Properties

Label 637.2.h.j.165.1
Level $637$
Weight $2$
Character 637.165
Analytic conductor $5.086$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(165,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.165"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.100088711424.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 13x^{6} + 130x^{4} - 507x^{2} + 1521 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 165.1
Root \(1.87694 + 1.08365i\) of defining polynomial
Character \(\chi\) \(=\) 637.165
Dual form 637.2.h.j.471.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.30278 q^{2} +(-1.44073 - 2.49541i) q^{3} -0.302776 q^{4} +(-1.44073 - 2.49541i) q^{5} +(1.87694 + 3.25096i) q^{6} +3.00000 q^{8} +(-2.65139 + 4.59234i) q^{9} +(1.87694 + 3.25096i) q^{10} +(2.95416 + 5.11676i) q^{11} +(0.436217 + 0.755550i) q^{12} +(3.31767 + 1.41176i) q^{13} +(-4.15139 + 7.19041i) q^{15} -3.30278 q^{16} -0.872434 q^{17} +(3.45416 - 5.98279i) q^{18} +(-1.44073 + 2.49541i) q^{19} +(0.436217 + 0.755550i) q^{20} +(-3.84861 - 6.66599i) q^{22} +6.60555 q^{23} +(-4.32218 - 7.48624i) q^{24} +(-1.65139 + 2.86029i) q^{25} +(-4.32218 - 1.83920i) q^{26} +6.63534 q^{27} +(-0.651388 + 1.12824i) q^{29} +(5.40833 - 9.36750i) q^{30} +(-0.436217 + 0.755550i) q^{31} -1.69722 q^{32} +(8.51229 - 14.7437i) q^{33} +1.13659 q^{34} +(0.802776 - 1.39045i) q^{36} +1.39445 q^{37} +(1.87694 - 3.25096i) q^{38} +(-1.25694 - 10.3129i) q^{39} +(-4.32218 - 7.48624i) q^{40} +(-3.75389 + 6.50192i) q^{41} +(-2.75694 - 4.77516i) q^{43} +(-0.894449 - 1.54923i) q^{44} +15.2797 q^{45} -8.60555 q^{46} +(6.19912 + 10.7372i) q^{47} +(4.75840 + 8.24179i) q^{48} +(2.15139 - 3.72631i) q^{50} +(1.25694 + 2.17708i) q^{51} +(-1.00451 - 0.427446i) q^{52} +(-4.80278 + 8.31865i) q^{53} -8.64436 q^{54} +(8.51229 - 14.7437i) q^{55} +8.30278 q^{57} +(0.848612 - 1.46984i) q^{58} +6.63534 q^{59} +(1.25694 - 2.17708i) q^{60} +(-2.88145 + 4.99082i) q^{61} +(0.568293 - 0.984312i) q^{62} +8.81665 q^{64} +(-1.25694 - 10.3129i) q^{65} +(-11.0896 + 19.2077i) q^{66} +(-0.500000 - 0.866025i) q^{67} +0.264152 q^{68} +(-9.51680 - 16.4836i) q^{69} +(-2.00000 - 3.46410i) q^{71} +(-7.95416 + 13.7770i) q^{72} +(2.88145 - 4.99082i) q^{73} -1.81665 q^{74} +9.51680 q^{75} +(0.436217 - 0.755550i) q^{76} +(1.63751 + 13.4354i) q^{78} +(-0.302776 - 0.524423i) q^{79} +(4.75840 + 8.24179i) q^{80} +(-1.60555 - 2.78090i) q^{81} +(4.89047 - 8.47055i) q^{82} -6.63534 q^{83} +(1.25694 + 2.17708i) q^{85} +(3.59167 + 6.22096i) q^{86} +3.75389 q^{87} +(8.86249 + 15.3503i) q^{88} +8.64436 q^{89} -19.9060 q^{90} -2.00000 q^{92} +2.51388 q^{93} +(-8.07607 - 13.9882i) q^{94} +8.30278 q^{95} +(2.44524 + 4.23527i) q^{96} +(3.88596 + 6.73069i) q^{97} -31.3305 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 12 q^{4} + 24 q^{8} - 14 q^{9} + 2 q^{11} - 26 q^{15} - 12 q^{16} + 6 q^{18} - 38 q^{22} + 24 q^{23} - 6 q^{25} + 2 q^{29} - 28 q^{32} - 8 q^{36} + 40 q^{37} + 26 q^{39} + 14 q^{43} - 36 q^{44}+ \cdots - 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30278 −0.921201 −0.460601 0.887607i \(-0.652366\pi\)
−0.460601 + 0.887607i \(0.652366\pi\)
\(3\) −1.44073 2.49541i −0.831804 1.44073i −0.896606 0.442829i \(-0.853975\pi\)
0.0648022 0.997898i \(-0.479358\pi\)
\(4\) −0.302776 −0.151388
\(5\) −1.44073 2.49541i −0.644313 1.11598i −0.984460 0.175610i \(-0.943810\pi\)
0.340147 0.940372i \(-0.389523\pi\)
\(6\) 1.87694 + 3.25096i 0.766259 + 1.32720i
\(7\) 0 0
\(8\) 3.00000 1.06066
\(9\) −2.65139 + 4.59234i −0.883796 + 1.53078i
\(10\) 1.87694 + 3.25096i 0.593542 + 1.02804i
\(11\) 2.95416 + 5.11676i 0.890714 + 1.54276i 0.839021 + 0.544098i \(0.183128\pi\)
0.0516924 + 0.998663i \(0.483538\pi\)
\(12\) 0.436217 + 0.755550i 0.125925 + 0.218108i
\(13\) 3.31767 + 1.41176i 0.920156 + 0.391551i
\(14\) 0 0
\(15\) −4.15139 + 7.19041i −1.07188 + 1.85656i
