Properties

Label 637.2.k.f.459.1
Level $637$
Weight $2$
Character 637.459
Analytic conductor $5.086$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(459,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.459");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 459.1
Root \(-0.895644 - 1.09445i\) of defining polynomial
Character \(\chi\) \(=\) 637.459
Dual form 637.2.k.f.569.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.18890i q^{2} +(-0.895644 - 1.55130i) q^{3} -2.79129 q^{4} +(1.89564 - 1.09445i) q^{5} +(-3.39564 + 1.96048i) q^{6} +1.73205i q^{8} +(-0.104356 + 0.180750i) q^{9} +O(q^{10})\) \(q-2.18890i q^{2} +(-0.895644 - 1.55130i) q^{3} -2.79129 q^{4} +(1.89564 - 1.09445i) q^{5} +(-3.39564 + 1.96048i) q^{6} +1.73205i q^{8} +(-0.104356 + 0.180750i) q^{9} +(-2.39564 - 4.14938i) q^{10} +(1.10436 - 0.637600i) q^{11} +(2.50000 + 4.33013i) q^{12} +(-3.50000 + 0.866025i) q^{13} +(-3.39564 - 1.96048i) q^{15} -1.79129 q^{16} -3.00000 q^{17} +(0.395644 + 0.228425i) q^{18} +(-5.68693 - 3.28335i) q^{19} +(-5.29129 + 3.05493i) q^{20} +(-1.39564 - 2.41733i) q^{22} +7.58258 q^{23} +(2.68693 - 1.55130i) q^{24} +(-0.104356 + 0.180750i) q^{25} +(1.89564 + 7.66115i) q^{26} -5.00000 q^{27} +(1.10436 - 1.91280i) q^{29} +(-4.29129 + 7.43273i) q^{30} +(7.50000 + 4.33013i) q^{31} +7.38505i q^{32} +(-1.97822 - 1.14213i) q^{33} +6.56670i q^{34} +(0.291288 - 0.504525i) q^{36} -6.92820i q^{37} +(-7.18693 + 12.4481i) q^{38} +(4.47822 + 4.65390i) q^{39} +(1.89564 + 3.28335i) q^{40} +(-2.20871 - 1.27520i) q^{41} +(2.18693 + 3.78788i) q^{43} +(-3.08258 + 1.77973i) q^{44} +0.456850i q^{45} -16.5975i q^{46} +(3.70871 - 2.14123i) q^{47} +(1.60436 + 2.77883i) q^{48} +(0.395644 + 0.228425i) q^{50} +(2.68693 + 4.65390i) q^{51} +(9.76951 - 2.41733i) q^{52} +(6.08258 - 10.5353i) q^{53} +10.9445i q^{54} +(1.39564 - 2.41733i) q^{55} +11.7629i q^{57} +(-4.18693 - 2.41733i) q^{58} +8.85095i q^{59} +(9.47822 + 5.47225i) q^{60} +(6.37386 - 11.0399i) q^{61} +(9.47822 - 16.4168i) q^{62} +12.5826 q^{64} +(-5.68693 + 5.47225i) q^{65} +(-2.50000 + 4.33013i) q^{66} +(-9.87386 + 5.70068i) q^{67} +8.37386 q^{68} +(-6.79129 - 11.7629i) q^{69} +(-0.791288 + 0.456850i) q^{71} +(-0.313068 - 0.180750i) q^{72} +(-3.00000 - 1.73205i) q^{73} -15.1652 q^{74} +0.373864 q^{75} +(15.8739 + 9.16478i) q^{76} +(10.1869 - 9.80238i) q^{78} +(3.00000 + 5.19615i) q^{79} +(-3.39564 + 1.96048i) q^{80} +(4.79129 + 8.29875i) q^{81} +(-2.79129 + 4.83465i) q^{82} -3.55945i q^{83} +(-5.68693 + 3.28335i) q^{85} +(8.29129 - 4.78698i) q^{86} -3.95644 q^{87} +(1.10436 + 1.91280i) q^{88} -2.91190i q^{89} +1.00000 q^{90} -21.1652 q^{92} -15.5130i q^{93} +(-4.68693 - 8.11800i) q^{94} -14.3739 q^{95} +(11.4564 - 6.61438i) q^{96} +(13.1869 - 7.61348i) q^{97} +0.266150i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} - 2 q^{4} + 3 q^{5} - 9 q^{6} - 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{3} - 2 q^{4} + 3 q^{5} - 9 q^{6} - 5 q^{9} - 5 q^{10} + 9 q^{11} + 10 q^{12} - 14 q^{13} - 9 q^{15} + 2 q^{16} - 12 q^{17} - 3 q^{18} - 9 q^{19} - 12 q^{20} - q^{22} + 12 q^{23} - 3 q^{24} - 5 q^{25} + 3 q^{26} - 20 q^{27} + 9 q^{29} - 8 q^{30} + 30 q^{31} + 15 q^{33} - 8 q^{36} - 15 q^{38} - 5 q^{39} + 3 q^{40} - 18 q^{41} - 5 q^{43} + 6 q^{44} + 24 q^{47} + 11 q^{48} - 3 q^{50} - 3 q^{51} + 7 q^{52} + 6 q^{53} + q^{55} - 3 q^{58} + 15 q^{60} - 2 q^{61} + 15 q^{62} + 32 q^{64} - 9 q^{65} - 10 q^{66} - 12 q^{67} + 6 q^{68} - 18 q^{69} + 6 q^{71} - 15 q^{72} - 12 q^{73} - 24 q^{74} - 26 q^{75} + 36 q^{76} + 27 q^{78} + 12 q^{79} - 9 q^{80} + 10 q^{81} - 2 q^{82} - 9 q^{85} + 24 q^{86} + 30 q^{87} + 9 q^{88} + 4 q^{90} - 48 q^{92} - 5 q^{94} - 30 q^{95} + 39 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.18890i 1.54779i −0.633316 0.773893i \(-0.718307\pi\)
0.633316 0.773893i \(-0.281693\pi\)
\(3\) −0.895644 1.55130i −0.517100 0.895644i −0.999803 0.0198595i \(-0.993678\pi\)
0.482703 0.875784i \(-0.339655\pi\)
\(4\) −2.79129 −1.39564
\(5\) 1.89564 1.09445i 0.847758 0.489453i −0.0121359 0.999926i \(-0.503863\pi\)
0.859894 + 0.510473i \(0.170530\pi\)
\(6\) −3.39564 + 1.96048i −1.38627 + 0.800361i
\(7\) 0 0
\(8\) 1.73205i 0.612372i
\(9\) −0.104356 + 0.180750i −0.0347854 + 0.0602500i
\(10\) −2.39564 4.14938i −0.757569 1.31215i
\(11\) 1.10436 0.637600i 0.332976 0.192244i −0.324186 0.945993i \(-0.605090\pi\)
0.657162 + 0.753750i \(0.271757\pi\)
\(12\) 2.50000 + 4.33013i 0.721688 + 1.25000i
\(13\) −3.50000 + 0.866025i −0.970725 + 0.240192i
\(14\) 0 0
\(15\) −3.39564 1.96048i −0.876751 0.506193i
\(16\) −1.79129 −0.447822
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0.395644 + 0.228425i 0.0932542 + 0.0538403i
\(19\) −5.68693 3.28335i −1.30467 0.753253i −0.323470 0.946238i \(-0.604850\pi\)
−0.981202 + 0.192986i \(0.938183\pi\)
\(20\) −5.29129 + 3.05493i −1.18317 + 0.683102i
\(21\) 0 0
\(22\) −1.39564 2.41733i −0.297552 0.515376i
\(23\) 7.58258 1.58108 0.790538 0.612413i \(-0.209801\pi\)
0.790538 + 0.612413i \(0.209801\pi\)
\(24\) 2.68693 1.55130i 0.548468 0.316658i
\(25\) −0.104356 + 0.180750i −0.0208712 + 0.0361500i
\(26\) 1.89564 + 7.66115i 0.371766 + 1.50248i
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 1.10436 1.91280i 0.205074 0.355198i −0.745082 0.666972i \(-0.767590\pi\)
