Properties

Label 637.2.k.h.569.4
Level $637$
Weight $2$
Character 637.569
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(459,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.459"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-8,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.58891012706304.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 569.4
Root \(-1.08105 + 0.911778i\) of defining polynomial
Character \(\chi\) \(=\) 637.569
Dual form 637.2.k.h.459.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.823556i q^{2} +(-1.33015 + 2.30388i) q^{3} +1.32176 q^{4} +(2.73845 + 1.58105i) q^{5} +(-1.89737 - 1.09545i) q^{6} +2.73565i q^{8} +(-2.03858 - 3.53092i) q^{9} +(-1.30208 + 2.25527i) q^{10} +(-5.14653 - 2.97135i) q^{11} +(-1.75813 + 3.04517i) q^{12} +(-0.0766193 + 3.60474i) q^{13} +(-7.28508 + 4.20604i) q^{15} +0.390549 q^{16} +2.69964 q^{17} +(2.90791 - 1.67888i) q^{18} +(-1.69485 + 0.978524i) q^{19} +(3.61956 + 2.08976i) q^{20} +(2.44707 - 4.23845i) q^{22} +2.72941 q^{23} +(-6.30261 - 3.63882i) q^{24} +(2.49941 + 4.32911i) q^{25} +(-2.96870 - 0.0631003i) q^{26} +2.86554 q^{27} +(2.99923 + 5.19481i) q^{29} +(-3.46391 - 5.99967i) q^{30} +(-0.997270 + 0.575774i) q^{31} +5.79294i q^{32} +(13.6913 - 7.90465i) q^{33} +2.22331i q^{34} +(-2.69450 - 4.66701i) q^{36} -6.50454i q^{37} +(-0.805869 - 1.39581i) q^{38} +(-8.20297 - 4.97135i) q^{39} +(-4.32519 + 7.49145i) q^{40} +(-3.23351 + 1.86687i) q^{41} +(3.49562 - 6.05460i) q^{43} +(-6.80245 - 3.92740i) q^{44} -12.8923i q^{45} +2.24783i q^{46} +(-0.394969 - 0.228035i) q^{47} +(-0.519487 + 0.899778i) q^{48} +(-3.56527 + 2.05841i) q^{50} +(-3.59092 + 6.21965i) q^{51} +(-0.101272 + 4.76458i) q^{52} +(-0.199643 - 0.345792i) q^{53} +2.35994i q^{54} +(-9.39568 - 16.2738i) q^{55} -5.20632i q^{57} +(-4.27822 + 2.47003i) q^{58} -4.80586i q^{59} +(-9.62910 + 5.55936i) q^{60} +(0.578514 + 1.00201i) q^{61} +(-0.474182 - 0.821308i) q^{62} -3.98971 q^{64} +(-5.90907 + 9.75026i) q^{65} +(6.50993 + 11.2755i) q^{66} +(5.43793 + 3.13959i) q^{67} +3.56827 q^{68} +(-3.63052 + 6.28825i) q^{69} +(3.90335 + 2.25360i) q^{71} +(9.65936 - 5.57684i) q^{72} +(7.19299 - 4.15288i) q^{73} +5.35685 q^{74} -13.2983 q^{75} +(-2.24018 + 1.29337i) q^{76} +(4.09418 - 6.75560i) q^{78} +(3.95705 - 6.85381i) q^{79} +(1.06950 + 0.617476i) q^{80} +(2.30414 - 3.99089i) q^{81} +(-1.53747 - 2.66298i) q^{82} +6.19795i q^{83} +(7.39284 + 4.26826i) q^{85} +(4.98630 + 2.87884i) q^{86} -15.9576 q^{87} +(8.12857 - 14.0791i) q^{88} +3.56136i q^{89} +10.6176 q^{90} +3.60762 q^{92} -3.06345i q^{93} +(0.187800 - 0.325279i) q^{94} -6.18837 q^{95} +(-13.3462 - 7.70546i) q^{96} +(-2.96831 - 1.71375i) q^{97} +24.2293i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{4} + 6 q^{5} - 18 q^{6} - 4 q^{9} + 12 q^{10} - 6 q^{11} + 2 q^{12} + 4 q^{13} + 6 q^{15} + 16 q^{16} + 8 q^{17} + 12 q^{18} - 12 q^{20} + 6 q^{22} + 24 q^{23} - 12 q^{24} + 10 q^{25} + 18 q^{26}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.823556i 0.582342i 0.956671 + 0.291171i \(0.0940449\pi\)
−0.956671 + 0.291171i \(0.905955\pi\)
\(3\) −1.33015 + 2.30388i −0.767960 + 1.33015i 0.170707 + 0.985322i \(0.445395\pi\)
−0.938667 + 0.344824i \(0.887939\pi\)
\(4\) 1.32176 0.660878
\(5\) 2.73845 + 1.58105i 1.22467 + 0.707065i 0.965911 0.258876i \(-0.0833520\pi\)
0.258762 + 0.965941i \(0.416685\pi\)
\(6\) −1.89737 1.09545i −0.774600 0.447215i
\(7\) 0 0
\(8\) 2.73565i 0.967199i
\(9\) −2.03858 3.53092i −0.679526 1.17697i
\(10\) −1.30208 + 2.25527i −0.411754 + 0.713179i
\(11\) −5.14653 2.97135i −1.55174 0.895895i −0.998001 0.0632025i \(-0.979869\pi\)
−0.553735 0.832693i \(-0.686798\pi\)
\(12\) −1.75813 + 3.04517i −0.507528 + 0.879064i
\(13\) −0.0766193 + 3.60474i −0.0212504 + 0.999774i
\(14\) 0 0
\(15\) −7.28508 + 4.20604i −1.88100 + 1.08600i
\(16\) 0.390549 0.0976372
\(17\) 2.69964 0.654760 0.327380 0.944893i \(-0.393834\pi\)
0.327380 + 0.944893i \(0.393834\pi\)
\(18\) 2.90791 1.67888i 0.685401 0.395716i
\(19\) −1.69485 + 0.978524i −0.388826 + 0.224489i −0.681651 0.731677i \(-0.738738\pi\)
0.292825 + 0.956166i \(0.405405\pi\)
\(20\) 3.61956 + 2.08976i 0.809359 + 0.467284i
\(21\) 0 0
\(22\) 2.44707 4.23845i 0.521717 0.903641i
\(23\) 2.72941 0.569122 0.284561 0.958658i \(-0.408152\pi\)
0.284561 + 0.958658i \(0.408152\pi\)
\(24\) −6.30261 3.63882i −1.28652 0.742770i
\(25\) 2.49941 + 4.32911i 0.499883 + 0.865822i
\(26\) −2.96870 0.0631003i −0.582211 0.0123750i
\(27\) 2.86554 0.551474
\(28\) 0 0
\(29\) 2.99923 + 5.19481i 0.556942 + 0.964652i 0.997750 + 0.0670505i \(0.0213589\pi\)
−0.440807 + 0.897602i \(0.645308\pi\)
\(30\) −3.46391 5.99967i −0.632421 1.09539i
\(31\) −0.997270 + 0.575774i −0.179115 + 0.103412i −0.586877 0.809676i \(-0.699643\pi\)
0.407762 + 0.913088i \(0.366309\pi\)
\(32\) 5.79294i 1.02406i
\(33\) 13.6913 7.90465i 2.38334 1.37602i
\(34\) 2.22331i 0.381294i
\(35\) 0 0
\(36\) −2.69450 4.66701i −0.449083 0.777835i
\(37\) 6.50454i 1.06934i −0.845061 0.534670i \(-0.820436\pi\)
0.845061 0.534670i \(-0.179564\pi\)
\(38\) −0.805869 1.39581i −0.130729 0.226430i
\(39\) −8.20297 4.97135i −1.31353 0.796053i
\(40\) −4.32519 + 7.49145i −0.683873 + 1.18450i
\(41\) −3.23351 + 1.86687i −0.504990 + 0.291556i −0.730772 0.682622i \(-0.760840\pi\)
0.225782 + 0.974178i \(0.427506\pi\)
\(42\) 0 0
\(43\) 3.49562 6.05460i 0.533078 0.923318i −0.466176 0.884692i \(-0.654369\pi\)
0.999254 0.0386258i \(-0.0122980\pi\)
\(44\) −6.80245 3.92740i −1.02551 0.592077i
\(45\) 12.8923i 1.92188i
\(46\) 2.24783i 0.331424i
\(47\) −0.394969 0.228035i −0.0576121 0.0332624i 0.470917 0.882177i \(-0.343923\pi\)
−0.528529 + 0.848915i \(0.677256\pi\)
\(48\) −0.519487 + 0.899778i −0.0749815 + 0.129872i
\(49\) 0 0
\(50\) −3.56527 + 2.05841i −0.504205 + 0.291103i
\(51\) −3.59092 + 6.21965i −0.502829 + 0.870926i
\(52\) −0.101272 + 4.76458i −0.0140439 + 0.660729i
\(53\) −0.199643 0.345792i −0.0274231 0.0474982i 0.851988 0.523561i \(-0.175397\pi\)
−0.879411 + 0.476063i \(0.842063\pi\)
\(54\) 2.35994i 0.321146i
\(55\) −9.39568 16.2738i −1.26691 2.19436i
\(56\) 0 0
\(57\) 5.20632i 0.689594i
\(58\) −4.27822 + 2.47003i −0.561758 + 0.324331i
\(59\) 4.80586i 0.625670i −0.949807 0.312835i \(-0.898721\pi\)
0.949807 0.312835i \(-0.101279\pi\)
\(60\) −9.62910 + 5.55936i −1.24311 + 0.717711i
\(61\) 0.578514 + 1.00201i 0.0740711 + 0.128295i 0.900682 0.434479i \(-0.143067\pi\)
−0.826611 + 0.562774i \(0.809734\pi\)
\(62\) −0.474182 0.821308i −0.0602212 0.104306i
\(63\) 0 0
\(64\) −3.98971 −0.498714
\(65\) −5.90907 + 9.75026i −0.732930 + 1.20937i
\(66\) 6.50993 + 11.2755i 0.801316 + 1.38792i
\(67\) 5.43793 + 3.13959i 0.664349 + 0.383562i 0.793932 0.608007i \(-0.208031\pi\)
−0.129583 + 0.991569i \(0.541364\pi\)