\(16\) −3.30278 −0.825694
\(17\) −0.872434 −0.211596 −0.105798 0.994388i \(-0.533740\pi\)
−0.105798 + 0.994388i \(0.533740\pi\)
\(18\) 3.45416 5.98279i 0.814154 1.41016i
\(19\) −1.44073 + 2.49541i −0.330525 + 0.572487i −0.982615 0.185655i \(-0.940559\pi\)
0.652090 + 0.758142i \(0.273893\pi\)
\(20\) 0.436217 + 0.755550i 0.0975411 + 0.168946i
\(21\) 0 0
\(22\) −3.84861 6.66599i −0.820527 1.42119i
\(23\) 6.60555 1.37735 0.688676 0.725069i \(-0.258192\pi\)
0.688676 + 0.725069i \(0.258192\pi\)
\(24\) −4.32218 7.48624i −0.882261 1.52812i
\(25\) −1.65139 + 2.86029i −0.330278 + 0.572058i
\(26\) −4.32218 1.83920i −0.847649 0.360698i
\(27\) 6.63534 1.27697
\(28\) 0 0
\(29\) −0.651388 + 1.12824i −0.120960 + 0.209508i −0.920146 0.391575i \(-0.871931\pi\)
0.799187 + 0.601083i \(0.205264\pi\)
\(30\) 5.40833 9.36750i 0.987421 1.71026i
\(31\) −0.436217 + 0.755550i −0.0783469 + 0.135701i −0.902537 0.430613i \(-0.858298\pi\)
0.824190 + 0.566313i \(0.191631\pi\)
\(32\) −1.69722 −0.300030
\(33\) 8.51229 14.7437i 1.48180 2.56655i
\(34\) 1.13659 0.194923
\(35\) 0 0
\(36\) 0.802776 1.39045i 0.133796 0.231741i
\(37\) 1.39445 0.229246 0.114623 0.993409i \(-0.463434\pi\)
0.114623 + 0.993409i \(0.463434\pi\)
\(38\) 1.87694 3.25096i 0.304481 0.527376i
\(39\) −1.25694 10.3129i −0.201271 1.65139i
\(40\) −4.32218 7.48624i −0.683397 1.18368i
\(41\) −3.75389 + 6.50192i −0.586259 + 1.01543i 0.408458 + 0.912777i \(0.366066\pi\)
−0.994717 + 0.102653i \(0.967267\pi\)
\(42\) 0 0
\(43\) −2.75694 4.77516i −0.420429 0.728205i 0.575552 0.817765i \(-0.304787\pi\)
−0.995981 + 0.0895602i \(0.971454\pi\)
\(44\) −0.894449 1.54923i −0.134843 0.233555i
\(45\) 15.2797 2.27776
\(46\) −8.60555 −1.26882
\(47\) 6.19912 + 10.7372i 0.904235 + 1.56618i 0.821941 + 0.569573i \(0.192892\pi\)
0.0822947 + 0.996608i \(0.473775\pi\)
\(48\) 4.75840 + 8.24179i 0.686816 + 1.18960i
\(49\) 0 0
\(50\) 2.15139 3.72631i 0.304252 0.526980i
\(51\) 1.25694 + 2.17708i 0.176007 + 0.304853i
\(52\) −1.00451 0.427446i −0.139300 0.0592761i
\(53\) −4.80278 + 8.31865i −0.659712 + 1.14265i 0.320978 + 0.947087i \(0.395988\pi\)
−0.980690 + 0.195568i \(0.937345\pi\)
\(54\) −8.64436 −1.17635
\(55\) 8.51229 14.7437i 1.14780 1.98804i
\(56\) 0 0
\(57\) 8.30278 1.09973
\(58\) 0.848612 1.46984i 0.111428 0.192999i
\(59\) 6.63534 0.863848 0.431924 0.901910i \(-0.357835\pi\)
0.431924 + 0.901910i \(0.357835\pi\)
\(60\) 1.25694 2.17708i 0.162270 0.281060i
\(61\) −2.88145 + 4.99082i −0.368932 + 0.639010i −0.989399 0.145223i \(-0.953610\pi\)
0.620467 + 0.784233i \(0.286943\pi\)
\(62\) 0.568293 0.984312i 0.0721733 0.125008i
\(63\) 0 0
\(64\) 8.81665 1.10208
\(65\) −1.25694 10.3129i −0.155904 1.27916i
\(66\) −11.0896 + 19.2077i −1.36504 + 2.36431i
\(67\) −0.500000 0.866025i −0.0610847 0.105802i 0.833866 0.551967i \(-0.186123\pi\)
−0.894951 + 0.446165i \(0.852789\pi\)
\(68\) 0.264152 0.0320331
\(69\) −9.51680 16.4836i −1.14569 1.98439i
\(70\) 0 0
\(71\) −2.00000 3.46410i −0.237356 0.411113i 0.722599 0.691268i \(-0.242948\pi\)
−0.959955 + 0.280155i \(0.909614\pi\)
\(72\) −7.95416 + 13.7770i −0.937407 + 1.62364i
\(73\) 2.88145 4.99082i 0.337249 0.584132i −0.646666 0.762774i \(-0.723837\pi\)
0.983914 + 0.178642i \(0.0571704\pi\)
\(74\) −1.81665 −0.211182
\(75\) 9.51680 1.09890
\(76\) 0.436217 0.755550i 0.0500375 0.0866675i
\(77\) 0 0
\(78\) 1.63751 + 13.4354i 0.185411 + 1.52126i
\(79\) −0.302776 0.524423i −0.0340649 0.0590022i 0.848490 0.529211i \(-0.177512\pi\)
−0.882555 + 0.470209i \(0.844179\pi\)
\(80\) 4.75840 + 8.24179i 0.532005 + 0.921460i
\(81\) −1.60555 2.78090i −0.178395 0.308988i
\(82\) 4.89047 8.47055i 0.540062 0.935416i
\(83\) −6.63534 −0.728323 −0.364162 0.931336i \(-0.618644\pi\)
−0.364162 + 0.931336i \(0.618644\pi\)
\(84\) 0 0
\(85\) 1.25694 + 2.17708i 0.136334 + 0.236138i
\(86\) 3.59167 + 6.22096i 0.387300 + 0.670823i
\(87\) 3.75389 0.402459