0.950156 + 0.311774i \(0.100923\pi\)
\(30\) −4.29129 + 7.43273i −0.783478 + 1.35702i
\(31\) 7.50000 + 4.33013i 1.34704 + 0.777714i 0.987829 0.155543i \(-0.0497126\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 7.38505i 1.30551i
\(33\) −1.97822 1.14213i −0.344364 0.198819i
\(34\) 6.56670i 1.12618i
\(35\) 0 0
\(36\) 0.291288 0.504525i 0.0485480 0.0840876i
\(37\) 6.92820i 1.13899i −0.821995 0.569495i \(-0.807139\pi\)
0.821995 0.569495i \(-0.192861\pi\)
\(38\) −7.18693 + 12.4481i −1.16587 + 2.01935i
\(39\) 4.47822 + 4.65390i 0.717089 + 0.745221i
\(40\) 1.89564 + 3.28335i 0.299728 + 0.519143i
\(41\) −2.20871 1.27520i −0.344943 0.199153i 0.317513 0.948254i \(-0.397152\pi\)
−0.662456 + 0.749101i \(0.730486\pi\)
\(42\) 0 0
\(43\) 2.18693 + 3.78788i 0.333504 + 0.577646i 0.983196 0.182551i \(-0.0584356\pi\)
−0.649692 + 0.760197i \(0.725102\pi\)
\(44\) −3.08258 + 1.77973i −0.464716 + 0.268304i
\(45\) 0.456850i 0.0681032i
\(46\) 16.5975i 2.44717i
\(47\) 3.70871 2.14123i 0.540971 0.312330i −0.204501 0.978866i \(-0.565557\pi\)
0.745472 + 0.666536i \(0.232224\pi\)
\(48\) 1.60436 + 2.77883i 0.231569 + 0.401089i
\(49\) 0 0
\(50\) 0.395644 + 0.228425i 0.0559525 + 0.0323042i
\(51\) 2.68693 + 4.65390i 0.376246 + 0.651677i
\(52\) 9.76951 2.41733i 1.35479 0.335223i
\(53\) 6.08258 10.5353i 0.835506 1.44714i −0.0581117 0.998310i \(-0.518508\pi\)
0.893618 0.448829i \(-0.148159\pi\)
\(54\) 10.9445i 1.48936i
\(55\) 1.39564 2.41733i 0.188189 0.325952i
\(56\) 0 0
\(57\) 11.7629i 1.55803i
\(58\) −4.18693 2.41733i −0.549771 0.317410i
\(59\) 8.85095i 1.15230i 0.817345 + 0.576148i \(0.195445\pi\)
−0.817345 + 0.576148i \(0.804555\pi\)
\(60\) 9.47822 + 5.47225i 1.22363 + 0.706465i
\(61\) 6.37386 11.0399i 0.816090 1.41351i −0.0924533 0.995717i \(-0.529471\pi\)
0.908543 0.417792i \(-0.137196\pi\)
\(62\) 9.47822 16.4168i 1.20374 2.08493i
\(63\) 0 0
\(64\) 12.5826 1.57282
\(65\) −5.68693 + 5.47225i −0.705377 + 0.678749i
\(66\) −2.50000 + 4.33013i −0.307729 + 0.533002i
\(67\) −9.87386 + 5.70068i −1.20628 + 0.696449i −0.961946 0.273241i \(-0.911904\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 8.37386 1.01548
\(69\) −6.79129 11.7629i −0.817575 1.41608i
\(70\) 0 0
\(71\) −0.791288 + 0.456850i −0.0939086 + 0.0542181i −0.546219 0.837643i \(-0.683933\pi\)
0.452310 + 0.891861i \(0.350600\pi\)
\(72\) −0.313068 0.180750i −0.0368954 0.0213016i
\(73\) −3.00000 1.73205i −0.351123 0.202721i 0.314057 0.949404i \(-0.398312\pi\)
−0.665180 + 0.746683i \(0.731645\pi\)
\(74\) −15.1652 −1.76291
\(75\) 0.373864 0.0431700
\(76\) 15.8739 + 9.16478i 1.82086 + 1.05127i
\(77\) 0 0
\(78\) 10.1869 9.80238i 1.15344 1.10990i
\(79\) 3.00000 + 5.19615i 0.337526 + 0.584613i 0.983967 0.178352i \(-0.0570765\pi\)
−0.646440 + 0.762964i \(0.723743\pi\)
\(80\) −3.39564 + 1.96048i −0.379645 + 0.219188i
\(81\) 4.79129 + 8.29875i 0.532365 + 0.922084i
\(82\) −2.79129 + 4.83465i −0.308246 + 0.533898i
\(83\) 3.55945i 0.390701i −0.980734 0.195350i \(-0.937416\pi\)
0.980734 0.195350i \(-0.0625844\pi\)
\(84\) 0 0
\(85\) −5.68693 + 3.28335i −0.616834 + 0.356129i
\(86\) 8.29129 4.78698i 0.894073 0.516193i
\(87\) −3.95644 −0.424175
\(88\) 1.10436 + 1.91280i 0.117725 + 0.203905i
\(89\) 2.91190i 0.308661i −0.988019 0.154330i \(-0.950678\pi\)
0.988019 0.154330i \(-0.0493220\pi\)
\(90\) 1.00000 0.105409
\(91\) 0 0
\(92\) −21.1652 −2.20662
\(93\) 15.5130i 1.60862i
\(94\) −4.68693 8.11800i −0.483420 0.837308i
\(95\) −14.3739 −1.47473
\(96\) 11.4564 6.61438i 1.16927 0.675077i
\(97\) 13.1869 7.61348i 1.33893 0.773032i 0.352281 0.935894i \(-0.385406\pi\)
0.986649 + 0.162863i \(0.0520727\pi\)
\(98\) 0 0
\(99\) 0.266150i 0.0267491i
\(100\) 0.291288 0.504525i 0.0291288 0.0504525i
\(101\) 4.89564 + 8.47950i 0.487135 + 0.843742i 0.999891 0.0147923i \(-0.00470871\pi\)
−0.512756 + 0.858534i \(0.671375\pi\)
\(102\) 10.1869 5.88143i 1.00866 0.582348i
\(103\) −2.29129 3.96863i −0.225767 0.391040i 0.730782 0.682611i \(-0.239156\pi\)
−0.956549 + 0.291570i \(0.905822\pi\)
\(104\) −1.50000 6.06218i −0.147087 0.594445i
\(105\) 0 0
\(106\) −23.0608 13.3142i −2.23986 1.29319i
\(107\) −9.79129 −0.946560 −0.473280 0.880912i \(-0.656930\pi\)
−0.473280 + 0.880912i \(0.656930\pi\)
\(108\) 13.9564 1.34296
\(109\) −6.87386 3.96863i −0.658397 0.380126i 0.133269 0.991080i \(-0.457453\pi\)
−0.791666 + 0.610954i \(0.790786\pi\)
\(110\) −5.29129 3.05493i −0.504505 0.291276i
\(111\) −10.7477 + 6.20520i −1.02013 + 0.588972i
\(112\) 0 0
\(113\) −0.708712 1.22753i −0.0666700 0.115476i 0.830764 0.556625i \(-0.187904\pi\)
−0.897434 + 0.441150i \(0.854571\pi\)
\(114\) 25.7477 2.41150
\(115\) 14.3739 8.29875i 1.34037 0.773863i
\(116\) −3.08258 + 5.33918i −0.286210 + 0.495730i
\(117\) 0.208712 0.723000i 0.0192954 0.0668414i
\(118\) 19.3739 1.78351
\(119\) 0 0
\(120\) 3.39564 5.88143i 0.309978 0.536898i
\(121\) −4.68693 + 8.11800i −0.426085 + 0.738000i
\(122\) −24.1652 13.9518i −2.18781 1.26313i
\(123\) 4.56850i 0.411928i
\(124\) −20.9347 12.0866i −1.87999 1.08541i
\(125\) 11.4014i 1.01977i
\(126\) 0 0
\(127\) 7.97822 13.8187i 0.707953 1.22621i −0.257663 0.966235i \(-0.582952\pi\)
0.965615 0.259975i \(-0.0837143\pi\)
\(128\) 12.7719i 1.12889i
\(129\) 3.91742 6.78518i 0.344910 0.597402i
\(130\) 11.9782 + 12.4481i 1.05056 + 1.09177i