\(68\) 3.56827 0.432716
\(69\) −3.63052 + 6.28825i −0.437063 + 0.757016i
\(70\) 0 0
\(71\) 3.90335 + 2.25360i 0.463242 + 0.267453i 0.713406 0.700751i \(-0.247151\pi\)
−0.250165 + 0.968203i \(0.580485\pi\)
\(72\) 9.65936 5.57684i 1.13837 0.657236i
\(73\) 7.19299 4.15288i 0.841876 0.486057i −0.0160254 0.999872i \(-0.505101\pi\)
0.857901 + 0.513814i \(0.171768\pi\)
\(74\) 5.35685 0.622721
\(75\) −13.2983 −1.53556
\(76\) −2.24018 + 1.29337i −0.256966 + 0.148360i
\(77\) 0 0
\(78\) 4.09418 6.75560i 0.463575 0.764921i
\(79\) 3.95705 6.85381i 0.445203 0.771114i −0.552864 0.833272i \(-0.686465\pi\)
0.998066 + 0.0621581i \(0.0197983\pi\)
\(80\) 1.06950 + 0.617476i 0.119574 + 0.0690359i
\(81\) 2.30414 3.99089i 0.256016 0.443432i
\(82\) −1.53747 2.66298i −0.169785 0.294077i
\(83\) 6.19795i 0.680313i 0.940369 + 0.340156i \(0.110480\pi\)
−0.940369 + 0.340156i \(0.889520\pi\)
\(84\) 0 0
\(85\) 7.39284 + 4.26826i 0.801866 + 0.462958i
\(86\) 4.98630 + 2.87884i 0.537687 + 0.310434i
\(87\) −15.9576 −1.71084
\(88\) 8.12857 14.0791i 0.866509 1.50084i
\(89\) 3.56136i 0.377504i 0.982025 + 0.188752i \(0.0604442\pi\)
−0.982025 + 0.188752i \(0.939556\pi\)
\(90\) 10.6176 1.11919
\(91\) 0 0
\(92\) 3.60762 0.376120
\(93\) 3.06345i 0.317665i
\(94\) 0.187800 0.325279i 0.0193701 0.0335500i
\(95\) −6.18837 −0.634913
\(96\) −13.3462 7.70546i −1.36215 0.786435i
\(97\) −2.96831 1.71375i −0.301386 0.174005i 0.341679 0.939817i \(-0.389004\pi\)
−0.643065 + 0.765811i \(0.722338\pi\)
\(98\) 0 0
\(99\) 24.2293i 2.43513i
\(100\) 3.30361 + 5.72203i 0.330361 + 0.572203i
\(101\) −6.66474 + 11.5437i −0.663167 + 1.14864i 0.316612 + 0.948555i \(0.397455\pi\)
−0.979779 + 0.200084i \(0.935879\pi\)
\(102\) −5.12223 2.95732i −0.507177 0.292819i
\(103\) 5.82248 10.0848i 0.573706 0.993688i −0.422475 0.906375i \(-0.638839\pi\)
0.996181 0.0873131i \(-0.0278281\pi\)
\(104\) −9.86130 0.209604i −0.966981 0.0205533i
\(105\) 0 0
\(106\) 0.284779 0.164417i 0.0276602 0.0159696i
\(107\) 3.92966 0.379894 0.189947 0.981794i \(-0.439168\pi\)
0.189947 + 0.981794i \(0.439168\pi\)
\(108\) 3.78755 0.364457
\(109\) 9.74566 5.62666i 0.933465 0.538936i 0.0455595 0.998962i \(-0.485493\pi\)
0.887906 + 0.460025i \(0.152160\pi\)
\(110\) 13.4024 7.73787i 1.27787 0.737777i
\(111\) 14.9857 + 8.65199i 1.42238 + 0.821210i
\(112\) 0 0
\(113\) 2.88709 5.00059i 0.271595 0.470416i −0.697676 0.716414i \(-0.745782\pi\)
0.969270 + 0.245998i \(0.0791157\pi\)
\(114\) 4.28770 0.401579
\(115\) 7.47437 + 4.31533i 0.696989 + 0.402407i
\(116\) 3.96424 + 6.86627i 0.368071 + 0.637517i
\(117\) 12.8842 7.07800i 1.19115 0.654361i
\(118\) 3.95790 0.364354
\(119\) 0 0
\(120\) −11.5063 19.9294i −1.05037 1.81930i
\(121\) 12.1578 + 21.0580i 1.10526 + 1.91436i
\(122\) −0.825215 + 0.476438i −0.0747115 + 0.0431347i
\(123\) 9.93284i 0.895614i
\(124\) −1.31815 + 0.761033i −0.118373 + 0.0683428i
\(125\) 0.00370455i 0.000331345i
\(126\) 0 0
\(127\) 3.06558 + 5.30975i 0.272027 + 0.471164i 0.969381 0.245563i \(-0.0789728\pi\)
−0.697354 + 0.716727i \(0.745639\pi\)
\(128\) 8.30013i 0.733635i
\(129\) 9.29938 + 16.1070i 0.818765 + 1.41814i
\(130\) −8.02989 4.86645i −0.704268 0.426816i
\(131\) −5.11084 + 8.85224i −0.446537 + 0.773424i −0.998158 0.0606707i \(-0.980676\pi\)
0.551621 + 0.834095i \(0.314009\pi\)
\(132\) 18.0965 10.4480i 1.57510 0.909383i
\(133\) 0 0
\(134\) −2.58563 + 4.47844i −0.223364 + 0.386878i
\(135\) 7.84715 + 4.53056i 0.675375 + 0.389928i
\(136\) 7.38528i 0.633283i
\(137\) 19.9475i 1.70423i 0.523353 + 0.852116i \(0.324681\pi\)
−0.523353 + 0.852116i \(0.675319\pi\)
\(138\) −5.17872 2.98994i −0.440842 0.254520i
\(139\) 10.1637 17.6041i 0.862077 1.49316i −0.00784365 0.999969i \(-0.502497\pi\)
0.869921 0.493192i \(-0.164170\pi\)
\(140\) 0 0
\(141\) 1.05073 0.606641i 0.0884877 0.0510884i
\(142\) −1.85596 + 3.21462i −0.155749 + 0.269765i
\(143\) 11.1053 18.3242i 0.928668 1.53235i
\(144\) −0.796164 1.37900i −0.0663470 0.114916i
\(145\) 18.9677i 1.57518i
\(146\) 3.42013 + 5.92383i 0.283052 + 0.490260i
\(147\) 0 0
\(148\) 8.59741i 0.706703i
\(149\) 9.28046 5.35808i 0.760285 0.438951i −0.0691132 0.997609i \(-0.522017\pi\)
0.829398 + 0.558658i \(0.188684\pi\)
\(150\) 10.9519i 0.894221i
\(151\) −7.57267 + 4.37208i −0.616255 + 0.355795i −0.775409 0.631459i \(-0.782456\pi\)
0.159155 + 0.987254i \(0.449123\pi\)
\(152\) −2.67690 4.63653i −0.217125 0.376072i
\(153\) −5.50343 9.53222i −0.444926 0.770634i
\(154\) 0 0
\(155\) −3.64130 −0.292476
\(156\) −10.8423 6.57091i −0.868080 0.526094i
\(157\) −3.25367 5.63552i −0.259671 0.449763i 0.706483 0.707730i \(-0.250281\pi\)
−0.966154 + 0.257967i \(0.916947\pi\)
\(158\) 5.64449 + 3.25885i 0.449052 + 0.259260i
\(159\) 1.06222 0.0842393
\(160\) −9.15891 + 15.8637i −0.724075 + 1.25414i
\(161\) 0 0
\(162\) 3.28672 + 1.89759i 0.258229 + 0.149089i
\(163\) −2.26264 + 1.30634i −0.177224 + 0.102320i −0.585988 0.810320i \(-0.699293\pi\)
0.408764 + 0.912640i \(0.365960\pi\)
\(164\) −4.27392 + 2.46755i −0.333737 + 0.192683i
\(165\) 49.9905 3.89175
\(166\) −5.10436 −0.396175
\(167\) −3.36558 + 1.94312i −0.260436 + 0.150363i −0.624534 0.780998i \(-0.714711\pi\)
0.364097 + 0.931361i \(0.381378\pi\)
\(168\) 0 0
\(169\) −12.9883 0.552385i −0.999097 0.0424911i
\(170\) −3.51515 + 6.08842i −0.269600 + 0.466961i
\(171\) 6.91018 + 3.98959i 0.528434 + 0.305092i
\(172\) 4.62036 8.00270i 0.352299 0.610200i
\(173\) 6.98838 + 12.1042i 0.531317 + 0.920267i 0.999332 + 0.0365470i \(0.0116358\pi\)
−0.468015 + 0.883720i \(0.655031\pi\)
\(174\) 13.1420i 0.996293i
\(175\) 0 0
\(176\) −2.00997 1.16046i −0.151507 0.0874727i
\(177\) 11.0721 + 6.39250i 0.832232 + 0.480490i
\(178\) −2.93298 −0.219836
\(179\) −12.6422 + 21.8968i −0.944919 + 1.63665i −0.189005 + 0.981976i \(0.560526\pi\)
−0.755914 + 0.654671i \(0.772807\pi\)
\(180\) 17.0405i 1.27013i
\(181\) −0.864474 −0.0642559 −0.0321279 0.999484i \(-0.510228\pi\)
−0.0321279 + 0.999484i \(0.510228\pi\)
\(182\) 0 0
\(183\) −3.07803 −0.227535
\(184\) 7.46673i 0.550454i
\(185\) 10.2840 17.8124i 0.756093 1.30959i
\(186\) 2.52293 0.184990
\(187\) −13.8938 8.02158i −1.01601 0.586596i
\(188\) −0.522052 0.301407i −0.0380746 0.0219824i
\(189\) 0 0
\(190\) 5.09647i 0.369737i
\(191\) −7.33382 12.7026i −0.530657 0.919125i −0.999360 0.0357690i \(-0.988612\pi\)
0.468703 0.883356i \(-0.344721\pi\)
\(192\) 5.30690 9.19182i 0.382993 0.663363i
\(193\) −14.2859 8.24794i −1.02832 0.593700i −0.111816 0.993729i \(-0.535667\pi\)
−0.916503 + 0.400029i \(0.869000\pi\)
\(194\) 1.41137 2.44457i 0.101331 0.175510i
\(195\) −14.6035 26.5831i −1.04578 1.90365i
\(196\) 0 0
\(197\) 9.53510 5.50509i 0.679348 0.392222i −0.120262 0.992742i \(-0.538373\pi\)
0.799609 + 0.600521i \(0.205040\pi\)
\(198\) −19.9542 −1.41808