\(88\) 8.86249 + 15.3503i 0.944745 + 1.63635i
\(89\) 8.64436 0.916300 0.458150 0.888875i \(-0.348512\pi\)
0.458150 + 0.888875i \(0.348512\pi\)
\(90\) −19.9060 −2.09828
\(91\) 0 0
\(92\) −2.00000 −0.208514
\(93\) 2.51388 0.260677
\(94\) −8.07607 13.9882i −0.832983 1.44277i
\(95\) 8.30278 0.851847
\(96\) 2.44524 + 4.23527i 0.249566 + 0.432261i
\(97\) 3.88596 + 6.73069i 0.394560 + 0.683398i 0.993045 0.117736i \(-0.0375638\pi\)
−0.598485 + 0.801134i \(0.704230\pi\)
\(98\) 0 0
\(99\) −31.3305 −3.14884
\(100\) 0.500000 0.866025i 0.0500000 0.0866025i
\(101\) 4.32218 + 7.48624i 0.430073 + 0.744908i 0.996879 0.0789429i \(-0.0251545\pi\)
−0.566806 + 0.823851i \(0.691821\pi\)
\(102\) −1.63751 2.83625i −0.162138 0.280831i
\(103\) −2.44524 4.23527i −0.240936 0.417314i 0.720045 0.693927i \(-0.244121\pi\)
−0.960981 + 0.276613i \(0.910788\pi\)
\(104\) 9.95301 + 4.23527i 0.975973 + 0.415303i
\(105\) 0 0
\(106\) 6.25694 10.8373i 0.607728 1.05262i
\(107\) 9.30278 0.899333 0.449667 0.893196i \(-0.351543\pi\)
0.449667 + 0.893196i \(0.351543\pi\)
\(108\) −2.00902 −0.193318
\(109\) 3.10555 5.37897i 0.297458 0.515212i −0.678096 0.734974i \(-0.737195\pi\)
0.975554 + 0.219761i \(0.0705279\pi\)
\(110\) −11.0896 + 19.2077i −1.05735 + 1.83139i
\(111\) −2.00902 3.47972i −0.190688 0.330281i
\(112\) 0 0
\(113\) 7.40833 + 12.8316i 0.696917 + 1.20710i 0.969530 + 0.244972i \(0.0787786\pi\)
−0.272613 + 0.962124i \(0.587888\pi\)
\(114\) −10.8167 −1.01307
\(115\) −9.51680 16.4836i −0.887446 1.53710i
\(116\) 0.197224 0.341603i 0.0183118 0.0317170i
\(117\) −15.2797 + 11.4927i −1.41261 + 1.06250i
\(118\) −8.64436 −0.795778
\(119\) 0 0
\(120\) −12.4542 + 21.5712i −1.13690 + 1.96918i
\(121\) −11.9542 + 20.7052i −1.08674 + 1.88229i
\(122\) 3.75389 6.50192i 0.339861 0.588657i
\(123\) 21.6333 1.95061
\(124\) 0.132076 0.228762i 0.0118608 0.0205434i
\(125\) −4.89047 −0.437417
\(126\) 0 0
\(127\) 1.45416 2.51868i 0.129036 0.223497i −0.794267 0.607569i \(-0.792145\pi\)
0.923303 + 0.384071i \(0.125478\pi\)
\(128\) −8.09167 −0.715210
\(129\) −7.94399 + 13.7594i −0.699430 + 1.21145i
\(130\) 1.63751 + 13.4354i 0.143619 + 1.17836i
\(131\) −8.51229 14.7437i −0.743722 1.28816i −0.950790 0.309837i \(-0.899725\pi\)
0.207068 0.978327i \(-0.433608\pi\)
\(132\) −2.57731 + 4.46404i −0.224326 + 0.388544i
\(133\) 0 0
\(134\) 0.651388 + 1.12824i 0.0562713 + 0.0974648i
\(135\) −9.55971 16.5579i −0.822769 1.42508i
\(136\) −2.61730 −0.224432
\(137\) 2.69722 0.230439 0.115220 0.993340i \(-0.463243\pi\)
0.115220 + 0.993340i \(0.463243\pi\)
\(138\) 12.3982 + 21.4744i 1.05541 + 1.82802i
\(139\) −8.51229 14.7437i −0.722003 1.25055i −0.960196 0.279327i \(-0.909889\pi\)
0.238193 0.971218i \(-0.423445\pi\)
\(140\) 0 0
\(141\) 17.8625 30.9387i 1.50429 2.60551i
\(142\) 2.60555 + 4.51295i 0.218653 + 0.378718i
\(143\) 2.57731 + 21.1463i 0.215526 + 1.76834i
\(144\) 8.75694 15.1675i 0.729745 1.26396i
\(145\) 3.75389 0.311743
\(146\) −3.75389 + 6.50192i −0.310674 + 0.538103i
\(147\) 0 0
\(148\) −0.422205 −0.0347050
\(149\) −0.256939 + 0.445032i −0.0210493 + 0.0364584i −0.876358 0.481660i \(-0.840034\pi\)
0.855309 + 0.518118i \(0.173367\pi\)
\(150\) −12.3982 −1.01231
\(151\) 3.10555 5.37897i 0.252726 0.437735i −0.711549 0.702636i \(-0.752006\pi\)
0.964275 + 0.264902i \(0.0853395\pi\)
\(152\) −4.32218 + 7.48624i −0.350575 + 0.607214i
\(153\) 2.31316 4.00651i 0.187008 0.323907i
\(154\) 0 0
\(155\) 2.51388 0.201920
\(156\) 0.380571 + 3.12250i 0.0304700 + 0.250000i
\(157\) −4.75840 + 8.24179i −0.379761 + 0.657766i −0.991027 0.133659i \(-0.957327\pi\)
0.611266 + 0.791425i \(0.290661\pi\)
\(158\) 0.394449 + 0.683205i 0.0313807 + 0.0543529i
\(159\) 27.6780 2.19500
\(160\) 2.44524 + 4.23527i 0.193313 + 0.334828i
\(161\) 0 0
\(162\) 2.09167 + 3.62288i 0.164337 + 0.284641i
\(163\) 8.60555 14.9053i 0.674039 1.16747i −0.302710 0.953083i \(-0.597891\pi\)