\(131\) −1.81307 3.14033i −0.158409 0.274372i 0.775886 0.630873i \(-0.217303\pi\)
−0.934295 + 0.356501i \(0.883970\pi\)
\(132\) 5.52178 + 3.18800i 0.480609 + 0.277480i
\(133\) 0 0
\(134\) 12.4782 + 21.6129i 1.07795 + 1.86707i
\(135\) −9.47822 + 5.47225i −0.815755 + 0.470977i
\(136\) 5.19615i 0.445566i
\(137\) 17.1497i 1.46520i −0.680660 0.732599i \(-0.738307\pi\)
0.680660 0.732599i \(-0.261693\pi\)
\(138\) −25.7477 + 14.8655i −2.19179 + 1.26543i
\(139\) −0.395644 0.685275i −0.0335581 0.0581243i 0.848759 0.528781i \(-0.177351\pi\)
−0.882317 + 0.470656i \(0.844017\pi\)
\(140\) 0 0
\(141\) −6.64337 3.83555i −0.559473 0.323012i
\(142\) 1.00000 + 1.73205i 0.0839181 + 0.145350i
\(143\) −3.31307 + 3.18800i −0.277053 + 0.266594i
\(144\) 0.186932 0.323775i 0.0155776 0.0269813i
\(145\) 4.83465i 0.401496i
\(146\) −3.79129 + 6.56670i −0.313769 + 0.543464i
\(147\) 0 0
\(148\) 19.3386i 1.58962i
\(149\) −1.89564 1.09445i −0.155297 0.0896609i 0.420338 0.907368i \(-0.361912\pi\)
−0.575635 + 0.817707i \(0.695245\pi\)
\(150\) 0.818350i 0.0668180i
\(151\) 10.5000 + 6.06218i 0.854478 + 0.493333i 0.862159 0.506637i \(-0.169112\pi\)
−0.00768132 + 0.999970i \(0.502445\pi\)
\(152\) 5.68693 9.85005i 0.461271 0.798945i
\(153\) 0.313068 0.542250i 0.0253101 0.0438383i
\(154\) 0 0
\(155\) 18.9564 1.52262
\(156\) −12.5000 12.9904i −1.00080 1.04006i
\(157\) 10.9782 19.0148i 0.876157 1.51755i 0.0206325 0.999787i \(-0.493432\pi\)
0.855525 0.517762i \(-0.173235\pi\)
\(158\) 11.3739 6.56670i 0.904856 0.522419i
\(159\) −21.7913 −1.72816
\(160\) 8.08258 + 13.9994i 0.638984 + 1.10675i
\(161\) 0 0
\(162\) 18.1652 10.4877i 1.42719 0.823988i
\(163\) −6.00000 3.46410i −0.469956 0.271329i 0.246265 0.969202i \(-0.420797\pi\)
−0.716221 + 0.697873i \(0.754130\pi\)
\(164\) 6.16515 + 3.55945i 0.481417 + 0.277946i
\(165\) −5.00000 −0.389249
\(166\) −7.79129 −0.604721
\(167\) −17.2913 9.98313i −1.33804 0.772518i −0.351523 0.936179i \(-0.614336\pi\)
−0.986517 + 0.163661i \(0.947670\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 7.18693 + 12.4481i 0.551213 + 0.954728i
\(171\) 1.18693 0.685275i 0.0907669 0.0524043i
\(172\) −6.10436 10.5731i −0.465453 0.806188i
\(173\) −3.87386 + 6.70973i −0.294524 + 0.510131i −0.974874 0.222756i \(-0.928495\pi\)
0.680350 + 0.732888i \(0.261828\pi\)
\(174\) 8.66025i 0.656532i
\(175\) 0 0
\(176\) −1.97822 + 1.14213i −0.149114 + 0.0860910i
\(177\) 13.7305 7.92730i 1.03205 0.595853i
\(178\) −6.37386 −0.477741
\(179\) 4.50000 + 7.79423i 0.336346 + 0.582568i 0.983742 0.179585i \(-0.0574756\pi\)
−0.647397 + 0.762153i \(0.724142\pi\)
\(180\) 1.27520i 0.0950478i
\(181\) −9.16515 −0.681240 −0.340620 0.940201i \(-0.610637\pi\)
−0.340620 + 0.940201i \(0.610637\pi\)
\(182\) 0 0
\(183\) −22.8348 −1.68800
\(184\) 13.1334i 0.968208i
\(185\) −7.58258 13.1334i −0.557482 0.965587i
\(186\) −33.9564 −2.48981
\(187\) −3.31307 + 1.91280i −0.242276 + 0.139878i
\(188\) −10.3521 + 5.97678i −0.755003 + 0.435901i
\(189\) 0 0
\(190\) 31.4630i 2.28256i
\(191\) 0.313068 0.542250i 0.0226528 0.0392358i −0.854477 0.519490i \(-0.826122\pi\)
0.877130 + 0.480254i \(0.159455\pi\)
\(192\) −11.2695 19.5194i −0.813307 1.40869i
\(193\) 10.7477 6.20520i 0.773638 0.446660i −0.0605327 0.998166i \(-0.519280\pi\)
0.834171 + 0.551506i \(0.185947\pi\)
\(194\) −16.6652 28.8649i −1.19649 2.07238i
\(195\) 13.5826 + 3.92095i 0.972668 + 0.280785i
\(196\) 0 0
\(197\) −9.47822 5.47225i −0.675295 0.389882i 0.122785 0.992433i \(-0.460817\pi\)
−0.798080 + 0.602551i \(0.794151\pi\)
\(198\) 0.582576 0.0414019
\(199\) 11.0000 0.779769 0.389885 0.920864i \(-0.372515\pi\)
0.389885 + 0.920864i \(0.372515\pi\)
\(200\) −0.313068 0.180750i −0.0221373 0.0127810i
\(201\) 17.6869 + 10.2116i 1.24754 + 0.720268i
\(202\) 18.5608 10.7161i 1.30593 0.753981i
\(203\) 0 0
\(204\) −7.50000 12.9904i −0.525105 0.909509i
\(205\) −5.58258 −0.389904
\(206\) −8.68693 + 5.01540i −0.605247 + 0.349440i
\(207\) −0.791288 + 1.37055i −0.0549983 + 0.0952599i
\(208\) 6.26951 1.55130i 0.434712 0.107563i
\(209\) −8.37386 −0.579232
\(210\) 0 0
\(211\) −0.708712 + 1.22753i −0.0487898 + 0.0845063i −0.889389 0.457151i \(-0.848870\pi\)
0.840599 + 0.541658i \(0.182203\pi\)
\(212\) −16.9782 + 29.4071i −1.16607 + 2.01969i
\(213\) 1.41742 + 0.818350i 0.0971203 + 0.0560724i
\(214\) 21.4322i 1.46507i
\(215\) 8.29129 + 4.78698i 0.565461 + 0.326469i
\(216\) 8.66025i 0.589256i
\(217\) 0 0
\(218\) −8.68693 + 15.0462i −0.588353 + 1.01906i
\(219\) 6.20520i 0.419309i
\(220\) −3.89564 + 6.74745i −0.262644 + 0.454913i
\(221\) 10.5000 2.59808i 0.706306 0.174766i
\(222\) 13.5826 + 23.5257i 0.911603 + 1.57894i
\(223\) 17.9347 + 10.3546i 1.20099 + 0.693394i 0.960776 0.277325i \(-0.0894479\pi\)
0.240217 + 0.970719i \(0.422781\pi\)
\(224\) 0 0
\(225\) −0.0217804 0.0377247i −0.00145203 0.00251498i
\(226\) −2.68693 + 1.55130i −0.178732 + 0.103191i
\(227\) 12.3151i 0.817379i −0.912673 0.408689i \(-0.865986\pi\)
0.912673 0.408689i \(-0.134014\pi\)
\(228\) 32.8335i 2.17445i
\(229\) 6.00000 3.46410i 0.396491 0.228914i −0.288478 0.957487i \(-0.593149\pi\)
0.684969 + 0.728572i \(0.259816\pi\)
\(230\) −18.1652 31.4630i −1.19777 2.07461i
\(231\) 0 0
\(232\) 3.31307 + 1.91280i 0.217514 + 0.125582i
\(233\) 3.47822 + 6.02445i 0.227866 + 0.394675i 0.957175 0.289509i \(-0.0934919\pi\)
−0.729310 + 0.684184i \(0.760159\pi\)