\(199\) 21.2117 1.50366 0.751829 0.659358i \(-0.229172\pi\)
0.751829 + 0.659358i \(0.229172\pi\)
\(200\) −11.8429 + 6.83753i −0.837423 + 0.483486i
\(201\) −14.4665 + 8.35223i −1.02039 + 0.589121i
\(202\) −9.50686 5.48879i −0.668901 0.386190i
\(203\) 0 0
\(204\) −4.74632 + 8.22086i −0.332309 + 0.575576i
\(205\) −11.8064 −0.824597
\(206\) 8.30542 + 4.79514i 0.578666 + 0.334093i
\(207\) −5.56412 9.63734i −0.386733 0.669842i
\(208\) −0.0299236 + 1.40783i −0.00207483 + 0.0976152i
\(209\) 11.6301 0.804474
\(210\) 0 0
\(211\) 8.96788 + 15.5328i 0.617375 + 1.06932i 0.989963 + 0.141327i \(0.0451370\pi\)
−0.372588 + 0.927997i \(0.621530\pi\)
\(212\) −0.263879 0.457052i −0.0181233 0.0313905i
\(213\) −10.3840 + 5.99523i −0.711503 + 0.410786i
\(214\) 3.23629i 0.221228i
\(215\) 19.1452 11.0535i 1.30569 0.753842i
\(216\) 7.83913i 0.533385i
\(217\) 0 0
\(218\) 4.63387 + 8.02610i 0.313845 + 0.543596i
\(219\) 22.0957i 1.49309i
\(220\) −12.4188 21.5100i −0.837275 1.45020i
\(221\) −0.206845 + 9.73150i −0.0139139 + 0.654612i
\(222\) −7.12540 + 12.3415i −0.478225 + 0.828311i
\(223\) −13.8834 + 8.01558i −0.929700 + 0.536763i −0.886717 0.462313i \(-0.847020\pi\)
−0.0429835 + 0.999076i \(0.513686\pi\)
\(224\) 0 0
\(225\) 10.1905 17.6505i 0.679366 1.17670i
\(226\) 4.11826 + 2.37768i 0.273943 + 0.158161i
\(227\) 16.3750i 1.08685i 0.839458 + 0.543424i \(0.182873\pi\)
−0.839458 + 0.543424i \(0.817127\pi\)
\(228\) 6.88148i 0.455737i
\(229\) −23.3917 13.5052i −1.54577 0.892449i −0.998458 0.0555193i \(-0.982319\pi\)
−0.547310 0.836930i \(-0.684348\pi\)
\(230\) −3.55392 + 6.15556i −0.234338 + 0.405886i
\(231\) 0 0
\(232\) −14.2112 + 8.20484i −0.933011 + 0.538674i
\(233\) 5.78406 10.0183i 0.378926 0.656320i −0.611980 0.790873i \(-0.709627\pi\)
0.990906 + 0.134554i \(0.0429601\pi\)
\(234\) 5.82913 + 10.6109i 0.381062 + 0.693655i
\(235\) −0.721069 1.24893i −0.0470374 0.0814711i
\(236\) 6.35217i 0.413491i
\(237\) 10.5269 + 18.2331i 0.683796 + 1.18437i
\(238\) 0 0
\(239\) 14.6731i 0.949122i −0.880223 0.474561i \(-0.842607\pi\)
0.880223 0.474561i \(-0.157393\pi\)
\(240\) −2.84518 + 1.64267i −0.183656 + 0.106034i
\(241\) 14.3467i 0.924151i −0.886841 0.462076i \(-0.847105\pi\)
0.886841 0.462076i \(-0.152895\pi\)
\(242\) −17.3424 + 10.0126i −1.11481 + 0.643637i
\(243\) 10.4280 + 18.0618i 0.668956 + 1.15867i
\(244\) 0.764654 + 1.32442i 0.0489519 + 0.0847872i
\(245\) 0 0
\(246\) 8.18025 0.521554
\(247\) −3.39746 6.18447i −0.216175 0.393509i
\(248\) −1.57512 2.72818i −0.100020 0.173240i
\(249\) −14.2793 8.24417i −0.904916 0.522453i
\(250\) 0.00305091 0.000192956
\(251\) 4.30726 7.46040i 0.271872 0.470896i −0.697469 0.716615i \(-0.745691\pi\)
0.969341 + 0.245719i \(0.0790239\pi\)
\(252\) 0 0
\(253\) −14.0470 8.11004i −0.883128 0.509874i
\(254\) −4.37287 + 2.52468i −0.274378 + 0.158412i
\(255\) −19.6671 + 11.3548i −1.23160 + 0.711066i
\(256\) −14.8151 −0.925941
\(257\) −10.3639 −0.646485 −0.323243 0.946316i \(-0.604773\pi\)
−0.323243 + 0.946316i \(0.604773\pi\)
\(258\) −13.2650 + 7.65856i −0.825844 + 0.476801i
\(259\) 0 0
\(260\) −7.81035 + 12.8875i −0.484377 + 0.799247i
\(261\) 12.2283 21.1800i 0.756913 1.31101i
\(262\) −7.29032 4.20907i −0.450397 0.260037i
\(263\) 11.0413 19.1241i 0.680835 1.17924i −0.293891 0.955839i \(-0.594950\pi\)
0.974726 0.223403i \(-0.0717165\pi\)
\(264\) 21.6244 + 37.4545i 1.33089 + 2.30517i
\(265\) 1.26258i 0.0775596i
\(266\) 0 0
\(267\) −8.20495 4.73713i −0.502135 0.289908i
\(268\) 7.18761 + 4.14977i 0.439053 + 0.253488i
\(269\) 12.9399 0.788960 0.394480 0.918905i \(-0.370925\pi\)
0.394480 + 0.918905i \(0.370925\pi\)
\(270\) −3.73117 + 6.46257i −0.227072 + 0.393299i
\(271\) 17.6749i 1.07367i −0.843686 0.536837i \(-0.819619\pi\)
0.843686 0.536837i \(-0.180381\pi\)
\(272\) 1.05434 0.0639289
\(273\) 0 0
\(274\) −16.4279 −0.992446
\(275\) 29.7065i 1.79137i
\(276\) −4.79866 + 8.31152i −0.288845 + 0.500295i
\(277\) 18.0150 1.08242 0.541209 0.840888i \(-0.317967\pi\)
0.541209 + 0.840888i \(0.317967\pi\)
\(278\) 14.4980 + 8.37041i 0.869530 + 0.502024i
\(279\) 4.06602 + 2.34752i 0.243426 + 0.140542i
\(280\) 0 0
\(281\) 2.44178i 0.145665i 0.997344 + 0.0728323i \(0.0232038\pi\)
−0.997344 + 0.0728323i \(0.976796\pi\)
\(282\) 0.499603 + 0.865337i 0.0297509 + 0.0515301i
\(283\) −14.3620 + 24.8757i −0.853732 + 1.47871i 0.0240853 + 0.999710i \(0.492333\pi\)
−0.877817 + 0.478996i \(0.841001\pi\)
\(284\) 5.15927 + 2.97871i 0.306146 + 0.176754i
\(285\) 8.23143 14.2573i 0.487588 0.844527i
\(286\) 15.0910 + 9.14580i 0.892350 + 0.540802i
\(287\) 0 0
\(288\) 20.4544 11.8094i 1.20529 0.695873i
\(289\) −9.71193 −0.571290
\(290\) −15.6209 −0.917292
\(291\) 7.89657 4.55909i 0.462905 0.267258i
\(292\) 9.50738 5.48909i 0.556377 0.321225i
\(293\) 25.4013 + 14.6654i 1.48396 + 0.856763i 0.999834 0.0182359i \(-0.00580499\pi\)
0.484124 + 0.874999i \(0.339138\pi\)
\(294\) 0 0
\(295\) 7.59829 13.1606i 0.442390 0.766241i
\(296\) 17.7942 1.03426
\(297\) −14.7476 8.51453i −0.855742 0.494063i
\(298\) 4.41267 + 7.64298i 0.255619 + 0.442746i
\(299\) −0.209126 + 9.83882i −0.0120941 + 0.568994i
\(300\) −17.5772 −1.01482
\(301\) 0 0
\(302\) −3.60065 6.23651i −0.207194 0.358871i
\(303\) −17.7302 30.7096i −1.01857 1.76422i
\(304\) −0.661923 + 0.382161i −0.0379639 + 0.0219185i
\(305\) 3.65863i 0.209492i
\(306\) 7.85032 4.53238i 0.448773 0.259099i
\(307\) 7.06910i 0.403455i −0.979442 0.201728i \(-0.935344\pi\)
0.979442 0.201728i \(-0.0646555\pi\)
\(308\) 0 0
\(309\) 15.4895 + 26.8286i 0.881166 + 1.52623i
\(310\) 2.99882i 0.170321i
\(311\) −11.1343 19.2852i −0.631368 1.09356i −0.987272 0.159039i \(-0.949160\pi\)
0.355904 0.934522i \(-0.384173\pi\)
\(312\) 13.5999 22.4405i 0.769941 1.27044i
\(313\) 14.0420 24.3214i 0.793700 1.37473i −0.129961 0.991519i \(-0.541485\pi\)
0.923661 0.383210i \(-0.125181\pi\)
\(314\) 4.64117 2.67958i 0.261916 0.151217i
\(315\) 0 0
\(316\) 5.23025 9.05906i 0.294225 0.509612i
\(317\) 16.9009 + 9.75774i 0.949249 + 0.548049i 0.892848 0.450359i \(-0.148704\pi\)
0.0564015 + 0.998408i \(0.482037\pi\)
\(318\) 0.874796i 0.0490561i
\(319\) 35.6470i 1.99585i
\(320\) −10.9256 6.30792i −0.610762 0.352624i
\(321\) −5.22702 + 9.05346i −0.291744 + 0.505315i
\(322\) 0 0
\(323\) −4.57550 + 2.64167i −0.254588 + 0.146986i
\(324\) 3.04551 5.27498i 0.169195 0.293054i
\(325\) −15.7968 + 8.67804i −0.876250 + 0.481371i
\(326\) −1.07584 1.86341i −0.0595853 0.103205i
\(327\) 29.9371i 1.65553i
\(328\) −5.10711 8.84577i −0.281993 0.488426i
\(329\) 0 0
\(330\) 41.1700i 2.26633i
\(331\) −13.5367 + 7.81539i −0.744042 + 0.429573i −0.823537 0.567263i \(-0.808002\pi\)
0.0794953 + 0.996835i \(0.474669\pi\)
\(332\) 8.19217i 0.449604i
\(333\) −22.9670 + 13.2600i −1.25858 + 0.726644i
\(334\) −1.60027 2.77174i −0.0875627 0.151663i