0.976749 0.214387i \(-0.0687753\pi\)
\(164\) 1.13659 1.96862i 0.0887524 0.153724i
\(165\) −49.0555 −3.81897
\(166\) 8.64436 0.670933
\(167\) −2.44524 + 4.23527i −0.189218 + 0.327735i −0.944990 0.327100i \(-0.893929\pi\)
0.755772 + 0.654835i \(0.227262\pi\)
\(168\) 0 0
\(169\) 9.01388 + 9.36750i 0.693375 + 0.720577i
\(170\) −1.63751 2.83625i −0.125591 0.217530i
\(171\) −7.63985 13.2326i −0.584234 1.01192i
\(172\) 0.834734 + 1.44580i 0.0636479 + 0.110241i
\(173\) −11.9620 + 20.7188i −0.909456 + 1.57522i −0.0946356 + 0.995512i \(0.530169\pi\)
−0.814821 + 0.579713i \(0.803165\pi\)
\(174\) −4.89047 −0.370746
\(175\) 0 0
\(176\) −9.75694 16.8995i −0.735457 1.27385i
\(177\) −9.55971 16.5579i −0.718552 1.24457i
\(178\) −11.2617 −0.844097
\(179\) −7.19722 12.4660i −0.537946 0.931749i −0.999014 0.0443850i \(-0.985867\pi\)
0.461069 0.887364i \(-0.347466\pi\)
\(180\) −4.62632 −0.344826
\(181\) 9.25264 0.687744 0.343872 0.939017i \(-0.388261\pi\)
0.343872 + 0.939017i \(0.388261\pi\)
\(182\) 0 0
\(183\) 16.6056 1.22752
\(184\) 19.8167 1.46090
\(185\) −2.00902 3.47972i −0.147706 0.255834i
\(186\) −3.27502 −0.240136
\(187\) −2.57731 4.46404i −0.188472 0.326443i
\(188\) −1.87694 3.25096i −0.136890 0.237101i
\(189\) 0 0
\(190\) −10.8167 −0.784723
\(191\) −9.65139 + 16.7167i −0.698350 + 1.20958i 0.270688 + 0.962667i \(0.412749\pi\)
−0.969038 + 0.246911i \(0.920585\pi\)
\(192\) −12.7024 22.0012i −0.916716 1.58780i
\(193\) 0.908327 + 1.57327i 0.0653828 + 0.113246i 0.896864 0.442307i \(-0.145840\pi\)
−0.831481 + 0.555553i \(0.812506\pi\)
\(194\) −5.06254 8.76857i −0.363469 0.629547i
\(195\) −23.9241 + 17.9947i −1.71324 + 1.28863i
\(196\) 0 0
\(197\) 5.95416 10.3129i 0.424217 0.734765i −0.572130 0.820163i \(-0.693883\pi\)
0.996347 + 0.0853980i \(0.0272162\pi\)
\(198\) 40.8167 2.90071
\(199\) 0.872434 0.0618452 0.0309226 0.999522i \(-0.490155\pi\)
0.0309226 + 0.999522i \(0.490155\pi\)
\(200\) −4.95416 + 8.58086i −0.350312 + 0.606759i
\(201\) −1.44073 + 2.49541i −0.101621 + 0.176013i
\(202\) −5.63083 9.75289i −0.396184 0.686211i
\(203\) 0 0
\(204\) −0.380571 0.659168i −0.0266453 0.0461510i
\(205\) 21.6333 1.51094
\(206\) 3.18559 + 5.51761i 0.221951 + 0.384430i
\(207\) −17.5139 + 30.3349i −1.21730 + 2.10842i
\(208\) −10.9575 4.66272i −0.759767 0.323301i
\(209\) −17.0246 −1.17761
\(210\) 0 0
\(211\) −7.50000 + 12.9904i −0.516321 + 0.894295i 0.483499 + 0.875345i \(0.339366\pi\)
−0.999820 + 0.0189499i \(0.993968\pi\)
\(212\) 1.45416 2.51868i 0.0998724 0.172984i
\(213\) −5.76291 + 9.98165i −0.394868 + 0.683931i
\(214\) −12.1194 −0.828467
\(215\) −7.94399 + 13.7594i −0.541776 + 0.938383i
\(216\) 19.9060 1.35443
\(217\) 0 0
\(218\) −4.04584 + 7.00759i −0.274019 + 0.474614i
\(219\) −16.6056 −1.12210
\(220\) −2.57731 + 4.46404i −0.173762 + 0.300965i
\(221\) −2.89445 1.23167i −0.194702 0.0828508i
\(222\) 2.61730 + 4.53330i 0.175662 + 0.304255i
\(223\) 6.76742 11.7215i 0.453180 0.784930i −0.545402 0.838175i \(-0.683623\pi\)
0.998582 + 0.0532444i \(0.0169562\pi\)
\(224\) 0 0
\(225\) −8.75694 15.1675i −0.583796 1.01116i
\(226\) −9.65139 16.7167i −0.642001 1.11198i
\(227\) 27.4138 1.81952 0.909759 0.415137i \(-0.136266\pi\)
0.909759 + 0.415137i \(0.136266\pi\)
\(228\) −2.51388 −0.166486
\(229\) −10.3892 17.9947i −0.686540 1.18912i −0.972950 0.231015i \(-0.925796\pi\)
0.286411 0.958107i \(-0.407538\pi\)
\(230\) 12.3982 + 21.4744i 0.817516 + 1.41598i
\(231\) 0 0
\(232\) −1.95416 + 3.38471i −0.128297 + 0.222217i
\(233\) 11.9542 + 20.7052i 0.783143 + 1.35644i 0.930102 + 0.367301i \(0.119718\pi\)
−0.146959 + 0.989143i \(0.546948\pi\)
\(234\) 19.9060 14.9725i 1.30130 0.978781i
\(235\) 17.8625 30.9387i 1.16522 2.01822i
\(236\) −2.00902 −0.130776
\(237\) −0.872434 + 1.51110i −0.0566707 + 0.0981565i
\(238\) 0 0
\(239\) 11.6056 0.750701 0.375350 0.926883i \(-0.377522\pi\)
