\(761\) −27.7259 16.0076i −1.00506 0.580274i −0.0953219 0.995447i \(-0.530388\pi\)
−0.909743 + 0.415172i \(0.863721\pi\)
\(762\) 62.5644i 2.26647i
\(763\) 0 0
\(764\) −0.873864 1.51358i −0.0316153 0.0547593i
\(765\) 1.18693 0.685275i 0.0429136 0.0247762i
\(766\) 8.58258 0.310101
\(767\) −22.9955 22.1274i −0.830318 0.798974i
\(768\) −5.00000 −0.180422
\(769\) −21.8739 + 12.6289i −0.788792 + 0.455409i −0.839537 0.543303i \(-0.817174\pi\)
0.0507453 + 0.998712i \(0.483840\pi\)
\(770\) 0 0
\(771\) −25.0390 + 43.3688i −0.901758 + 1.56189i
\(772\) 34.6410i 1.24676i
\(773\) −19.8303 11.4490i −0.713246 0.411793i 0.0990155 0.995086i \(-0.468431\pi\)
−0.812262 + 0.583293i