\(234\) −1.58258 0.456850i −0.103456 0.0298652i
\(235\) 4.68693 8.11800i 0.305742 0.529560i
\(236\) 24.7056i 1.60820i
\(237\) 5.37386 9.30780i 0.349070 0.604607i
\(238\) 0 0
\(239\) 13.2288i 0.855697i −0.903850 0.427849i \(-0.859272\pi\)
0.903850 0.427849i \(-0.140728\pi\)
\(240\) 6.08258 + 3.51178i 0.392629 + 0.226684i
\(241\) 4.11165i 0.264855i 0.991193 + 0.132427i \(0.0422771\pi\)
−0.991193 + 0.132427i \(0.957723\pi\)
\(242\) 17.7695 + 10.2592i 1.14227 + 0.659488i
\(243\) 1.08258 1.87508i 0.0694473 0.120286i
\(244\) −17.7913 + 30.8154i −1.13897 + 1.97275i
\(245\) 0 0
\(246\) 10.0000 0.637577
\(247\) 22.7477 + 6.56670i 1.44740 + 0.417829i
\(248\) −7.50000 + 12.9904i −0.476250 + 0.824890i
\(249\) −5.52178 + 3.18800i −0.349929 + 0.202031i
\(250\) 24.9564 1.57838
\(251\) 10.5826 + 18.3296i 0.667966 + 1.15695i 0.978472 + 0.206380i \(0.0661683\pi\)
−0.310506 + 0.950572i \(0.600498\pi\)
\(252\) 0 0
\(253\) 8.37386 4.83465i 0.526460 0.303952i
\(254\) −30.2477 17.4635i −1.89791 1.09576i
\(255\) 10.1869 + 5.88143i 0.637930 + 0.368309i
\(256\) −2.79129 −0.174455
\(257\) 27.9564 1.74387 0.871937 0.489617i \(-0.162864\pi\)
0.871937 + 0.489617i \(0.162864\pi\)
\(258\) −14.8521 8.57485i −0.924650 0.533847i
\(259\) 0 0
\(260\) 15.8739 15.2746i 0.984455 0.947292i
\(261\) 0.230493 + 0.399225i 0.0142671 + 0.0247114i
\(262\) −6.87386 + 3.96863i −0.424669 + 0.245183i
\(263\) 13.6652 + 23.6687i 0.842629 + 1.45948i 0.887664 + 0.460491i \(0.152327\pi\)
−0.0450348 + 0.998985i \(0.514340\pi\)
\(264\) 1.97822 3.42638i 0.121751 0.210879i
\(265\) 26.6283i 1.63576i
\(266\) 0 0
\(267\) −4.51723 + 2.60803i −0.276450 + 0.159609i
\(268\) 27.5608 15.9122i 1.68354 0.971994i
\(269\) −11.2087 −0.683407 −0.341704 0.939808i \(-0.611004\pi\)
−0.341704 + 0.939808i \(0.611004\pi\)
\(270\) 11.9782 + 20.7469i 0.728971 + 1.26262i
\(271\) 28.7219i 1.74473i 0.488856 + 0.872364i \(0.337414\pi\)
−0.488856 + 0.872364i \(0.662586\pi\)
\(272\) 5.37386 0.325838
\(273\) 0 0
\(274\) −37.5390 −2.26781
\(275\) 0.266150i 0.0160494i
\(276\) 18.9564 + 32.8335i 1.14104 + 1.97635i
\(277\) −15.7477 −0.946189 −0.473095 0.881012i \(-0.656863\pi\)
−0.473095 + 0.881012i \(0.656863\pi\)
\(278\) −1.50000 + 0.866025i −0.0899640 + 0.0519408i
\(279\) −1.56534 + 0.903750i −0.0937145 + 0.0541061i
\(280\) 0 0
\(281\) 6.39590i 0.381548i −0.981634 0.190774i \(-0.938900\pi\)
0.981634 0.190774i \(-0.0610997\pi\)
\(282\) −8.39564 + 14.5417i −0.499953 + 0.865945i
\(283\) 12.3739 + 21.4322i 0.735550 + 1.27401i 0.954482 + 0.298270i \(0.0964094\pi\)
−0.218932 + 0.975740i \(0.570257\pi\)
\(284\) 2.20871 1.27520i 0.131063 0.0756692i
\(285\) 12.8739 + 22.2982i 0.762582 + 1.32083i
\(286\) 6.97822 + 7.25198i 0.412631 + 0.428818i
\(287\) 0 0
\(288\) −1.33485 0.770675i −0.0786567 0.0454125i
\(289\) −8.00000 −0.470588
\(290\) −10.5826 −0.621430
\(291\) −23.6216 13.6379i −1.38472 0.799470i
\(292\) 8.37386 + 4.83465i 0.490043 + 0.282927i
\(293\) 6.79129 3.92095i 0.396751 0.229064i −0.288330 0.957531i \(-0.593100\pi\)
0.685081 + 0.728467i \(0.259767\pi\)
\(294\) 0 0
\(295\) 9.68693 + 16.7783i 0.563995 + 0.976868i
\(296\) 12.0000 0.697486
\(297\) −5.52178 + 3.18800i −0.320406 + 0.184987i
\(298\) −2.39564 + 4.14938i −0.138776 + 0.240367i
\(299\) −26.5390 + 6.56670i −1.53479 + 0.379762i
\(300\) −1.04356 −0.0602500
\(301\) 0 0
\(302\) 13.2695 22.9835i 0.763574 1.32255i
\(303\) 8.76951 15.1892i 0.503795 0.872599i
\(304\) 10.1869 + 5.88143i 0.584261 + 0.337323i
\(305\) 27.9035i 1.59775i
\(306\) −1.18693 0.685275i −0.0678524 0.0391746i
\(307\) 24.1733i 1.37964i −0.723980 0.689820i \(-0.757689\pi\)
0.723980 0.689820i \(-0.242311\pi\)
\(308\) 0 0
\(309\) −4.10436 + 7.10895i −0.233489 + 0.404414i
\(310\) 41.4938i 2.35669i
\(311\) 2.76951 4.79693i 0.157044 0.272009i −0.776757 0.629800i \(-0.783137\pi\)
0.933802 + 0.357791i \(0.116470\pi\)
\(312\) −8.06080 + 7.75650i −0.456353 + 0.439126i
\(313\) −10.3739 17.9681i −0.586365 1.01561i −0.994704 0.102784i \(-0.967225\pi\)
0.408338 0.912831i \(-0.366108\pi\)
\(314\) −41.6216 24.0302i −2.34884 1.35610i
\(315\) 0 0
\(316\) −8.37386 14.5040i −0.471067 0.815911i
\(317\) 16.0390 9.26013i 0.900841 0.520101i 0.0233679 0.999727i \(-0.492561\pi\)
0.877473 + 0.479626i \(0.159228\pi\)
\(318\) 47.6990i 2.67483i
\(319\) 2.81655i 0.157697i
\(320\) 23.8521 13.7710i 1.33337 0.769823i
\(321\) 8.76951 + 15.1892i 0.489466 + 0.847780i
\(322\) 0 0
\(323\) 17.0608 + 9.85005i 0.949288 + 0.548072i
\(324\) −13.3739 23.1642i −0.742992 1.28690i
\(325\) 0.208712 0.723000i 0.0115773 0.0401048i
\(326\) −7.58258 + 13.1334i −0.419960 + 0.727392i
\(327\) 14.2179i 0.786252i
\(328\) 2.20871 3.82560i 0.121956 0.211234i
\(329\) 0 0
\(330\) 10.9445i 0.602475i
\(331\) −0.939205 0.542250i −0.0516234 0.0298048i 0.473966 0.880543i \(-0.342822\pi\)
−0.525590 + 0.850738i \(0.676155\pi\)
\(332\) 9.93545i 0.545279i
\(333\) 1.25227 + 0.723000i 0.0686241 + 0.0396202i
\(334\) −21.8521 + 37.8489i −1.19569 + 2.07100i
\(335\) −12.4782 + 21.6129i −0.681758 + 1.18084i
\(336\) 0 0
\(337\) −12.9564 −0.705782 −0.352891 0.935664i \(-0.614801\pi\)
−0.352891 + 0.935664i \(0.614801\pi\)
\(338\) −13.2695 25.1724i −0.721766 1.36920i
\(339\) −1.26951 + 2.19885i −0.0689502 + 0.119425i
\(340\) 15.8739 9.16478i 0.860881 0.497030i
\(341\) 11.0436 0.598042