0.375350 + 0.926883i \(0.377522\pi\)
\(240\) 13.7111 23.7483i 0.885048 1.53295i
\(241\) −2.00902 −0.129412 −0.0647062 0.997904i \(-0.520611\pi\)
−0.0647062 + 0.997904i \(0.520611\pi\)
\(242\) 15.5736 26.9743i 1.00111 1.73397i
\(243\) 5.32669 9.22610i 0.341707 0.591854i
\(244\) 0.872434 1.51110i 0.0558519 0.0967383i
\(245\) 0 0
\(246\) −28.1833 −1.79690
\(247\) −8.30278 + 6.24500i −0.528293 + 0.397360i
\(248\) −1.30865 + 2.26665i −0.0830994 + 0.143932i
\(249\) 9.55971 + 16.5579i 0.605822 + 1.04932i
\(250\) 6.37119 0.402949
\(251\) 11.2617 + 19.5058i 0.710830 + 1.23119i 0.964546 + 0.263915i \(0.0850138\pi\)
−0.253716 + 0.967279i \(0.581653\pi\)
\(252\) 0 0
\(253\) 19.5139 + 33.7990i 1.22683 + 2.12493i
\(254\) −1.89445 + 3.28128i −0.118868 + 0.205886i
\(255\) 3.62181 6.27316i 0.226807 0.392841i
\(256\) −7.09167 −0.443230
\(257\) −22.7875 −1.42144 −0.710722 0.703473i \(-0.751632\pi\)
−0.710722 + 0.703473i \(0.751632\pi\)
\(258\) 10.3492 17.9254i 0.644316 1.11599i
\(259\) 0 0
\(260\) 0.380571 + 3.12250i 0.0236020 + 0.193649i
\(261\) −3.45416 5.98279i −0.213807 0.370325i
\(262\) 11.0896 + 19.2077i 0.685118 + 1.18666i
\(263\) 6.71110 + 11.6240i 0.413824 + 0.716765i 0.995304 0.0967960i \(-0.0308594\pi\)
−0.581480 + 0.813561i \(0.697526\pi\)
\(264\) 25.5369 44.2311i 1.57168 2.72224i
\(265\) 27.6780 1.70024
\(266\) 0 0
\(267\) −12.4542 21.5712i −0.762182 1.32014i
\(268\) 0.151388 + 0.262211i 0.00924748 + 0.0160171i
\(269\) 9.51680 0.580249 0.290125 0.956989i \(-0.406303\pi\)
0.290125 + 0.956989i \(0.406303\pi\)
\(270\) 12.4542 + 21.5712i 0.757936 + 1.31278i
\(271\) 29.6870 1.80336 0.901678 0.432409i \(-0.142336\pi\)
0.901678 + 0.432409i \(0.142336\pi\)
\(272\) 2.88145 0.174714
\(273\) 0 0
\(274\) −3.51388 −0.212281
\(275\) −19.5139 −1.17673
\(276\) 2.88145 + 4.99082i 0.173443 + 0.300412i
\(277\) 14.2111 0.853862 0.426931 0.904284i \(-0.359595\pi\)
0.426931 + 0.904284i \(0.359595\pi\)
\(278\) 11.0896 + 19.2077i 0.665110 + 1.15200i
\(279\) −2.31316 4.00651i −0.138485 0.239864i
\(280\) 0 0
\(281\) 2.18335 0.130248 0.0651238 0.997877i \(-0.479256\pi\)
0.0651238 + 0.997877i \(0.479256\pi\)
\(282\) −23.2708 + 40.3062i −1.38576 + 2.40020i
\(283\) −2.00902 3.47972i −0.119424 0.206848i 0.800116 0.599846i \(-0.204771\pi\)
−0.919539 + 0.392998i \(0.871438\pi\)
\(284\) 0.605551 + 1.04885i 0.0359329 + 0.0622375i
\(285\) −11.9620 20.7188i −0.708570 1.22728i
\(286\) −3.35766 27.5489i −0.198543 1.62900i
\(287\) 0 0
\(288\) 4.50000 7.79423i 0.265165 0.459279i
\(289\) −16.2389 −0.955227
\(290\) −4.89047 −0.287178
\(291\) 11.1972 19.3942i 0.656393 1.13691i
\(292\) −0.872434 + 1.51110i −0.0510553 + 0.0884304i
\(293\) −1.74487 3.02220i −0.101936 0.176559i 0.810546 0.585675i \(-0.199170\pi\)
−0.912482 + 0.409116i \(0.865837\pi\)
\(294\) 0 0
\(295\) −9.55971 16.5579i −0.556588 0.964039i
\(296\) 4.18335 0.243152
\(297\) 19.6019 + 33.9515i 1.13742 + 1.97006i
\(298\) 0.334734 0.579776i 0.0193906 0.0335855i
\(299\) 21.9150 + 9.32544i 1.26738 + 0.539304i
\(300\) −2.88145 −0.166361
\(301\) 0 0
\(302\) −4.04584 + 7.00759i −0.232812 + 0.403242i
\(303\) 12.4542 21.5712i 0.715473 1.23924i
\(304\) 4.75840 8.24179i 0.272913 0.472699i
\(305\) 16.6056 0.950831
\(306\) −3.01353 + 5.21959i −0.172272 + 0.298384i
\(307\) 15.2797 0.872059 0.436029 0.899932i \(-0.356384\pi\)
0.436029 + 0.899932i \(0.356384\pi\)
\(308\) 0 0
\(309\) −7.04584 + 12.2037i −0.400824 + 0.694247i
\(310\) −3.27502 −0.186009
\(311\) 8.51229 14.7437i 0.482687 0.836039i −0.517115 0.855916i \(-0.672994\pi\)
0.999802 + 0.0198768i \(0.00632739\pi\)
\(312\) −3.77082 30.9387i −0.213480 1.75156i
\(313\) −6.63534 11.4927i −0.375052 0.649609i 0.615283 0.788306i \(-0.289042\pi\)
−0.990335 + 0.138698i \(0.955708\pi\)
\(314\) 6.19912 10.7372i 0.349837 0.605935i
\(315\) 0 0
\(316\) 0.0916731 + 0.158782i 0.00515701 + 0.00893221i