\(335\) 9.92767 + 17.1952i 0.542407 + 0.939476i
\(336\) 0 0
\(337\) 21.7501 1.18480 0.592401 0.805643i \(-0.298180\pi\)
0.592401 + 0.805643i \(0.298180\pi\)
\(338\) 0.454920 10.6966i 0.0247444 0.581816i
\(339\) 7.68050 + 13.3030i 0.417148 + 0.722521i
\(340\) 9.77153 + 5.64160i 0.529936 + 0.305959i
\(341\) 6.84330 0.370586
\(342\) −3.28565 + 5.69092i −0.177668 + 0.307730i
\(343\) 0 0
\(344\) 16.5633 + 9.56281i 0.893032 + 0.515592i
\(345\) −19.8840 + 11.4800i −1.07052 + 0.618065i
\(346\) −9.96851 + 5.75532i −0.535910 + 0.309408i
\(347\) −15.9590 −0.856726 −0.428363 0.903607i \(-0.640909\pi\)
−0.428363 + 0.903607i \(0.640909\pi\)
\(348\) −21.0921 −1.13065
\(349\) 5.90375 3.40853i 0.316021 0.182455i −0.333597 0.942716i \(-0.608262\pi\)
0.649617 + 0.760261i \(0.274929\pi\)
\(350\) 0 0
\(351\) −0.219556 + 10.3295i −0.0117190 + 0.551349i
\(352\) 17.2128 29.8135i 0.917448 1.58907i
\(353\) −12.1272 7.00163i −0.645465 0.372659i 0.141252 0.989974i \(-0.454887\pi\)
−0.786716 + 0.617314i \(0.788221\pi\)
\(354\) −5.26458 + 9.11852i −0.279809 + 0.484644i
\(355\) 7.12608 + 12.3427i 0.378213 + 0.655085i
\(356\) 4.70725i 0.249484i
\(357\) 0 0
\(358\) −18.0333 10.4115i −0.953088 0.550266i
\(359\) −4.68947 2.70747i −0.247501 0.142895i 0.371119 0.928586i \(-0.378974\pi\)
−0.618619 + 0.785691i \(0.712308\pi\)
\(360\) 35.2689 1.85884
\(361\) −7.58498 + 13.1376i −0.399210 + 0.691451i
\(362\) 0.711943i 0.0374189i
\(363\) −64.6867 −3.39517
\(364\) 0 0
\(365\) 26.2636 1.37470
\(366\) 2.53493i 0.132503i
\(367\) −15.0159 + 26.0083i −0.783822 + 1.35762i 0.145878 + 0.989303i \(0.453399\pi\)
−0.929700 + 0.368317i \(0.879934\pi\)
\(368\) 1.06597 0.0555675
\(369\) 13.1835 + 7.61152i 0.686307 + 0.396240i
\(370\) 14.6695 + 8.46943i 0.762630 + 0.440305i
\(371\) 0 0
\(372\) 4.04914i 0.209938i
\(373\) −10.7049 18.5414i −0.554278 0.960037i −0.997959 0.0638526i \(-0.979661\pi\)
0.443682 0.896184i \(-0.353672\pi\)
\(374\) 6.60622 11.4423i 0.341599 0.591668i
\(375\) 0.00853484 + 0.00492759i 0.000440737 + 0.000254460i
\(376\) 0.623826 1.08050i 0.0321713 0.0557224i
\(377\) −18.9557 + 10.4134i −0.976270 + 0.536317i
\(378\) 0 0
\(379\) −8.20693 + 4.73827i −0.421562 + 0.243389i −0.695745 0.718289i \(-0.744926\pi\)
0.274184 + 0.961677i \(0.411592\pi\)
\(380\) −8.17951 −0.419600
\(381\) −16.3107 −0.835622
\(382\) 10.4613 6.03982i 0.535245 0.309024i
\(383\) 4.70304 2.71530i 0.240314 0.138746i −0.375007 0.927022i \(-0.622360\pi\)
0.615321 + 0.788277i \(0.289026\pi\)
\(384\) −19.1225 11.0404i −0.975842 0.563402i
\(385\) 0 0
\(386\) 6.79264 11.7652i 0.345736 0.598833i
\(387\) −28.5044 −1.44896
\(388\) −3.92338 2.26516i −0.199179 0.114996i
\(389\) −5.32109 9.21640i −0.269790 0.467290i 0.699018 0.715105i \(-0.253621\pi\)
−0.968807 + 0.247815i \(0.920288\pi\)
\(390\) 21.8926 12.0268i 1.10858 0.609001i
\(391\) 7.36845 0.372638
\(392\) 0 0
\(393\) −13.5963 23.5495i −0.685845 1.18792i
\(394\) 4.53375 + 7.85269i 0.228407 + 0.395613i
\(395\) 21.6724 12.5126i 1.09046 0.629575i
\(396\) 32.0252i 1.60933i
\(397\) −32.2035 + 18.5927i −1.61625 + 0.933140i −0.628367 + 0.777917i \(0.716276\pi\)
−0.987879 + 0.155223i \(0.950390\pi\)
\(398\) 17.4690i 0.875644i
\(399\) 0 0
\(400\) 0.976143 + 1.69073i 0.0488072 + 0.0845365i
\(401\) 0.896610i 0.0447746i −0.999749 0.0223873i \(-0.992873\pi\)
0.999749 0.0223873i \(-0.00712669\pi\)
\(402\) −6.87853 11.9140i −0.343070 0.594214i
\(403\) −1.99910 3.63901i −0.0995825 0.181272i
\(404\) −8.80916 + 15.2579i −0.438272 + 0.759110i
\(405\) 12.6196 7.28590i 0.627071 0.362039i
\(406\) 0 0
\(407\) −19.3273 + 33.4758i −0.958016 + 1.65933i
\(408\) −17.0148 9.82350i −0.842359 0.486336i
\(409\) 24.5773i 1.21527i −0.794217 0.607635i \(-0.792119\pi\)
0.794217 0.607635i \(-0.207881\pi\)
\(410\) 9.72326i 0.480198i
\(411\) −45.9567 26.5331i −2.26688 1.30878i
\(412\) 7.69589 13.3297i 0.379149 0.656706i
\(413\) 0 0
\(414\) 7.93689 4.58237i 0.390077 0.225211i
\(415\) −9.79924 + 16.9728i −0.481026 + 0.833161i
\(416\) −20.8820 0.443851i −1.02383 0.0217616i
\(417\) 27.0385 + 46.8321i 1.32408 + 2.29338i
\(418\) 9.57807i 0.468479i
\(419\) 3.82279 + 6.62126i 0.186755 + 0.323470i 0.944167 0.329468i \(-0.106869\pi\)
−0.757411 + 0.652938i \(0.773536\pi\)
\(420\) 0 0
\(421\) 25.0780i 1.22223i 0.791544 + 0.611113i \(0.209278\pi\)
−0.791544 + 0.611113i \(0.790722\pi\)
\(422\) −12.7922 + 7.38555i −0.622712 + 0.359523i
\(423\) 1.85947i 0.0904106i
\(424\) 0.945966 0.546154i 0.0459402 0.0265236i
\(425\) 6.74753 + 11.6871i 0.327303 + 0.566906i
\(426\) −4.93741 8.55184i −0.239218 0.414338i
\(427\) 0 0
\(428\) 5.19405 0.251064
\(429\) 27.4452 + 49.9591i 1.32507 + 2.41205i
\(430\) 9.10317 + 15.7671i 0.438994 + 0.760359i
\(431\) −6.71520 3.87702i −0.323460 0.186750i 0.329474 0.944165i \(-0.393129\pi\)
−0.652934 + 0.757415i \(0.726462\pi\)
\(432\) 1.11913 0.0538444
\(433\) 17.9880 31.1561i 0.864448 1.49727i −0.00314644 0.999995i \(-0.501002\pi\)
0.867594 0.497273i \(-0.165665\pi\)
\(434\) 0 0
\(435\) −43.6992 25.2298i −2.09522 1.20967i
\(436\) 12.8814 7.43707i 0.616907 0.356171i
\(437\) −4.62596 + 2.67080i −0.221290 + 0.127762i
\(438\) −18.1971 −0.869489
\(439\) 28.2350 1.34758 0.673792 0.738921i \(-0.264664\pi\)
0.673792 + 0.738921i \(0.264664\pi\)
\(440\) 44.5194 25.7033i 2.12238 1.22536i
\(441\) 0 0
\(442\) −8.01444 0.170348i −0.381208 0.00810264i
\(443\) −14.3959 + 24.9344i −0.683970 + 1.18467i 0.289790 + 0.957090i \(0.406415\pi\)
−0.973759 + 0.227580i \(0.926919\pi\)
\(444\) 19.8074 + 11.4358i 0.940018 + 0.542720i
\(445\) −5.63068 + 9.75262i −0.266920 + 0.462319i
\(446\) −6.60128 11.4337i −0.312579 0.541404i
\(447\) 28.5081i 1.34839i
\(448\) 0 0
\(449\) −25.2795 14.5951i −1.19301 0.688785i −0.234023 0.972231i \(-0.575189\pi\)
−0.958988 + 0.283446i \(0.908522\pi\)
\(450\) 14.5361 + 8.39244i 0.685240 + 0.395624i
\(451\) 22.1885 1.04482
\(452\) 3.81603 6.60955i 0.179491 0.310887i
\(453\) 23.2620i 1.09295i
\(454\) −13.4858 −0.632918
\(455\) 0 0
\(456\) 14.2427 0.666974
\(457\) 31.6848i 1.48215i −0.671420 0.741077i \(-0.734316\pi\)
0.671420 0.741077i \(-0.265684\pi\)
\(458\) 11.1223 19.2644i 0.519711 0.900165i
\(459\) 7.73594 0.361083
\(460\) 9.87929 + 5.70381i 0.460624 + 0.265942i
\(461\) −19.1407 11.0509i −0.891471 0.514691i −0.0170480 0.999855i \(-0.505427\pi\)
−0.874424 + 0.485163i \(0.838760\pi\)
\(462\) 0 0
\(463\) 38.8811i 1.80696i −0.428632 0.903479i \(-0.641004\pi\)
0.428632 0.903479i \(-0.358996\pi\)
\(464\) 1.17134 + 2.02883i 0.0543783 + 0.0941860i
\(465\) 4.84346 8.38913i 0.224610 0.389036i
\(466\) 8.25062 + 4.76350i 0.382202 + 0.220665i
\(467\) 6.64116 11.5028i 0.307316 0.532287i −0.670458 0.741947i \(-0.733902\pi\)
0.977774 + 0.209660i \(0.0672358\pi\)
\(468\) 17.0298 9.35538i 0.787203 0.432453i