\(342\) −1.50000 2.59808i −0.0811107 0.140488i
\(343\) 0 0
\(344\) −6.56080 + 3.78788i −0.353734 + 0.204229i
\(345\) −25.7477 14.8655i −1.38621 0.800329i
\(346\) 14.6869 + 8.47950i 0.789574 + 0.455861i
\(347\) −4.41742 −0.237140 −0.118570 0.992946i \(-0.537831\pi\)
−0.118570 + 0.992946i \(0.537831\pi\)
\(348\) 11.0436 0.591997
\(349\) 9.24773 + 5.33918i 0.495019 + 0.285800i 0.726654 0.687003i \(-0.241074\pi\)
−0.231635 + 0.972803i \(0.574407\pi\)
\(350\) 0 0
\(351\) 17.5000 4.33013i 0.934081 0.231125i
\(352\) 4.70871 + 8.15573i 0.250975 + 0.434702i
\(353\) 23.2259 13.4095i 1.23619 0.713716i 0.267879 0.963453i \(-0.413677\pi\)
0.968314 + 0.249737i \(0.0803441\pi\)
\(354\) −17.3521 30.0547i −0.922253 1.59739i
\(355\) −1.00000 + 1.73205i −0.0530745 + 0.0919277i
\(356\) 8.12795i 0.430781i
\(357\) 0 0
\(358\) 17.0608 9.85005i 0.901691 0.520592i
\(359\) 10.9782 6.33828i 0.579408 0.334522i −0.181490 0.983393i \(-0.558092\pi\)
0.760898 + 0.648871i \(0.224759\pi\)
\(360\) −0.791288 −0.0417045
\(361\) 12.0608 + 20.8899i 0.634779 + 1.09947i
\(362\) 20.0616i 1.05441i
\(363\) 16.7913 0.881314
\(364\) 0 0
\(365\) −7.58258 −0.396890
\(366\) 49.9832i 2.61266i
\(367\) 9.00000 + 15.5885i 0.469796 + 0.813711i 0.999404 0.0345320i \(-0.0109941\pi\)
−0.529607 + 0.848243i \(0.677661\pi\)
\(368\) −13.5826 −0.708041
\(369\) 0.460985 0.266150i 0.0239979 0.0138552i
\(370\) −28.7477 + 16.5975i −1.49452 + 0.862863i
\(371\) 0 0
\(372\) 43.3013i 2.24507i
\(373\) −18.3956 + 31.8622i −0.952490 + 1.64976i −0.212481 + 0.977165i \(0.568154\pi\)
−0.740009 + 0.672596i \(0.765179\pi\)
\(374\) 4.18693 + 7.25198i 0.216501 + 0.374991i
\(375\) 17.6869 10.2116i 0.913349 0.527322i
\(376\) 3.70871 + 6.42368i 0.191262 + 0.331276i
\(377\) −2.20871 + 7.65120i −0.113754 + 0.394057i
\(378\) 0 0
\(379\) −3.93920 2.27430i −0.202343 0.116823i 0.395405 0.918507i \(-0.370604\pi\)
−0.597748 + 0.801684i \(0.703938\pi\)
\(380\) 40.1216 2.05819
\(381\) −28.5826 −1.46433
\(382\) −1.18693 0.685275i −0.0607287 0.0350617i
\(383\) −3.39564 1.96048i −0.173509 0.100176i 0.410730 0.911757i \(-0.365274\pi\)
−0.584240 + 0.811581i \(0.698607\pi\)
\(384\) −19.8131 + 11.4391i −1.01108 + 0.583748i
\(385\) 0 0
\(386\) −13.5826 23.5257i −0.691335 1.19743i
\(387\) −0.912878 −0.0464042
\(388\) −36.8085 + 21.2514i −1.86867 + 1.07888i
\(389\) −18.1652 + 31.4630i −0.921010 + 1.59524i −0.123154 + 0.992388i \(0.539301\pi\)
−0.797856 + 0.602848i \(0.794033\pi\)
\(390\) 8.58258 29.7309i 0.434596 1.50548i
\(391\) −22.7477 −1.15040
\(392\) 0 0
\(393\) −3.24773 + 5.62523i −0.163826 + 0.283755i
\(394\) −11.9782 + 20.7469i −0.603454 + 1.04521i
\(395\) 11.3739 + 6.56670i 0.572281 + 0.330407i
\(396\) 0.742901i 0.0373322i
\(397\) 13.1216 + 7.57575i 0.658554 + 0.380216i 0.791726 0.610877i \(-0.209183\pi\)
−0.133172 + 0.991093i \(0.542516\pi\)
\(398\) 24.0779i 1.20692i
\(399\) 0 0
\(400\) 0.186932 0.323775i 0.00934659 0.0161888i
\(401\) 29.5601i 1.47616i 0.674712 + 0.738081i \(0.264268\pi\)
−0.674712 + 0.738081i \(0.735732\pi\)
\(402\) 22.3521 38.7149i 1.11482 1.93093i
\(403\) −30.0000 8.66025i −1.49441 0.431398i
\(404\) −13.6652 23.6687i −0.679867 1.17756i
\(405\) 18.1652 + 10.4877i 0.902634 + 0.521136i
\(406\) 0 0
\(407\) −4.41742 7.65120i −0.218964 0.379256i
\(408\) −8.06080 + 4.65390i −0.399069 + 0.230402i
\(409\) 0.361500i 0.0178750i 0.999960 + 0.00893751i \(0.00284494\pi\)
−0.999960 + 0.00893751i \(0.997155\pi\)
\(410\) 12.2197i 0.603488i
\(411\) −26.6044 + 15.3600i −1.31230 + 0.757655i
\(412\) 6.39564 + 11.0776i 0.315091 + 0.545753i
\(413\) 0 0
\(414\) 3.00000 + 1.73205i 0.147442 + 0.0851257i
\(415\) −3.89564 6.74745i −0.191230 0.331219i
\(416\) −6.39564 25.8477i −0.313572 1.26729i
\(417\) −0.708712 + 1.22753i −0.0347058 + 0.0601122i
\(418\) 18.3296i 0.896528i
\(419\) −12.8739 + 22.2982i −0.628929 + 1.08934i 0.358838 + 0.933400i \(0.383173\pi\)
−0.987767 + 0.155938i \(0.950160\pi\)
\(420\) 0 0
\(421\) 20.0616i 0.977743i 0.872356 + 0.488872i \(0.162591\pi\)
−0.872356 + 0.488872i \(0.837409\pi\)
\(422\) 2.68693 + 1.55130i 0.130798 + 0.0755161i
\(423\) 0.893800i 0.0434580i
\(424\) 18.2477 + 10.5353i 0.886188 + 0.511641i
\(425\) 0.313068 0.542250i 0.0151860 0.0263030i
\(426\) 1.79129 3.10260i 0.0867882 0.150322i
\(427\) 0 0
\(428\) 27.3303 1.32106
\(429\) 7.91288 + 2.28425i 0.382037 + 0.110285i
\(430\) 10.4782 18.1488i 0.505305 0.875213i
\(431\) 13.5172 7.80418i 0.651102 0.375914i −0.137776 0.990463i \(-0.543995\pi\)
0.788878 + 0.614549i \(0.210662\pi\)
\(432\) 8.95644 0.430917
\(433\) −11.2477 19.4816i −0.540531 0.936228i −0.998874 0.0474518i \(-0.984890\pi\)
0.458342 0.888776i \(-0.348443\pi\)
\(434\) 0 0
\(435\) −7.50000 + 4.33013i −0.359597 + 0.207614i
\(436\) 19.1869 + 11.0776i 0.918887 + 0.530520i
\(437\) −43.1216 24.8963i −2.06279 1.19095i
\(438\) 13.5826 0.649001
\(439\) 11.5390 0.550727 0.275364 0.961340i \(-0.411202\pi\)
0.275364 + 0.961340i \(0.411202\pi\)
\(440\) 4.18693 + 2.41733i 0.199604 + 0.115242i
\(441\) 0 0
\(442\) −5.68693 22.9835i −0.270500 1.09321i
\(443\) −1.58258 2.74110i −0.0751904 0.130234i 0.825979 0.563701i \(-0.190623\pi\)
−0.901169 + 0.433468i \(0.857290\pi\)
\(444\) 30.0000 17.3205i 1.42374 0.821995i
\(445\) −3.18693 5.51993i −0.151075 0.261670i
\(446\) 22.6652 39.2572i 1.07323 1.85888i