\(317\) −4.10555 7.11102i −0.230591 0.399395i 0.727391 0.686223i \(-0.240733\pi\)
−0.957982 + 0.286828i \(0.907399\pi\)
\(318\) −36.0582 −2.02204
\(319\) −7.69722 −0.430962
\(320\) −12.7024 22.0012i −0.710085 1.22990i
\(321\) −13.4028 23.2143i −0.748069 1.29569i
\(322\) 0 0
\(323\) 1.25694 2.17708i 0.0699380 0.121136i
\(324\) 0.486122 + 0.841988i 0.0270068 + 0.0467771i
\(325\) −9.51680 + 7.15813i −0.527897 + 0.397062i
\(326\) −11.2111 + 19.4182i −0.620926 + 1.07547i
\(327\) −17.8970 −0.989707
\(328\) −11.2617 + 19.5058i −0.621821 + 1.07703i
\(329\) 0 0
\(330\) 63.9083 3.51804
\(331\) −0.348612 + 0.603814i −0.0191615 + 0.0331886i −0.875447 0.483314i \(-0.839433\pi\)
0.856286 + 0.516503i \(0.172766\pi\)
\(332\) 2.00902 0.110259
\(333\) −3.69722 + 6.40378i −0.202607 + 0.350925i
\(334\) 3.18559 5.51761i 0.174308 0.301910i
\(335\) −1.44073 + 2.49541i −0.0787153 + 0.136339i
\(336\) 0 0
\(337\) −7.11943 −0.387820 −0.193910 0.981019i \(-0.562117\pi\)
−0.193910 + 0.981019i \(0.562117\pi\)
\(338\) −11.7431 12.2037i −0.638738 0.663796i
\(339\) 21.3468 36.9737i 1.15940 2.00813i
\(340\) −0.380571 0.659168i −0.0206393 0.0357484i
\(341\) −5.15463 −0.279139
\(342\) 9.95301 + 17.2391i 0.538197 + 0.932185i
\(343\) 0 0
\(344\) −8.27082 14.3255i −0.445933 0.772378i
\(345\) −27.4222 + 47.4967i −1.47636 + 2.55713i
\(346\) 15.5838 26.9920i 0.837793 1.45110i
\(347\) 0.788897 0.0423502 0.0211751 0.999776i \(-0.493259\pi\)
0.0211751 + 0.999776i \(0.493259\pi\)
\(348\) −1.13659 −0.0609274
\(349\) −11.9620 + 20.7188i −0.640313 + 1.10905i 0.345050 + 0.938584i \(0.387862\pi\)
−0.985363 + 0.170470i \(0.945471\pi\)
\(350\) 0 0
\(351\) 22.0139 + 9.36750i 1.17501 + 0.500000i
\(352\) −5.01388 8.68429i −0.267241 0.462874i
\(353\) −3.18559 5.51761i −0.169552 0.293673i 0.768710 0.639597i \(-0.220899\pi\)
−0.938262 + 0.345924i \(0.887565\pi\)
\(354\) 12.4542 + 21.5712i 0.661931 + 1.14650i
\(355\) −5.76291 + 9.98165i −0.305863 + 0.529771i
\(356\) −2.61730 −0.138717
\(357\) 0 0
\(358\) 9.37637 + 16.2403i 0.495556 + 0.858329i
\(359\) 11.4542 + 19.8392i 0.604528 + 1.04707i 0.992126 + 0.125244i \(0.0399714\pi\)
−0.387598 + 0.921828i \(0.626695\pi\)
\(360\) 45.8391 2.41593
\(361\) 5.34861 + 9.26407i 0.281506 + 0.487583i
\(362\) −12.0541 −0.633550
\(363\) 68.8907 3.61583
\(364\) 0 0
\(365\) −16.6056 −0.869174
\(366\) −21.6333 −1.13079
\(367\) 14.1431 + 24.4966i 0.738265 + 1.27871i 0.953276 + 0.302100i \(0.0976878\pi\)
−0.215011 + 0.976612i \(0.568979\pi\)
\(368\) −21.8167 −1.13727
\(369\) −19.9060 34.4782i −1.03627 1.79487i
\(370\) 2.61730 + 4.53330i 0.136067 + 0.235675i
\(371\) 0 0
\(372\) −0.761141 −0.0394633
\(373\) 8.15139 14.1186i 0.422063 0.731034i −0.574078 0.818800i \(-0.694639\pi\)
0.996141 + 0.0877661i \(0.0279728\pi\)
\(374\) 3.35766 + 5.81564i 0.173620 + 0.300719i
\(375\) 7.04584 + 12.2037i 0.363845 + 0.630199i
\(376\) 18.5974 + 32.2116i 0.959086 + 1.66119i
\(377\) −3.75389 + 2.82352i −0.193335 + 0.145418i
\(378\) 0 0
\(379\) −6.55971 + 11.3618i −0.336950 + 0.583614i −0.983857 0.178954i \(-0.942729\pi\)
0.646908 + 0.762568i \(0.276062\pi\)
\(380\) −2.51388 −0.128959
\(381\) −8.38021 −0.429331
\(382\) 12.5736 21.7781i 0.643321 1.11426i
\(383\) 9.64887 16.7123i 0.493034 0.853960i −0.506934 0.861985i \(-0.669221\pi\)
0.999968 + 0.00802473i \(0.00255438\pi\)
\(384\) 11.6579 + 20.1921i 0.594914 + 1.03042i
\(385\) 0 0
\(386\) −1.18335 2.04962i −0.0602307 0.104323i
\(387\) 29.2389 1.48629
\(388\) −1.17658 2.03789i −0.0597316 0.103458i
\(389\) 3.51388 6.08622i 0.178161 0.308583i −0.763090 0.646292i \(-0.776319\pi\)
0.941251 + 0.337709i \(0.109652\pi\)
\(390\) 31.1677 23.4430i 1.57824 1.18708i
\(391\) −5.76291 −0.291443
\(392\) 0 0
\(393\) −24.5278 + 42.4833i −1.23726 + 2.14300i
\(394\) −7.75694 + 13.4354i −0.390789 + 0.676866i
\(395\) −0.872434 + 1.51110i −0.0438969 + 0.0760317i
\(396\) 9.48612 0.476696