\(469\) 0 0
\(470\) 1.02856 0.593841i 0.0474440 0.0273918i
\(471\) 17.3114 0.797668
\(472\) 13.1472 0.605147
\(473\) −35.9807 + 20.7734i −1.65439 + 0.955164i
\(474\) −15.0160 + 8.66949i −0.689708 + 0.398203i
\(475\) −8.47228 4.89147i −0.388735 0.224436i
\(476\) 0 0
\(477\) −0.813975 + 1.40985i −0.0372694 + 0.0645524i
\(478\) 12.0841 0.552714
\(479\) −5.74618 3.31756i −0.262550 0.151583i 0.362947 0.931810i \(-0.381770\pi\)
−0.625497 + 0.780226i \(0.715104\pi\)
\(480\) −24.3654 42.2021i −1.11212 1.92625i
\(481\) 23.4472 + 0.498373i 1.06910 + 0.0227239i
\(482\) 11.8153 0.538172
\(483\) 0 0
\(484\) 16.0697 + 27.8335i 0.730439 + 1.26516i
\(485\) −5.41905 9.38607i −0.246066 0.426200i
\(486\) −14.8749 + 8.58804i −0.674740 + 0.389561i
\(487\) 33.4701i 1.51668i −0.651861 0.758338i \(-0.726012\pi\)
0.651861 0.758338i \(-0.273988\pi\)
\(488\) −2.74116 + 1.58261i −0.124087 + 0.0716415i
\(489\) 6.95047i 0.314311i
\(490\) 0 0
\(491\) −18.6643 32.3276i −0.842310 1.45892i −0.887937 0.459966i \(-0.847862\pi\)
0.0456264 0.998959i \(-0.485472\pi\)
\(492\) 13.1288i 0.591891i
\(493\) 8.09684 + 14.0241i 0.364663 + 0.631615i
\(494\) 5.09326 2.79800i 0.229157 0.125888i
\(495\) −38.3076 + 66.3507i −1.72180 + 2.98224i
\(496\) −0.389483 + 0.224868i −0.0174883 + 0.0100969i
\(497\) 0 0
\(498\) 6.78954 11.7598i 0.304246 0.526970i
\(499\) 29.5598 + 17.0663i 1.32328 + 0.763994i 0.984250 0.176783i \(-0.0565690\pi\)
0.339027 + 0.940777i \(0.389902\pi\)
\(500\) 0.00489651i 0.000218979i
\(501\) 10.3385i 0.461891i
\(502\) 6.14405 + 3.54727i 0.274223 + 0.158322i
\(503\) −7.65447 + 13.2579i −0.341296 + 0.591142i −0.984674 0.174407i \(-0.944199\pi\)
0.643378 + 0.765549i \(0.277533\pi\)
\(504\) 0 0
\(505\) −36.5022 + 21.0745i −1.62433 + 0.937805i
\(506\) 6.67907 11.5685i 0.296921 0.514282i
\(507\) 18.5489 29.1886i 0.823786 1.29631i
\(508\) 4.05195 + 7.01819i 0.179776 + 0.311382i
\(509\) 18.4970i 0.819866i −0.912116 0.409933i \(-0.865552\pi\)
0.912116 0.409933i \(-0.134448\pi\)
\(510\) −9.35133 16.1970i −0.414084 0.717214i
\(511\) 0 0
\(512\) 4.39924i 0.194421i
\(513\) −4.85668 + 2.80400i −0.214427 + 0.123800i
\(514\) 8.53529i 0.376476i
\(515\) 31.8892 18.4112i 1.40520 0.811295i
\(516\) 12.2915 + 21.2895i 0.541104 + 0.937219i
\(517\) 1.35515 + 2.34718i 0.0595992 + 0.103229i
\(518\) 0 0
\(519\) −37.1823 −1.63212
\(520\) −26.6733 16.1652i −1.16970 0.708890i
\(521\) −11.7932 20.4265i −0.516671 0.894901i −0.999813 0.0193585i \(-0.993838\pi\)
0.483141 0.875542i \(-0.339496\pi\)
\(522\) 17.4430 + 10.0707i 0.763457 + 0.440782i
\(523\) 12.3059 0.538099 0.269049 0.963126i \(-0.413291\pi\)
0.269049 + 0.963126i \(0.413291\pi\)
\(524\) −6.75529 + 11.7005i −0.295106 + 0.511139i
\(525\) 0 0
\(526\) 15.7498 + 9.09312i 0.686722 + 0.396479i
\(527\) −2.69227 + 1.55438i −0.117277 + 0.0677101i
\(528\) 5.34711 3.08715i 0.232703 0.134351i
\(529\) −15.5503 −0.676100
\(530\) 1.03980 0.0451662
\(531\) −16.9691 + 9.79712i −0.736397 + 0.425159i
\(532\) 0 0
\(533\) −6.48183 11.7990i −0.280759 0.511072i
\(534\) 3.90129 6.75724i 0.168825 0.292414i
\(535\) 10.7612 + 6.21297i 0.465246 + 0.268610i
\(536\) −8.58883 + 14.8763i −0.370981 + 0.642558i
\(537\) −33.6318 58.2520i −1.45132 2.51376i
\(538\) 10.6567i 0.459444i
\(539\) 0 0
\(540\) 10.3720 + 5.98829i 0.446341 + 0.257695i
\(541\) −16.8365 9.72054i −0.723857 0.417919i 0.0923139 0.995730i \(-0.470574\pi\)
−0.816170 + 0.577811i \(0.803907\pi\)
\(542\) 14.5563 0.625245
\(543\) 1.14988 1.99165i 0.0493460 0.0854697i
\(544\) 15.6389i 0.670511i
\(545\) 35.5841 1.52425
\(546\) 0 0
\(547\) 40.2163 1.71953 0.859763 0.510693i \(-0.170611\pi\)
0.859763 + 0.510693i \(0.170611\pi\)
\(548\) 26.3658i 1.12629i
\(549\) 2.35869 4.08537i 0.100666 0.174359i
\(550\) 24.4650 1.04319
\(551\) −10.1665 5.86963i −0.433107 0.250055i
\(552\) −17.2024 9.93184i −0.732185 0.422727i
\(553\) 0 0
\(554\) 14.8364i 0.630337i
\(555\) 27.3584 + 47.3861i 1.16130 + 2.01143i
\(556\) 13.4340 23.2683i 0.569727 0.986797i
\(557\) −6.89702 3.98199i −0.292236 0.168722i 0.346714 0.937971i \(-0.387297\pi\)
−0.638950 + 0.769248i \(0.720631\pi\)
\(558\) −1.93331 + 3.34860i −0.0818437 + 0.141757i
\(559\) 21.5574 + 13.0647i 0.911781 + 0.552578i
\(560\) 0 0
\(561\) 36.9615 21.3397i 1.56052 0.900965i
\(562\) −2.01095 −0.0848266
\(563\) 1.42396 0.0600128 0.0300064 0.999550i \(-0.490447\pi\)
0.0300064 + 0.999550i \(0.490447\pi\)
\(564\) 1.38881 0.801831i 0.0584795 0.0337632i
\(565\) 15.8123 9.12924i 0.665229 0.384070i
\(566\) −20.4865 11.8279i −0.861113 0.497164i
\(567\) 0 0
\(568\) −6.16506 + 10.6782i −0.258680 + 0.448047i
\(569\) 18.5189 0.776353 0.388177 0.921585i \(-0.373105\pi\)
0.388177 + 0.921585i \(0.373105\pi\)
\(570\) 11.7417 + 6.77904i 0.491804 + 0.283943i
\(571\) 2.17883 + 3.77384i 0.0911812 + 0.157930i 0.908008 0.418952i \(-0.137602\pi\)
−0.816827 + 0.576882i \(0.804269\pi\)
\(572\) 14.6784 24.2201i 0.613736 1.01269i
\(573\) 39.0202 1.63009
\(574\) 0 0
\(575\) 6.82194 + 11.8159i 0.284494 + 0.492759i
\(576\) 8.13334 + 14.0874i 0.338889 + 0.586973i
\(577\) 8.28280 4.78208i 0.344818 0.199081i −0.317583 0.948231i \(-0.602871\pi\)
0.662400 + 0.749150i \(0.269538\pi\)
\(578\) 7.99832i 0.332686i
\(579\) 38.0046 21.9419i 1.57942 0.911876i
\(580\) 25.0706i 1.04100i
\(581\) 0 0
\(582\) 3.75466 + 6.50327i 0.155636 + 0.269569i
\(583\) 2.37284i 0.0982728i
\(584\) 11.3608 + 19.6775i 0.470114 + 0.814262i
\(585\) 46.4735 + 0.987801i 1.92144 + 0.0408406i
\(586\) −12.0778 + 20.9194i −0.498929 + 0.864171i
\(587\) −2.04428 + 1.18027i −0.0843765 + 0.0487148i −0.541595 0.840640i \(-0.682179\pi\)
0.457218 + 0.889355i \(0.348846\pi\)
\(588\) 0 0
\(589\) 1.12682 1.95171i 0.0464297 0.0804186i
\(590\) 10.8385 + 6.25762i 0.446214 + 0.257622i
\(591\) 29.2903i 1.20484i
\(592\) 2.54034i 0.104407i
\(593\) −35.0127 20.2146i −1.43780 0.830114i −0.440103 0.897947i \(-0.645058\pi\)
−0.997697 + 0.0678337i \(0.978391\pi\)
\(594\) 7.01219 12.1455i 0.287714 0.498335i
\(595\) 0 0
\(596\) 12.2665 7.08207i 0.502455 0.290093i
\(597\) −28.2147 + 48.8693i −1.15475 + 2.00009i
\(598\) −8.10282 0.172227i −0.331349 0.00704288i
\(599\) 19.2936 + 33.4176i 0.788316 + 1.36540i 0.926998 + 0.375067i \(0.122380\pi\)
−0.138681 + 0.990337i \(0.544286\pi\)
\(600\) 36.3796i 1.48519i
\(601\) −4.08115 7.06877i −0.166474 0.288341i 0.770704 0.637193i \(-0.219905\pi\)
−0.937178 + 0.348852i \(0.886571\pi\)
\(602\) 0 0
\(603\) 25.6012i 1.04256i
\(604\) −10.0092 + 5.77882i −0.407269 + 0.235137i
\(605\) 76.8883i 3.12595i
\(606\) 25.2910 14.6018i 1.02738 0.593157i
\(607\) −3.79263 6.56902i −0.153938 0.266628i 0.778734 0.627354i \(-0.215862\pi\)
−0.932672 + 0.360726i \(0.882529\pi\)
\(608\) −5.66853 9.81819i −0.229889 0.398180i
\(609\) 0 0
\(610\) −3.01308 −0.121996