\(447\) 3.92095i 0.185455i
\(448\) 0 0
\(449\) −17.2087 + 9.93545i −0.812129 + 0.468883i −0.847695 0.530484i \(-0.822010\pi\)
0.0355654 + 0.999367i \(0.488677\pi\)
\(450\) −0.0825757 + 0.0476751i −0.00389266 + 0.00224743i
\(451\) −3.25227 −0.153144
\(452\) 1.97822 + 3.42638i 0.0930476 + 0.161163i
\(453\) 21.7182i 1.02041i
\(454\) −26.9564 −1.26513
\(455\) 0 0
\(456\) −20.3739 −0.954094
\(457\) 8.94630i 0.418490i 0.977863 + 0.209245i \(0.0671007\pi\)
−0.977863 + 0.209245i \(0.932899\pi\)
\(458\) −7.58258 13.1334i −0.354310 0.613684i
\(459\) 15.0000 0.700140
\(460\) −40.1216 + 23.1642i −1.87068 + 1.08004i
\(461\) 15.4782 8.93635i 0.720893 0.416208i −0.0941885 0.995554i \(-0.530026\pi\)
0.815081 + 0.579347i \(0.196692\pi\)
\(462\) 0 0
\(463\) 7.93725i 0.368875i −0.982844 0.184438i \(-0.940954\pi\)
0.982844 0.184438i \(-0.0590464\pi\)
\(464\) −1.97822 + 3.42638i −0.0918365 + 0.159066i
\(465\) −16.9782 29.4071i −0.787346 1.36372i
\(466\) 13.1869 7.61348i 0.610873 0.352688i
\(467\) −5.91742 10.2493i −0.273826 0.474280i 0.696012 0.718030i \(-0.254956\pi\)
−0.969838 + 0.243750i \(0.921622\pi\)
\(468\) −0.582576 + 2.01810i −0.0269296 + 0.0932868i
\(469\) 0 0
\(470\) −17.7695 10.2592i −0.819646 0.473223i
\(471\) −39.3303 −1.81224
\(472\) −15.3303 −0.705634
\(473\) 4.83030 + 2.78878i 0.222098 + 0.128228i
\(474\) −20.3739 11.7629i −0.935803 0.540286i
\(475\) 1.18693 0.685275i 0.0544602 0.0314426i
\(476\) 0 0
\(477\) 1.26951 + 2.19885i 0.0581268 + 0.100678i
\(478\) −28.9564 −1.32444
\(479\) −8.85208 + 5.11075i −0.404462 + 0.233516i −0.688407 0.725324i \(-0.741690\pi\)
0.283945 + 0.958840i \(0.408357\pi\)
\(480\) 14.4782 25.0770i 0.660837 1.14460i
\(481\) 6.00000 + 24.2487i 0.273576 + 1.10565i
\(482\) 9.00000 0.409939
\(483\) 0 0
\(484\) 13.0826 22.6597i 0.594663 1.02999i
\(485\) 16.6652 28.8649i 0.756726 1.31069i
\(486\) −4.10436 2.36965i −0.186177 0.107490i
\(487\) 10.3169i 0.467501i −0.972297 0.233751i \(-0.924900\pi\)
0.972297 0.233751i \(-0.0750999\pi\)
\(488\) 19.1216 + 11.0399i 0.865594 + 0.499751i
\(489\) 12.4104i 0.561218i
\(490\) 0 0
\(491\) −18.5608 + 32.1482i −0.837637 + 1.45083i 0.0542283 + 0.998529i \(0.482730\pi\)
−0.891865 + 0.452301i \(0.850603\pi\)
\(492\) 12.7520i 0.574905i
\(493\) −3.31307 + 5.73840i −0.149213 + 0.258445i
\(494\) 14.3739 49.7925i 0.646711 2.24027i
\(495\) 0.291288 + 0.504525i 0.0130924 + 0.0226767i
\(496\) −13.4347 7.75650i −0.603234 0.348277i
\(497\) 0 0
\(498\) 6.97822 + 12.0866i 0.312701 + 0.541615i
\(499\) 36.5608 21.1084i 1.63669 0.944941i 0.654723 0.755869i \(-0.272785\pi\)
0.981963 0.189072i \(-0.0605479\pi\)
\(500\) 31.8245i 1.42323i
\(501\) 35.7653i 1.59788i
\(502\) 40.1216 23.1642i 1.79071 1.03387i
\(503\) 11.0608 + 19.1579i 0.493176 + 0.854207i 0.999969 0.00786127i \(-0.00250235\pi\)
−0.506793 + 0.862068i \(0.669169\pi\)
\(504\) 0 0
\(505\) 18.5608 + 10.7161i 0.825945 + 0.476859i
\(506\) −10.5826 18.3296i −0.470453 0.814848i
\(507\) −19.7042 12.4104i −0.875093 0.551165i
\(508\) −22.2695 + 38.5719i −0.988050 + 1.71135i
\(509\) 21.9844i 0.974440i −0.873279 0.487220i \(-0.838011\pi\)
0.873279 0.487220i \(-0.161989\pi\)
\(510\) 12.8739 22.2982i 0.570064 0.987380i
\(511\) 0 0
\(512\) 19.4340i 0.858868i
\(513\) 28.4347 + 16.4168i 1.25542 + 0.724818i
\(514\) 61.1939i 2.69915i
\(515\) −8.68693 5.01540i −0.382792 0.221005i
\(516\) −10.9347 + 18.9394i −0.481372 + 0.833760i
\(517\) 2.73049 4.72935i 0.120087 0.207997i
\(518\) 0 0
\(519\) 13.8784 0.609195
\(520\) −9.47822 9.85005i −0.415647 0.431953i
\(521\) −12.7913 + 22.1552i −0.560396 + 0.970635i 0.437065 + 0.899430i \(0.356018\pi\)
−0.997462 + 0.0712054i \(0.977315\pi\)
\(522\) 0.873864 0.504525i 0.0382480 0.0220825i
\(523\) −12.3303 −0.539166 −0.269583 0.962977i \(-0.586886\pi\)
−0.269583 + 0.962977i \(0.586886\pi\)
\(524\) 5.06080 + 8.76555i 0.221082 + 0.382925i
\(525\) 0 0
\(526\) 51.8085 29.9117i 2.25896 1.30421i
\(527\) −22.5000 12.9904i −0.980115 0.565870i
\(528\) 3.54356 + 2.04588i 0.154214 + 0.0890353i
\(529\) 34.4955 1.49980
\(530\) −58.2867 −2.53181
\(531\) −1.59981 0.923651i −0.0694259 0.0400830i
\(532\) 0 0
\(533\) 8.83485 + 2.55040i 0.382680 + 0.110470i
\(534\) 5.70871 + 9.88778i 0.247040 + 0.427886i
\(535\) −18.5608 + 10.7161i −0.802453 + 0.463297i
\(536\) −9.87386 17.1020i −0.426486 0.738695i
\(537\) 8.06080 13.9617i 0.347849 0.602492i
\(538\) 24.5348i 1.05777i
\(539\) 0 0
\(540\) 26.4564 15.2746i 1.13850 0.657316i
\(541\) 26.0608 15.0462i 1.12044 0.646887i 0.178928 0.983862i \(-0.442737\pi\)
0.941513 + 0.336975i \(0.109404\pi\)
\(542\) 62.8693 2.70047
\(543\) 8.20871 + 14.2179i 0.352270 + 0.610149i
\(544\) 22.1552i 0.949895i
\(545\) −17.3739 −0.744215
\(546\) 0 0
\(547\) 15.7477 0.673324 0.336662 0.941626i \(-0.390702\pi\)
0.336662 + 0.941626i \(0.390702\pi\)
\(548\) 47.8698i 2.04490i
\(549\) 1.33030 + 2.30415i 0.0567759 + 0.0983388i
\(550\) 0.582576 0.0248411
\(551\) −12.5608 + 7.25198i −0.535108 + 0.308945i
\(552\) 20.3739 11.7629i 0.867169 0.500660i
\(553\) 0 0
\(554\) 34.4702i 1.46450i
\(555\) −13.5826 + 23.5257i −0.576548 + 0.998611i
\(556\) 1.10436 + 1.91280i 0.0468351 + 0.0811208i
\(557\) −24.0998 + 13.9140i −1.02114 + 0.589556i −0.914434 0.404734i \(-0.867364\pi\)
−0.106707 + 0.994290i \(0.534031\pi\)
\(558\) 1.97822 + 3.42638i 0.0837447 + 0.145050i