\(397\) −2.88145 + 4.99082i −0.144616 + 0.250482i −0.929230 0.369503i \(-0.879528\pi\)
0.784614 + 0.619985i \(0.212861\pi\)
\(398\) −1.13659 −0.0569719
\(399\) 0 0
\(400\) 5.45416 9.44689i 0.272708 0.472344i
\(401\) 15.1194 0.755028 0.377514 0.926004i \(-0.376779\pi\)
0.377514 + 0.926004i \(0.376779\pi\)
\(402\) 1.87694 3.25096i 0.0936135 0.162143i
\(403\) −2.51388 + 1.89083i −0.125225 + 0.0941891i
\(404\) −1.30865 2.26665i −0.0651078 0.112770i
\(405\) −4.62632 + 8.01302i −0.229884 + 0.398170i
\(406\) 0 0
\(407\) 4.11943 + 7.13506i 0.204193 + 0.353672i
\(408\) 3.77082 + 6.53125i 0.186683 + 0.323345i
\(409\) −16.1521 −0.798672 −0.399336 0.916805i \(-0.630759\pi\)
−0.399336 + 0.916805i \(0.630759\pi\)
\(410\) −28.1833 −1.39188
\(411\) −3.88596 6.73069i −0.191680 0.332000i
\(412\) 0.740358 + 1.28234i 0.0364748 + 0.0631763i
\(413\) 0 0
\(414\) 22.8167 39.5196i 1.12138 1.94228i
\(415\) 9.55971 + 16.5579i 0.469268 + 0.812796i
\(416\) −5.63083 2.39607i −0.276074 0.117477i
\(417\) −24.5278 + 42.4833i −1.20113 + 2.08042i
\(418\) 22.1792 1.08482
\(419\) −4.19010 + 7.25747i −0.204700 + 0.354551i −0.950037 0.312137i \(-0.898955\pi\)
0.745337 + 0.666688i \(0.232289\pi\)
\(420\) 0 0
\(421\) −31.0278 −1.51220 −0.756100 0.654456i \(-0.772898\pi\)
−0.756100 + 0.654456i \(0.772898\pi\)
\(422\) 9.77082 16.9236i 0.475636 0.823826i
\(423\) −65.7451 −3.19664
\(424\) −14.4083 + 24.9560i −0.699730 + 1.21197i
\(425\) 1.44073 2.49541i 0.0698855 0.121045i
\(426\) 7.50778 13.0038i 0.363753 0.630039i
\(427\) 0 0
\(428\) −2.81665 −0.136148
\(429\) 49.0555 36.8975i 2.36842 1.78143i
\(430\) 10.3492 17.9254i 0.499085 0.864440i
\(431\) −12.9680 22.4613i −0.624649 1.08192i −0.988609 0.150509i \(-0.951909\pi\)
0.363960 0.931415i \(-0.381424\pi\)
\(432\) −21.9150 −1.05439
\(433\) 4.19010 + 7.25747i 0.201364 + 0.348772i 0.948968 0.315372i \(-0.102129\pi\)
−0.747604 + 0.664144i \(0.768796\pi\)
\(434\) 0 0
\(435\) −5.40833 9.36750i −0.259309 0.449137i
\(436\) −0.940285 + 1.62862i −0.0450315 + 0.0779968i
\(437\) −9.51680 + 16.4836i −0.455250 + 0.788516i
\(438\) 21.6333 1.03368
\(439\) −15.2797 −0.729260 −0.364630 0.931152i \(-0.618805\pi\)
−0.364630 + 0.931152i \(0.618805\pi\)
\(440\) 25.5369 44.2311i 1.21742 2.10864i
\(441\) 0 0
\(442\) 3.77082 + 1.60458i 0.179359 + 0.0763223i
\(443\) −15.1194 26.1876i −0.718346 1.24421i −0.961655 0.274263i \(-0.911566\pi\)
0.243309 0.969949i \(-0.421767\pi\)
\(444\) 0.608282 + 1.05358i 0.0288678 + 0.0500005i
\(445\) −12.4542 21.5712i −0.590384 1.02258i
\(446\) −8.81643 + 15.2705i −0.417470 + 0.723079i
\(447\) 1.48072 0.0700355
\(448\) 0 0
\(449\) −4.21110 7.29384i −0.198734 0.344218i 0.749384 0.662136i \(-0.230350\pi\)
−0.948118 + 0.317918i \(0.897016\pi\)
\(450\) 11.4083 + 19.7598i 0.537794 + 0.931486i
\(451\) −44.3584 −2.08876
\(452\) −2.24306 3.88510i −0.105505 0.182740i
\(453\) −17.8970 −0.840875
\(454\) −35.7140 −1.67614
\(455\) 0 0
\(456\) 24.9083 1.16644
\(457\) 13.3944 0.626566 0.313283 0.949660i \(-0.398571\pi\)
0.313283 + 0.949660i \(0.398571\pi\)
\(458\) 13.5348 + 23.4430i 0.632441 + 1.09542i
\(459\) −5.78890 −0.270203
\(460\) 2.88145 + 4.99082i 0.134348 + 0.232698i
\(461\) 6.33120 + 10.9660i 0.294873 + 0.510736i 0.974955 0.222400i \(-0.0713892\pi\)
−0.680082 + 0.733136i \(0.738056\pi\)
\(462\) 0 0
\(463\) −28.2111 −1.31108 −0.655541 0.755160i \(-0.727559\pi\)
−0.655541 + 0.755160i \(0.727559\pi\)
\(464\) 2.15139 3.72631i 0.0998757 0.172990i
\(465\) −3.62181 6.27316i −0.167958 0.290911i
\(466\) −15.5736 26.9743i −0.721433 1.24956i
\(467\) 7.07156 + 12.2483i 0.327233 + 0.566784i 0.981962 0.189080i \(-0.0605506\pi\)
−0.654729 + 0.755864i \(0.727217\pi\)
\(468\) 4.62632 3.47972i 0.213852 0.160850i
\(469\) 0 0
\(470\) −23.2708 + 40.3062i −1.07340 + 1.85919i
\(471\) 27.4222 1.26355
\(472\) 19.9060 0.916249
\(473\) 16.2889 28.2132i 0.748964 1.29724i
