Defining parameters
Level: | \( N \) | \(=\) | \( 637 = 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 637.q (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(130\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(637, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 148 | 106 | 42 |
Cusp forms | 116 | 86 | 30 |
Eisenstein series | 32 | 20 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(637, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(637, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(637, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)