\(611\) 0.852270 1.40629i 0.0344792 0.0568923i
\(612\) −7.27419 12.5993i −0.294042 0.509295i
\(613\) 13.4908 + 7.78892i 0.544889 + 0.314592i 0.747058 0.664759i \(-0.231466\pi\)
−0.202169 + 0.979351i \(0.564799\pi\)
\(614\) 5.82180 0.234949
\(615\) 15.7043 27.2006i 0.633258 1.09683i
\(616\) 0 0
\(617\) 20.6709 + 11.9343i 0.832177 + 0.480458i 0.854598 0.519291i \(-0.173804\pi\)
−0.0224202 + 0.999749i \(0.507137\pi\)
\(618\) −22.0948 + 12.7565i −0.888785 + 0.513140i
\(619\) −16.8843 + 9.74814i −0.678636 + 0.391811i −0.799341 0.600878i \(-0.794818\pi\)
0.120705 + 0.992688i \(0.461485\pi\)
\(620\) −4.81291 −0.193291
\(621\) 7.82126 0.313856
\(622\) 15.8824 9.16972i 0.636827 0.367672i
\(623\) 0 0
\(624\) −3.20366 1.94155i −0.128249 0.0777244i
\(625\) 12.5029 21.6557i 0.500117 0.866228i
\(626\) 20.0301 + 11.5644i 0.800562 + 0.462205i
\(627\) −15.4698 + 26.7945i −0.617804 + 1.07007i
\(628\) −4.30055 7.44878i −0.171611 0.297239i
\(629\) 17.5599i 0.700161i
\(630\) 0 0
\(631\) −22.2239 12.8309i −0.884718 0.510792i −0.0125066 0.999922i \(-0.503981\pi\)
−0.872211 + 0.489130i \(0.837314\pi\)
\(632\) 18.7496 + 10.8251i 0.745820 + 0.430600i
\(633\) −47.7144 −1.89648
\(634\) −8.03604 + 13.9188i −0.319152 + 0.552788i
\(635\) 19.3873i 0.769362i
\(636\) 1.40399 0.0556719
\(637\) 0 0
\(638\) 29.3573 1.16227
\(639\) 18.3765i 0.726964i
\(640\) −13.1229 + 22.7295i −0.518728 + 0.898463i
\(641\) 1.10604 0.0436860 0.0218430 0.999761i \(-0.493047\pi\)
0.0218430 + 0.999761i \(0.493047\pi\)
\(642\) −7.45603 4.30474i −0.294266 0.169895i
\(643\) 10.9437 + 6.31833i 0.431576 + 0.249171i 0.700018 0.714125i \(-0.253175\pi\)
−0.268442 + 0.963296i \(0.586509\pi\)
\(644\) 0 0
\(645\) 58.8110i 2.31568i
\(646\) −2.17556 3.76818i −0.0855962 0.148257i
\(647\) 12.8574 22.2697i 0.505477 0.875512i −0.494503 0.869176i \(-0.664650\pi\)
0.999980 0.00633579i \(-0.00201676\pi\)
\(648\) 10.9177 + 6.30332i 0.428887 + 0.247618i
\(649\) −14.2799 + 24.7335i −0.560535 + 0.970875i
\(650\) −7.14685 13.0096i −0.280323 0.510277i
\(651\) 0 0
\(652\) −2.99066 + 1.72666i −0.117123 + 0.0676211i
\(653\) 25.2607 0.988527 0.494263 0.869312i \(-0.335438\pi\)
0.494263 + 0.869312i \(0.335438\pi\)
\(654\) −24.6549 −0.964083
\(655\) −27.9916 + 16.1610i −1.09372 + 0.631461i
\(656\) −1.26285 + 0.729104i −0.0493058 + 0.0284667i
\(657\) −29.3269 16.9319i −1.14415 0.660577i
\(658\) 0 0
\(659\) −11.4882 + 19.8982i −0.447517 + 0.775123i −0.998224 0.0595764i \(-0.981025\pi\)
0.550707 + 0.834699i \(0.314358\pi\)
\(660\) 66.0752 2.57197
\(661\) −26.3554 15.2163i −1.02511 0.591845i −0.109528 0.993984i \(-0.534934\pi\)
−0.915579 + 0.402138i \(0.868267\pi\)
\(662\) −6.43641 11.1482i −0.250158 0.433287i
\(663\) −22.1451 13.4209i −0.860044 0.521223i
\(664\) −16.9554 −0.657998
\(665\) 0 0
\(666\) −10.9204 18.9146i −0.423155 0.732926i
\(667\) 8.18613 + 14.1788i 0.316968 + 0.549005i
\(668\) −4.44847 + 2.56833i −0.172117 + 0.0993715i
\(669\) 42.6475i 1.64885i
\(670\) −14.1612 + 8.17600i −0.547096 + 0.315866i
\(671\) 6.87586i 0.265440i
\(672\) 0 0
\(673\) 5.41933 + 9.38656i 0.208900 + 0.361825i 0.951368 0.308056i \(-0.0996784\pi\)
−0.742468 + 0.669881i \(0.766345\pi\)
\(674\) 17.9124i 0.689960i
\(675\) 7.16218 + 12.4053i 0.275672 + 0.477479i
\(676\) −17.1673 0.730117i −0.660281 0.0280814i
\(677\) 9.06044 15.6931i 0.348221 0.603137i −0.637712 0.770275i \(-0.720119\pi\)
0.985934 + 0.167138i \(0.0534525\pi\)
\(678\) −10.9558 + 6.32532i −0.420754 + 0.242923i
\(679\) 0 0
\(680\) −11.6765 + 20.2242i −0.447772 + 0.775564i
\(681\) −37.7261 21.7812i −1.44567 0.834656i
\(682\) 5.63584i 0.215808i
\(683\) 37.8352i 1.44772i −0.689946 0.723861i \(-0.742366\pi\)
0.689946 0.723861i \(-0.257634\pi\)
\(684\) 9.13357 + 5.27327i 0.349231 + 0.201628i
\(685\) −31.5380 + 54.6254i −1.20500 + 2.08713i
\(686\) 0 0
\(687\) 62.2288 35.9278i 2.37418 1.37073i
\(688\) 1.36521 2.36462i 0.0520482 0.0901502i
\(689\) 1.26179 0.693166i 0.0480702 0.0264075i
\(690\) −9.45446 16.3756i −0.359925 0.623408i
\(691\) 30.0261i 1.14225i 0.820864 + 0.571124i \(0.193492\pi\)
−0.820864 + 0.571124i \(0.806508\pi\)
\(692\) 9.23693 + 15.9988i 0.351135 + 0.608184i
\(693\) 0 0
\(694\) 13.1432i 0.498907i
\(695\) 55.6658 32.1387i 2.11152 1.21909i
\(696\) 43.6545i 1.65472i
\(697\) −8.72934 + 5.03988i −0.330647 + 0.190899i
\(698\) 2.80712 + 4.86207i 0.106251 + 0.184032i
\(699\) 15.3873 + 26.6516i 0.582001 + 1.00805i
\(700\) 0 0
\(701\) 0.116177 0.00438796 0.00219398 0.999998i \(-0.499302\pi\)
0.00219398 + 0.999998i \(0.499302\pi\)
\(702\) −8.50695 0.180816i −0.321074 0.00682448i
\(703\) 6.36485 + 11.0242i 0.240055 + 0.415787i
\(704\) 20.5332 + 11.8548i 0.773873 + 0.446796i
\(705\) 3.83651 0.144491
\(706\) 5.76624 9.98741i 0.217015 0.375881i
\(707\) 0 0
\(708\) 14.6347 + 8.44932i 0.550004 + 0.317545i
\(709\) −5.82829 + 3.36497i −0.218886 + 0.126374i −0.605434 0.795895i \(-0.707001\pi\)
0.386548 + 0.922269i \(0.373667\pi\)
\(710\) −10.1649 + 5.86873i −0.381483 + 0.220249i
\(711\) −32.2670 −1.21011
\(712\) −9.74265 −0.365121
\(713\) −2.72196 + 1.57153i −0.101938 + 0.0588541i
\(714\) 0 0
\(715\) 59.3826 32.6221i 2.22078 1.22000i
\(716\) −16.7098 + 28.9423i −0.624476 + 1.08162i
\(717\) 33.8050 + 19.5173i 1.26247 + 0.728888i
\(718\) 2.22975 3.86204i 0.0832136 0.144130i
\(719\) 23.4039 + 40.5367i 0.872818 + 1.51177i 0.859069 + 0.511860i \(0.171043\pi\)
0.0137492 + 0.999905i \(0.495623\pi\)
\(720\) 5.03509i 0.187647i
\(721\) 0 0
\(722\) −10.8195 6.24666i −0.402661 0.232476i
\(723\) 33.0530 + 19.0832i 1.22926 + 0.709711i
\(724\) −1.14262 −0.0424653
\(725\) −14.9926 + 25.9680i −0.556812 + 0.964426i
\(726\) 53.2731i 1.97715i
\(727\) 13.3362 0.494611 0.247305 0.968938i \(-0.420455\pi\)
0.247305 + 0.968938i \(0.420455\pi\)
\(728\) 0 0
\(729\) −41.6582 −1.54290
\(730\) 21.6295i 0.800544i
\(731\) 9.43694 16.3453i 0.349038 0.604551i
\(732\) −4.06840 −0.150373
\(733\) −25.5142 14.7306i −0.942387 0.544087i −0.0516792 0.998664i \(-0.516457\pi\)
−0.890708 + 0.454576i \(0.849791\pi\)
\(734\) −21.4193 12.3664i −0.790599 0.456453i
\(735\) 0 0
\(736\) 15.8113i 0.582814i
\(737\) −18.6576 32.3160i −0.687263 1.19037i
\(738\) −6.26851 + 10.8574i −0.230747 + 0.399666i
\(739\) 10.4184 + 6.01509i 0.383249 + 0.221269i 0.679231 0.733925i \(-0.262314\pi\)
−0.295982 + 0.955193i \(0.595647\pi\)
\(740\) 13.5929 23.5436i 0.499685 0.865480i
\(741\) 18.7674 + 0.398904i 0.689438 + 0.0146541i
\(742\) 0 0
\(743\) −18.9509 + 10.9413i −0.695242 + 0.401398i −0.805573 0.592497i \(-0.798142\pi\)
0.110331 + 0.993895i \(0.464809\pi\)
\(744\) 8.38055 0.307246
\(745\) 33.8855 1.24147
\(746\) 15.2699 8.81607i 0.559070 0.322779i
\(747\) 21.8844 12.6350i 0.800710 0.462290i
\(748\) −18.3642 10.6026i −0.671461 0.387668i
\(749\) 0 0