\(559\) −10.9347 11.3636i −0.462487 0.480630i
\(560\) 0 0
\(561\) 5.93466 + 3.42638i 0.250561 + 0.144662i
\(562\) −14.0000 −0.590554
\(563\) −0.330303 −0.0139206 −0.00696030 0.999976i \(-0.502216\pi\)
−0.00696030 + 0.999976i \(0.502216\pi\)
\(564\) 18.5436 + 10.7061i 0.780825 + 0.450809i
\(565\) −2.68693 1.55130i −0.113040 0.0652637i
\(566\) 46.9129 27.0852i 1.97190 1.13847i
\(567\) 0 0
\(568\) −0.791288 1.37055i −0.0332017 0.0575070i
\(569\) −10.7477 −0.450568 −0.225284 0.974293i \(-0.572331\pi\)
−0.225284 + 0.974293i \(0.572331\pi\)
\(570\) 48.8085 28.1796i 2.04436 1.18031i
\(571\) 12.4782 21.6129i 0.522197 0.904472i −0.477469 0.878648i \(-0.658446\pi\)
0.999667 0.0258237i \(-0.00822085\pi\)
\(572\) 9.24773 8.89863i 0.386667 0.372070i
\(573\) −1.12159 −0.0468551
\(574\) 0 0
\(575\) −0.791288 + 1.37055i −0.0329990 + 0.0571559i
\(576\) −1.31307 + 2.27430i −0.0547112 + 0.0947625i
\(577\) −17.1261 9.88778i −0.712970 0.411634i 0.0991895 0.995069i \(-0.468375\pi\)
−0.812160 + 0.583435i \(0.801708\pi\)
\(578\) 17.5112i 0.728370i
\(579\) −19.2523 11.1153i −0.800097 0.461936i
\(580\) 13.4949i 0.560345i
\(581\) 0 0
\(582\) −29.8521 + 51.7053i −1.23741 + 2.14325i
\(583\) 15.5130i 0.642483i
\(584\) 3.00000 5.19615i 0.124141 0.215018i
\(585\) −0.395644 1.59898i −0.0163579 0.0661095i
\(586\) −8.58258 14.8655i −0.354543 0.614086i
\(587\) 30.7259 + 17.7396i 1.26820 + 0.732193i 0.974646 0.223751i \(-0.0718302\pi\)
0.293549 + 0.955944i \(0.405164\pi\)
\(588\) 0 0
\(589\) −28.4347 49.2503i −1.17163 2.02932i
\(590\) 36.7259 21.2037i 1.51198 0.872944i
\(591\) 19.6048i 0.806432i
\(592\) 12.4104i 0.510065i
\(593\) 16.9782 9.80238i 0.697212 0.402535i −0.109096 0.994031i \(-0.534796\pi\)
0.806308 + 0.591496i \(0.201462\pi\)
\(594\) 6.97822 + 12.0866i 0.286320 + 0.495920i
\(595\) 0 0
\(596\) 5.29129 + 3.05493i 0.216740 + 0.125135i
\(597\) −9.85208 17.0643i −0.403219 0.698396i
\(598\) 14.3739 + 58.0913i 0.587791 + 2.37553i
\(599\) 10.1869 17.6443i 0.416227 0.720926i −0.579330 0.815093i \(-0.696686\pi\)
0.995556 + 0.0941675i \(0.0300189\pi\)
\(600\) 0.647551i 0.0264361i
\(601\) −0.686932 + 1.18980i −0.0280205 + 0.0485330i −0.879696 0.475537i \(-0.842254\pi\)
0.851675 + 0.524070i \(0.175587\pi\)
\(602\) 0 0
\(603\) 2.37960i 0.0969049i
\(604\) −29.3085 16.9213i −1.19255 0.688517i
\(605\) 20.5185i 0.834194i
\(606\) −33.2477 19.1956i −1.35060 0.779767i
\(607\) −3.87386 + 6.70973i −0.157235 + 0.272339i −0.933871 0.357611i \(-0.883591\pi\)
0.776635 + 0.629950i \(0.216925\pi\)
\(608\) 24.2477 41.9983i 0.983375 1.70326i
\(609\) 0 0
\(610\) −61.0780 −2.47298
\(611\) −11.1261 + 10.7061i −0.450115 + 0.433124i
\(612\) −0.873864 + 1.51358i −0.0353238 + 0.0611827i
\(613\) −32.3085 + 18.6533i −1.30493 + 0.753401i −0.981245 0.192764i \(-0.938255\pi\)
−0.323684 + 0.946165i \(0.604921\pi\)
\(614\) −52.9129 −2.13539
\(615\) 5.00000 + 8.66025i 0.201619 + 0.349215i
\(616\) 0 0
\(617\) −24.0826 + 13.9041i −0.969528 + 0.559757i −0.899092 0.437759i \(-0.855772\pi\)
−0.0704357 + 0.997516i \(0.522439\pi\)
\(618\) 15.5608 + 8.98403i 0.625947 + 0.361391i
\(619\) 10.7477 + 6.20520i 0.431988 + 0.249408i 0.700193 0.713954i \(-0.253097\pi\)
−0.268205 + 0.963362i \(0.586431\pi\)
\(620\) −52.9129 −2.12503
\(621\) −37.9129 −1.52139
\(622\) −10.5000 6.06218i −0.421012 0.243071i
\(623\) 0 0
\(624\) −8.02178 8.33648i −0.321128 0.333726i
\(625\) 11.9564 + 20.7092i 0.478258 + 0.828366i
\(626\) −39.3303 + 22.7074i −1.57196 + 0.907569i
\(627\) 7.50000 + 12.9904i 0.299521 + 0.518786i
\(628\) −30.6434 + 53.0759i −1.22280 + 2.11796i
\(629\) 20.7846i 0.828737i
\(630\) 0 0
\(631\) −10.4347 + 6.02445i −0.415397 + 0.239830i −0.693106 0.720836i \(-0.743758\pi\)
0.277709 + 0.960665i \(0.410425\pi\)
\(632\) −9.00000 + 5.19615i −0.358001 + 0.206692i
\(633\) 2.53901 0.100917
\(634\) −20.2695 35.1078i −0.805005 1.39431i
\(635\) 34.9271i 1.38604i
\(636\) 60.8258 2.41190
\(637\) 0 0
\(638\) −6.16515 −0.244081
\(639\) 0.190700i 0.00754399i
\(640\) −13.9782 24.2110i −0.552538 0.957023i
\(641\) 15.6261 0.617195 0.308598 0.951193i \(-0.400140\pi\)
0.308598 + 0.951193i \(0.400140\pi\)
\(642\) 33.2477 19.1956i 1.31218 0.757589i
\(643\) 11.7523 6.78518i 0.463464 0.267581i −0.250035 0.968237i \(-0.580442\pi\)
0.713500 + 0.700655i \(0.247109\pi\)
\(644\) 0 0
\(645\) 17.1497i 0.675269i
\(646\) 21.5608 37.3444i 0.848298 1.46930i
\(647\) 14.5390 + 25.1823i 0.571588 + 0.990019i 0.996403 + 0.0847389i \(0.0270056\pi\)
−0.424816 + 0.905280i \(0.639661\pi\)
\(648\) −14.3739 + 8.29875i −0.564659 + 0.326006i
\(649\) 5.64337 + 9.77461i 0.221522 + 0.383687i
\(650\) −1.58258 0.456850i −0.0620737 0.0179191i
\(651\) 0 0
\(652\) 16.7477 + 9.66930i 0.655892 + 0.378679i
\(653\) 11.2087 0.438631 0.219315 0.975654i \(-0.429618\pi\)
0.219315 + 0.975654i \(0.429618\pi\)
\(654\) 31.1216 1.21695
\(655\) −6.87386 3.96863i −0.268584 0.155067i
\(656\) 3.95644 + 2.28425i 0.154473 + 0.0891850i
\(657\) 0.626136 0.361500i 0.0244279 0.0141035i
\(658\) 0 0
\(659\) −3.00000 5.19615i −0.116863 0.202413i 0.801660 0.597781i \(-0.203951\pi\)
−0.918523 + 0.395367i \(0.870617\pi\)
\(660\) 13.9564 0.543254
\(661\) 16.2523 9.38325i 0.632140 0.364966i −0.149440 0.988771i \(-0.547747\pi\)
0.781580 + 0.623804i \(0.214414\pi\)
\(662\) −1.18693 + 2.05583i −0.0461314 + 0.0799020i