\(750\) −0.00405815 + 0.00702892i −0.000148183 + 0.000256660i
\(751\) −34.7492 −1.26802 −0.634008 0.773327i \(-0.718591\pi\)
−0.634008 + 0.773327i \(0.718591\pi\)
\(752\) −0.154255 0.0890590i −0.00562509 0.00324765i
\(753\) 11.4586 + 19.8468i 0.417574 + 0.723259i
\(754\) −8.57602 15.6111i −0.312320 0.568523i
\(755\) −27.6498 −1.00628
\(756\) 0 0
\(757\) −21.9632 38.0413i −0.798265 1.38264i −0.920745 0.390164i \(-0.872418\pi\)
0.122481 0.992471i \(-0.460915\pi\)
\(758\) −3.90223 6.75887i −0.141736 0.245493i
\(759\) 37.3691 21.5751i 1.35641 0.783126i
\(760\) 16.9292i 0.614087i
\(761\) −0.122449 + 0.0706957i −0.00443876 + 0.00256272i −0.502218 0.864741i \(-0.667482\pi\)
0.497779 + 0.867304i \(0.334149\pi\)
\(762\) 13.4328i 0.486618i
\(763\) 0 0
\(764\) −9.69352 16.7897i −0.350699 0.607429i
\(765\) 34.8047i 1.25837i
\(766\) 2.23620 + 3.87322i 0.0807973 + 0.139945i
\(767\) 17.3239 + 0.368222i 0.625529 + 0.0132957i
\(768\) 19.7062 34.1321i 0.711086 1.23164i
\(769\) 11.8200 6.82429i 0.426241 0.246090i −0.271503 0.962438i \(-0.587521\pi\)
0.697744 + 0.716347i \(0.254187\pi\)
\(770\) 0 0
\(771\) 13.7856 23.8773i 0.496475 0.859920i
\(772\) −18.8824 10.9018i −0.679593 0.392363i
\(773\) 17.5894i 0.632646i −0.948652 0.316323i \(-0.897552\pi\)
0.948652 0.316323i \(-0.102448\pi\)
\(774\) 23.4750i 0.843790i
\(775\) −4.98518 2.87820i −0.179073 0.103388i
\(776\) 4.68824 8.12026i 0.168298 0.291500i
\(777\) 0 0
\(778\) 7.59022 4.38221i 0.272123 0.157110i
\(779\) 3.65356 6.32814i 0.130902 0.226729i
\(780\) −19.3023 35.1363i −0.691132 1.25808i
\(781\) −13.3924 23.1964i −0.479219 0.830032i
\(782\) 6.06833i 0.217003i
\(783\) 8.59441 + 14.8860i 0.307139 + 0.531981i
\(784\) 0 0
\(785\) 20.5768i 0.734418i
\(786\) 19.3944 11.1973i 0.691774 0.399396i
\(787\) 2.96845i 0.105814i −0.998599 0.0529069i \(-0.983151\pi\)
0.998599 0.0529069i \(-0.0168487\pi\)
\(788\) 12.6031 7.27639i 0.448966 0.259210i
\(789\) 29.3731 + 50.8756i 1.04571 + 1.81122i
\(790\) 10.3048 + 17.8484i 0.366628 + 0.635018i
\(791\) 0 0
\(792\) −66.2829 −2.35526
\(793\) −3.65633 + 2.00862i −0.129840 + 0.0713280i
\(794\) −15.3121 26.5214i −0.543407 0.941208i
\(795\) 2.90883 + 1.67941i 0.103166 + 0.0595627i
\(796\) 28.0367 0.993735
\(797\) 4.72611 8.18586i 0.167407 0.289958i −0.770100 0.637923i \(-0.779794\pi\)
0.937508 + 0.347965i \(0.113127\pi\)
\(798\) 0 0
\(799\) −1.06628 0.615614i −0.0377221 0.0217789i
\(800\) −25.0783 + 14.4790i −0.886652 + 0.511909i
\(801\) 12.5749 7.26011i 0.444312 0.256523i
\(802\) 0.738409 0.0260741
\(803\) −49.3586 −1.74183
\(804\) −19.1212 + 11.0396i −0.674351 + 0.389337i
\(805\) 0 0
\(806\) 2.99693 1.64637i 0.105562 0.0579911i
\(807\) −17.2120 + 29.8120i −0.605890 + 1.04943i
\(808\) −31.5795 18.2324i −1.11096 0.641414i
\(809\) 0.581273 1.00679i 0.0204365 0.0353970i −0.855626 0.517594i \(-0.826828\pi\)
0.876063 + 0.482197i \(0.160161\pi\)
\(810\) 6.00035 + 10.3929i 0.210831 + 0.365170i
\(811\) 19.5561i 0.686706i 0.939206 + 0.343353i \(0.111563\pi\)
−0.939206 + 0.343353i \(0.888437\pi\)
\(812\) 0 0
\(813\) 40.7209 + 23.5102i 1.42814 + 0.824538i
\(814\) −27.5692 15.9171i −0.966299 0.557893i
\(815\) −8.26151 −0.289388
\(816\) −1.40243 + 2.42908i −0.0490949 + 0.0850348i
\(817\) 13.6822i 0.478680i
\(818\) 20.2408 0.707702
\(819\) 0 0
\(820\) −15.6052 −0.544958
\(821\) 12.6189i 0.440403i 0.975454 + 0.220201i \(0.0706714\pi\)
−0.975454 + 0.220201i \(0.929329\pi\)
\(822\) 21.8515 37.8479i 0.762159 1.32010i
\(823\) 6.56808 0.228949 0.114474 0.993426i \(-0.463482\pi\)
0.114474 + 0.993426i \(0.463482\pi\)
\(824\) 27.5886 + 15.9283i 0.961094 + 0.554888i
\(825\) 68.4403 + 39.5140i 2.38278 + 1.37570i
\(826\) 0 0
\(827\) 17.3050i 0.601754i −0.953663 0.300877i \(-0.902721\pi\)
0.953663 0.300877i \(-0.0972794\pi\)
\(828\) −7.35441 12.7382i −0.255583 0.442683i
\(829\) −1.87837 + 3.25343i −0.0652385 + 0.112996i −0.896800 0.442437i \(-0.854114\pi\)
0.831561 + 0.555433i \(0.187447\pi\)
\(830\) −13.9780 8.07022i −0.485185 0.280122i
\(831\) −23.9626 + 41.5044i −0.831253 + 1.43977i
\(832\) 0.305689 14.3819i 0.0105979 0.498602i
\(833\) 0 0
\(834\) −38.5688 + 22.2677i −1.33553 + 0.771068i
\(835\) −12.2886 −0.425266
\(836\) 15.3722 0.531659
\(837\) −2.85772 + 1.64991i −0.0987773 + 0.0570291i
\(838\) −5.45298 + 3.14828i −0.188370 + 0.108756i
\(839\) −40.1340 23.1714i −1.38558 0.799965i −0.392766 0.919638i \(-0.628482\pi\)
−0.992813 + 0.119674i \(0.961815\pi\)
\(840\) 0 0
\(841\) −3.49071 + 6.04609i −0.120369 + 0.208486i
\(842\) −20.6531 −0.711753
\(843\) −5.62558 3.24793i −0.193755 0.111865i
\(844\) 11.8534 + 20.5306i 0.408009 + 0.706693i
\(845\) −34.6944 22.0477i −1.19352 0.758465i
\(846\) −1.53138 −0.0526499
\(847\) 0 0
\(848\) −0.0779704 0.135049i −0.00267751 0.00463759i
\(849\) −38.2071 66.1766i −1.31126 2.27118i
\(850\) −9.62495 + 5.55697i −0.330133 + 0.190602i
\(851\) 17.7536i 0.608585i
\(852\) −13.7252 + 7.92423i −0.470216 + 0.271479i
\(853\) 15.3103i 0.524215i −0.965039 0.262107i \(-0.915583\pi\)
0.965039 0.262107i \(-0.0844174\pi\)
\(854\) 0 0
\(855\) 12.6155 + 21.8506i 0.431440 + 0.747275i
\(856\) 10.7502i 0.367433i
\(857\) 1.29624 + 2.24515i 0.0442787 + 0.0766929i 0.887315 0.461163i \(-0.152568\pi\)
−0.843037 + 0.537856i \(0.819234\pi\)
\(858\) −41.1441 + 22.6026i −1.40464 + 0.771642i
\(859\) 6.88689 11.9284i 0.234978 0.406993i −0.724289 0.689497i \(-0.757832\pi\)
0.959266 + 0.282504i \(0.0911650\pi\)
\(860\) 25.3053 14.6100i 0.862903 0.498197i
\(861\) 0 0
\(862\) 3.19294 5.53034i 0.108752 0.188364i
\(863\) −25.7723 14.8796i −0.877298 0.506508i −0.00753143 0.999972i \(-0.502397\pi\)
−0.869767 + 0.493463i \(0.835731\pi\)
\(864\) 16.5999i 0.564741i
\(865\) 44.1958i 1.50270i
\(866\) 25.6588 + 14.8141i 0.871922 + 0.503404i
\(867\) 12.9183 22.3751i 0.438728 0.759899i
\(868\) 0 0
\(869\) −40.7301 + 23.5155i −1.38167 + 0.797710i
\(870\) 20.7781 35.9888i 0.704444 1.22013i
\(871\) −11.7340 + 19.3618i −0.397593 + 0.656048i
\(872\) 15.3926 + 26.6607i 0.521259 + 0.902847i
\(873\) 13.9745i 0.472965i
\(874\) −2.19955 3.80974i −0.0744009 0.128866i
\(875\) 0 0
\(876\) 29.2051i 0.986750i
\(877\) 1.24995 0.721660i 0.0422079 0.0243687i −0.478748 0.877953i \(-0.658909\pi\)
0.520955 + 0.853584i \(0.325576\pi\)
\(878\) 23.2531i 0.784755i
\(879\) −67.5748 + 39.0143i −2.27924 + 1.31592i
\(880\) −3.66947 6.35571i −0.123698 0.214251i
\(881\) −17.9402 31.0733i −0.604420 1.04689i −0.992143 0.125110i \(-0.960072\pi\)
0.387723 0.921776i \(-0.373262\pi\)
\(882\) 0 0
\(883\) 10.5626 0.355458 0.177729 0.984079i \(-0.443125\pi\)
0.177729 + 0.984079i \(0.443125\pi\)
\(884\) −0.273398 + 12.8627i −0.00919537 + 0.432618i
\(885\) 20.2137 + 35.0111i 0.679475 + 1.17689i
\(886\) −20.5349 11.8558i −0.689883 0.398304i
\(887\) 12.2280 0.410577 0.205288 0.978702i \(-0.434187\pi\)
0.205288 + 0.978702i \(0.434187\pi\)
\(888\) −23.6688 + 40.9956i −0.794274 + 1.37572i
\(889\) 0 0
\(890\) −8.03183 4.63718i −0.269228 0.155439i
\(891\) −23.7166 + 13.6928i −0.794537 + 0.458726i
\(892\) −18.3504 + 10.5946i −0.614418 + 0.354735i
\(893\) 0.892553 0.0298681
\(894\) −23.4780 −0.785222
\(895\) −69.2399 + 39.9757i −2.31443 + 1.33624i
\(896\) 0 0
\(897\) −22.3893 13.5689i −0.747557 0.453051i
\(898\) 12.0199 20.8190i 0.401109 0.694741i
\(899\) −5.98208 3.45375i −0.199513 0.115189i
\(900\) 13.4693 23.3296i 0.448978 0.777653i
\(901\) −0.538965 0.933515i −0.0179555 0.0310999i
\(902\) 18.2735i 0.608440i
\(903\) 0 0
\(904\) 13.6799 + 7.89807i 0.454985 + 0.262686i
\(905\) −2.36732 1.36677i −0.0786924 0.0454331i
\(906\) 19.1576 0.636468
\(907\) 2.26278 3.91924i 0.0751343 0.130136i −0.826010 0.563655i \(-0.809395\pi\)
0.901145 + 0.433519i \(0.142728\pi\)
\(908\) 21.6438i 0.718274i
\(909\) 54.3464 1.80256
\(910\) 0 0
\(911\) −57.2723 −1.89751 −0.948757 0.316006i \(-0.897658\pi\)
−0.948757 + 0.316006i \(0.897658\pi\)
\(912\) 2.03332i 0.0673300i
\(913\) 18.4163 31.8979i 0.609489 1.05567i
\(914\) 26.0942 0.863120
\(915\) −8.42904 4.86651i −0.278655 0.160882i
\(916\) −30.9181 17.8506i −1.02156 0.589800i
\(917\) 0 0
\(918\) 6.37098i 0.210274i
\(919\) 20.3775 + 35.2949i 0.672193 + 1.16427i 0.977281 + 0.211948i \(0.0679809\pi\)
−0.305088 + 0.952324i \(0.598686\pi\)
\(920\) −11.8052 + 20.4473i −0.389207 + 0.674127i
\(921\) 16.2864 + 9.40294i 0.536654 + 0.309837i
\(922\) 9.10103 15.7634i 0.299726 0.519141i
\(923\) −8.42270 + 13.8979i −0.277236 + 0.457454i
\(924\) 0 0
\(925\) 28.1589 16.2575i 0.925858 0.534545i
\(926\) 32.0208 1.05227
\(927\) −47.4783 −1.55939
\(928\) −30.0932 + 17.3743i −0.987859 + 0.570341i
\(929\) −45.2751 + 26.1396i −1.48543 + 0.857611i −0.999862 0.0165897i \(-0.994719\pi\)
−0.485564 + 0.874201i \(0.661386\pi\)
\(930\) 6.90891 + 3.98886i 0.226552 + 0.130800i
\(931\) 0 0
\(932\) 7.64511 13.2417i 0.250424 0.433747i
\(933\) 59.2410 1.93946
\(934\) 9.47322 + 5.46937i 0.309973 + 0.178963i
\(935\) −25.3650 43.9334i −0.829523 1.43678i
\(936\) 19.3629 + 35.2468i 0.632897 + 1.15208i
\(937\) −6.38634 −0.208633 −0.104316 0.994544i \(-0.533265\pi\)
−0.104316 + 0.994544i \(0.533265\pi\)
\(938\) 0 0
\(939\) 37.3558 + 64.7021i 1.21906 + 2.11147i
\(940\) −0.953077 1.65078i −0.0310859 0.0538424i
\(941\) −21.9720 + 12.6855i −0.716266 + 0.413536i −0.813377 0.581737i \(-0.802373\pi\)
0.0971107 + 0.995274i \(0.469040\pi\)
\(942\) 14.2569i 0.464516i
\(943\) −8.82560 + 5.09546i −0.287401 + 0.165931i
\(944\) 1.87692i 0.0610887i
\(945\) 0 0
\(946\) −17.1081 29.6321i −0.556232 0.963422i
\(947\) 27.2061i 0.884080i 0.896995 + 0.442040i \(0.145745\pi\)
−0.896995 + 0.442040i \(0.854255\pi\)
\(948\) 13.9140 + 24.0997i 0.451905 + 0.782723i
\(949\) 14.4189 + 26.2470i 0.468057 + 0.852015i
\(950\) 4.02840 6.97740i 0.130699 0.226377i
\(951\) −44.9613 + 25.9584i −1.45797 + 0.841760i
\(952\) 0 0
\(953\) 13.2939 23.0258i 0.430633 0.745878i −0.566295 0.824203i \(-0.691624\pi\)
0.996928 + 0.0783248i \(0.0249571\pi\)
\(954\) −1.16109 0.670354i −0.0375916 0.0217035i
\(955\) 46.3805i 1.50084i
\(956\) 19.3942i 0.627254i
\(957\) 82.1264 + 47.4157i 2.65477 + 1.53273i
\(958\) 2.73220 4.73230i 0.0882732 0.152894i
\(959\) 0 0
\(960\) 29.0654 16.7809i 0.938082 0.541602i
\(961\) −14.8370 + 25.6984i −0.478612 + 0.828980i
\(962\) −0.410438 + 19.3100i −0.0132331 + 0.622581i
\(963\) −8.01091 13.8753i −0.258148 0.447125i
\(964\) 18.9628i 0.610751i
\(965\) −26.0808 45.1732i −0.839569 1.45418i
\(966\) 0 0
\(967\) 35.2467i 1.13346i 0.823904 + 0.566729i \(0.191791\pi\)
−0.823904 + 0.566729i \(0.808209\pi\)
\(968\) −57.6073 + 33.2596i −1.85157 + 1.06900i
\(969\) 14.0552i 0.451518i
\(970\) 7.72995 4.46289i 0.248194 0.143295i
\(971\) −18.4891 32.0241i −0.593344 1.02770i −0.993778 0.111377i \(-0.964474\pi\)
0.400434 0.916326i \(-0.368859\pi\)
\(972\) 13.7833 + 23.8733i 0.442098 + 0.765737i
\(973\) 0 0
\(974\) 27.5645 0.883224
\(975\) 1.01891 47.9370i 0.0326312 1.53521i
\(976\) 0.225938 + 0.391336i 0.00723209 + 0.0125264i
\(977\) 21.4363 + 12.3762i 0.685807 + 0.395951i 0.802039 0.597271i \(-0.203748\pi\)
−0.116232 + 0.993222i \(0.537082\pi\)
\(978\) 5.72410 0.183036
\(979\) 10.5820 18.3286i 0.338204 0.585786i
\(980\) 0 0
\(981\) −39.7346 22.9408i −1.26863 0.732442i
\(982\) 26.6236 15.3711i 0.849593 0.490513i
\(983\) 3.94679 2.27868i 0.125883 0.0726786i −0.435736 0.900074i \(-0.643512\pi\)
0.561619 + 0.827396i \(0.310179\pi\)
\(984\) 27.1728 0.866237
\(985\) 34.8152 1.10930
\(986\) −11.5497 + 6.66820i −0.367816 + 0.212359i
\(987\) 0 0
\(988\) −4.49062 8.17436i −0.142866 0.260061i
\(989\) 9.54101 16.5255i 0.303386 0.525481i
\(990\) −54.6436 31.5485i −1.73669 1.00268i
\(991\) 13.5982 23.5527i 0.431960 0.748176i −0.565082 0.825034i \(-0.691156\pi\)
0.997042 + 0.0768584i \(0.0244890\pi\)
\(992\) −3.33543 5.77713i −0.105900 0.183424i
\(993\) 41.5824i 1.31958i
\(994\) 0 0
\(995\) 58.0873 + 33.5367i 1.84149 + 1.06319i
\(996\) −18.8738 10.8968i −0.598039 0.345278i
\(997\) −30.2274 −0.957312 −0.478656 0.878002i \(-0.658876\pi\)
−0.478656 + 0.878002i \(0.658876\pi\)
\(998\) −14.0551 + 24.3441i −0.444906 + 0.770600i
\(999\) 18.6390i 0.589713i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.k.h.569.4 12
7.2 even 3 91.2.q.a.36.4 12
7.3 odd 6 637.2.u.i.361.3 12
7.4 even 3 637.2.u.h.361.3 12
7.5 odd 6 637.2.q.h.491.4 12
7.6 odd 2 637.2.k.g.569.4 12
13.4 even 6 637.2.u.h.30.3 12
21.2 odd 6 819.2.ct.a.127.3 12
28.23 odd 6 1456.2.cc.c.673.6 12
91.2 odd 12 1183.2.a.m.1.5 6
91.4 even 6 inner 637.2.k.h.459.3 12
91.16 even 3 1183.2.c.i.337.8 12
91.17 odd 6 637.2.k.g.459.3 12
91.23 even 6 1183.2.c.i.337.5 12
91.30 even 6 91.2.q.a.43.4 yes 12
91.37 odd 12 1183.2.a.p.1.2 6
91.54 even 12 8281.2.a.by.1.5 6
91.69 odd 6 637.2.u.i.30.3 12
91.82 odd 6 637.2.q.h.589.4 12
91.89 even 12 8281.2.a.ch.1.2 6
273.212 odd 6 819.2.ct.a.316.3 12
364.303 odd 6 1456.2.cc.c.225.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.q.a.36.4 12 7.2 even 3
91.2.q.a.43.4 yes 12 91.30 even 6
637.2.k.g.459.3 12 91.17 odd 6
637.2.k.g.569.4 12 7.6 odd 2
637.2.k.h.459.3 12 91.4 even 6 inner
637.2.k.h.569.4 12 1.1 even 1 trivial
637.2.q.h.491.4 12 7.5 odd 6
637.2.q.h.589.4 12 91.82 odd 6
637.2.u.h.30.3 12 13.4 even 6
637.2.u.h.361.3 12 7.4 even 3
637.2.u.i.30.3 12 91.69 odd 6
637.2.u.i.361.3 12 7.3 odd 6
819.2.ct.a.127.3 12 21.2 odd 6
819.2.ct.a.316.3 12 273.212 odd 6
1183.2.a.m.1.5 6 91.2 odd 12
1183.2.a.p.1.2 6 91.37 odd 12
1183.2.c.i.337.5 12 91.23 even 6
1183.2.c.i.337.8 12 91.16 even 3
1456.2.cc.c.225.6 12 364.303 odd 6
1456.2.cc.c.673.6 12 28.23 odd 6
8281.2.a.by.1.5 6 91.54 even 12
8281.2.a.ch.1.2 6 91.89 even 12