\(663\) −13.4347 13.9617i −0.521759 0.542228i
\(664\) 6.16515 0.239254
\(665\) 0 0
\(666\) 1.58258 2.74110i 0.0613236 0.106216i
\(667\) 8.37386 14.5040i 0.324237 0.561595i
\(668\) 48.2650 + 27.8658i 1.86743 + 1.07816i
\(669\) 37.0961i 1.43422i
\(670\) 47.3085 + 27.3136i 1.82769 + 1.05522i
\(671\) 16.2559i 0.627552i
\(672\) 0 0
\(673\) 14.2477 24.6778i 0.549210 0.951259i −0.449119 0.893472i \(-0.648262\pi\)
0.998329 0.0577870i \(-0.0184044\pi\)
\(674\) 28.3604i 1.09240i
\(675\) 0.521780 0.903750i 0.0200833 0.0347854i
\(676\) −32.0998 + 16.9213i −1.23461 + 0.650819i
\(677\) 16.8956 + 29.2641i 0.649352 + 1.12471i 0.983278 + 0.182112i \(0.0582933\pi\)
−0.333925 + 0.942599i \(0.608373\pi\)
\(678\) 4.81307 + 2.77883i 0.184845 + 0.106720i
\(679\) 0 0
\(680\) −5.68693 9.85005i −0.218084 0.377732i
\(681\) −19.1044 + 11.0299i −0.732081 + 0.422667i
\(682\) 24.1733i 0.925642i
\(683\) 25.0671i 0.959164i 0.877497 + 0.479582i \(0.159212\pi\)
−0.877497 + 0.479582i \(0.840788\pi\)
\(684\) −3.31307 + 1.91280i −0.126678 + 0.0731378i
\(685\) −18.7695 32.5097i −0.717146 1.24213i
\(686\) 0 0
\(687\) −10.7477 6.20520i −0.410051 0.236743i
\(688\) −3.91742 6.78518i −0.149350 0.258682i
\(689\) −12.1652 + 42.1413i −0.463455 + 1.60546i
\(690\) −32.5390 + 56.3592i −1.23874 + 2.14556i
\(691\) 29.3694i 1.11727i −0.829415 0.558633i \(-0.811326\pi\)
0.829415 0.558633i \(-0.188674\pi\)
\(692\) 10.8131 18.7288i 0.411051 0.711962i
\(693\) 0 0
\(694\) 9.66930i 0.367042i
\(695\) −1.50000 0.866025i −0.0568982 0.0328502i
\(696\) 6.85275i 0.259753i
\(697\) 6.62614 + 3.82560i 0.250983 + 0.144905i
\(698\) 11.6869 20.2424i 0.442357 0.766185i
\(699\) 6.23049 10.7915i 0.235659 0.408173i
\(700\) 0 0
\(701\) 31.9129 1.20533 0.602666 0.797993i \(-0.294105\pi\)
0.602666 + 0.797993i \(0.294105\pi\)
\(702\) −9.47822 38.3058i −0.357732 1.44576i
\(703\) −22.7477 + 39.4002i −0.857947 + 1.48601i
\(704\) 13.8956 8.02265i 0.523712 0.302365i
\(705\) −16.7913 −0.632396
\(706\) −29.3521 50.8393i −1.10468 1.91336i
\(707\) 0 0
\(708\) −38.3258 + 22.1274i −1.44037 + 0.831598i
\(709\) 6.31307 + 3.64485i 0.237092 + 0.136885i 0.613840 0.789431i \(-0.289624\pi\)
−0.376747 + 0.926316i \(0.622957\pi\)
\(710\) 3.79129 + 2.18890i 0.142284 + 0.0821480i
\(711\) −1.25227 −0.0469639
\(712\) 5.04356 0.189015
\(713\) 56.8693 + 32.8335i 2.12977 + 1.22962i
\(714\) 0 0
\(715\) −2.79129 + 9.66930i −0.104388 + 0.361611i
\(716\) −12.5608 21.7559i −0.469419 0.813057i
\(717\) −20.5218 + 11.8483i −0.766400 + 0.442481i
\(718\) −13.8739 24.0302i −0.517768 0.896800i
\(719\) −2.91742 + 5.05313i −0.108802 + 0.188450i −0.915285 0.402807i \(-0.868035\pi\)
0.806483 + 0.591257i \(0.201368\pi\)
\(720\) 0.818350i 0.0304981i
\(721\) 0 0
\(722\) 45.7259 26.3999i 1.70174 0.982502i
\(723\) 6.37841 3.68258i 0.237216 0.136956i
\(724\) 25.5826 0.950769
\(725\) 0.230493 + 0.399225i 0.00856028 + 0.0148268i
\(726\) 36.7545i 1.36409i
\(727\) −27.7477 −1.02911 −0.514553 0.857459i \(-0.672042\pi\)
−0.514553 + 0.857459i \(0.672042\pi\)
\(728\) 0 0
\(729\) 24.8693 0.921086
\(730\) 16.5975i 0.614301i
\(731\) −6.56080 11.3636i −0.242660 0.420299i
\(732\) 63.7386 2.35585
\(733\) 7.81307 4.51088i 0.288582 0.166613i −0.348720 0.937227i \(-0.613384\pi\)
0.637302 + 0.770614i \(0.280050\pi\)
\(734\) 34.1216 19.7001i 1.25945 0.727144i
\(735\) 0 0
\(736\) 55.9977i 2.06410i
\(737\) −7.26951 + 12.5912i −0.267776 + 0.463801i
\(738\) −0.582576 1.00905i −0.0214449 0.0371437i
\(739\) 10.7477 6.20520i 0.395362 0.228262i −0.289119 0.957293i \(-0.593362\pi\)
0.684481 + 0.729031i \(0.260029\pi\)
\(740\) 21.1652 + 36.6591i 0.778046 + 1.34762i
\(741\) −10.1869 41.1700i −0.374226 1.51242i
\(742\) 0 0
\(743\) 4.64792 + 2.68348i 0.170516 + 0.0984472i 0.582829 0.812595i \(-0.301946\pi\)
−0.412313 + 0.911042i \(0.635279\pi\)
\(744\) 26.8693 0.985077
\(745\) −4.79129 −0.175539
\(746\) 69.7432 + 40.2662i 2.55348 + 1.47425i
\(747\) 0.643371 + 0.371450i 0.0235397 + 0.0135907i
\(748\) 9.24773 5.33918i 0.338130 0.195220i
\(749\) 0 0
\(750\) −22.3521 38.7149i −0.816183 1.41367i
\(751\) −3.74773 −0.136757 −0.0683783 0.997659i \(-0.521782\pi\)
−0.0683783 + 0.997659i \(0.521782\pi\)
\(752\) −6.64337 + 3.83555i −0.242259 + 0.139868i
\(753\) 18.9564 32.8335i 0.690811 1.19652i
\(754\) 16.7477 + 4.83465i 0.609916 + 0.176068i
\(755\) 26.5390 0.965854
\(756\) 0 0
\(757\) −3.00000 + 5.19615i −0.109037 + 0.188857i −0.915380 0.402590i \(-0.868110\pi\)
0.806343 + 0.591448i \(0.201443\pi\)
\(758\) −4.97822 + 8.62253i −0.180817 + 0.313184i
\(759\) −15.0000 8.66025i −0.544466 0.314347i
\(760\) 24.8963i 0.903082i
\(761\) 27.7259 + 16.0076i 1.00506 + 0.580274i 0.909743 0.415172i \(-0.136279\pi\)
0.0953219 + 0.995447i \(0.469612\pi\)
\(762\) 62.5644i 2.26647i
\(763\) 0 0
\(764\) −0.873864 + 1.51358i −0.0316153 + 0.0547593i
\(765\) 1.37055i 0.0495524i
\(766\) −4.29129 + 7.43273i −0.155051 + 0.268555i
\(767\) −7.66515 30.9783i −0.276773 1.11856i
\(768\) 2.50000 + 4.33013i 0.0902110 + 0.156250i
\(769\) −21.8739 12.6289i −0.788792 0.455409i 0.0507453 0.998712i \(-0.483840\pi\)
−0.839537 + 0.543303i \(0.817174\pi\)
\(770\) 0 0
\(771\) −25.0390 43.3688i −0.901758 1.56189i
\(772\) −30.0000 + 17.3205i −1.07972 + 0.623379i
\(773\) 22.8981i 0.823586i −0.911277 0.411793i \(-0.864903\pi\)
0.911277