\(474\) 1.13659 1.96862i 0.0522051 0.0904219i
\(475\) −4.75840 8.24179i −0.218330 0.378159i
\(476\) 0 0
\(477\) −25.4680 44.1119i −1.16610 2.01975i
\(478\) −15.1194 −0.691547
\(479\) 0.568293 + 0.984312i 0.0259660 + 0.0449744i 0.878716 0.477344i \(-0.158401\pi\)
−0.852750 + 0.522319i \(0.825067\pi\)
\(480\) 7.04584 12.2037i 0.321597 0.557022i
\(481\) 4.62632 + 1.96862i 0.210942 + 0.0897615i
\(482\) 2.61730 0.119215
\(483\) 0 0
\(484\) 3.61943 6.26904i 0.164520 0.284956i
\(485\) 11.1972 19.3942i 0.508440 0.880644i
\(486\) −6.93948 + 12.0195i −0.314781 + 0.545217i
\(487\) −27.6972 −1.25508 −0.627541 0.778584i \(-0.715938\pi\)
−0.627541 + 0.778584i \(0.715938\pi\)
\(488\) −8.64436 + 14.9725i −0.391312 + 0.677772i
\(489\) −49.5930 −2.24267
\(490\) 0 0
\(491\) 6.36249 11.0202i 0.287135 0.497333i −0.685990 0.727611i \(-0.740630\pi\)
0.973125 + 0.230279i \(0.0739638\pi\)
\(492\) −6.55004 −0.295299
\(493\) 0.568293 0.984312i 0.0255946 0.0443312i
\(494\) 10.8167 8.13583i 0.486664 0.366048i
\(495\) 45.1387 + 78.1826i 2.02884 + 3.51405i
\(496\) 1.44073 2.49541i 0.0646905 0.112047i
\(497\) 0 0
\(498\) −12.4542 21.5712i −0.558084 0.966631i
\(499\) −15.6653 27.1330i −0.701274 1.21464i −0.968020 0.250875i \(-0.919282\pi\)
0.266746 0.963767i \(-0.414052\pi\)
\(500\) 1.48072 0.0662196
\(501\) 14.0917 0.629570
\(502\) −14.6714 25.4116i −0.654818 1.13418i
\(503\) 12.9665 + 22.4587i 0.578150 + 1.00138i 0.995692 + 0.0927268i \(0.0295583\pi\)
−0.417542 + 0.908658i \(0.637108\pi\)
\(504\) 0 0
\(505\) 12.4542 21.5712i 0.554203 0.959908i
\(506\) −25.4222 44.0326i −1.13015 1.95749i
\(507\) 10.3892 35.9893i 0.461402 1.59834i
\(508\) −0.440285 + 0.762596i −0.0195345 + 0.0338347i
\(509\) −2.61730 −0.116010 −0.0580049 0.998316i \(-0.518474\pi\)
−0.0580049 + 0.998316i \(0.518474\pi\)
\(510\) −4.71841 + 8.17252i −0.208935 + 0.361885i
\(511\) 0 0
\(512\) 25.4222 1.12351
\(513\) −9.55971 + 16.5579i −0.422072 + 0.731050i
\(514\) 29.6870 1.30944
\(515\) −7.04584 + 12.2037i −0.310477 + 0.537761i
\(516\) 2.40525 4.16601i 0.105885 0.183398i
\(517\) −36.6265 + 63.4389i −1.61083 + 2.79004i
\(518\) 0 0
\(519\) 68.9361 3.02596
\(520\) −3.77082 30.9387i −0.165361 1.35675i
\(521\) 14.4073 24.9541i 0.631194 1.09326i −0.356114 0.934442i \(-0.615899\pi\)
0.987308 0.158817i \(-0.0507681\pi\)
\(522\) 4.50000 + 7.79423i 0.196960 + 0.341144i
\(523\) −9.25264 −0.404590 −0.202295 0.979325i \(-0.564840\pi\)
−0.202295 + 0.979325i \(0.564840\pi\)
\(524\) 2.57731 + 4.46404i 0.112590 + 0.195012i
\(525\) 0 0
\(526\) −8.74306 15.1434i −0.381216 0.660285i
\(527\) 0.380571 0.659168i 0.0165779 0.0287138i
\(528\) −28.1142 + 48.6952i −1.22351 + 2.11919i
\(529\) 20.6333 0.897100
\(530\) −36.0582 −1.56627
\(531\) −17.5929 + 30.4717i −0.763465 + 1.32236i
\(532\) 0 0
\(533\) −21.6333 + 16.2717i −0.937043 + 0.704804i
\(534\) 16.2250 + 28.1025i 0.702124 + 1.21611i
\(535\) −13.4028 23.2143i −0.579452 1.00364i
\(536\) −1.50000 2.59808i −0.0647901 0.112220i
\(537\) −20.7385 + 35.9201i −0.894931 + 1.55007i
\(538\) −12.3982 −0.534526
\(539\) 0 0
\(540\) 2.89445 + 5.01333i 0.124557 + 0.215739i
\(541\) 9.46804 + 16.3991i 0.407063 + 0.705054i 0.994559 0.104173i \(-0.0332196\pi\)
−0.587496 + 0.809227i \(0.699886\pi\)
\(542\) −38.6755 −1.66125
\(543\) −13.3305 23.0892i −0.572068 0.990851i
\(544\) 1.48072 0.0634852
\(545\) −17.8970 −0.766623
\(546\) 0 0
\(547\) 29.0000 1.23995 0.619975 0.784621i \(-0.287143\pi\)
0.619975 + 0.784621i \(0.287143\pi\)
\(548\) −0.816654 −0.0348857
\(549\) −15.2797 26.4652i −0.652122 1.12951i
\(550\) 25.4222 1.08401
\(551\) −1.87694 3.25096i −0.0799605 0.138496i
\(552\) −28.5504 49.4507i −1.21519 2.10476i
\(553\) 0 0
\(554\) −18.5139 −0.786579
\(555\) −5.78890 + 10.0267i −0.245725 + 0.425608i
\(556\) 2.57731 + 4.46404i 0.109302 + 0.189317i
\(557\) −8.45416 14.6430i −0.358214 0.620446i 0.629448 0.777042i \(-0.283281\pi\)
−0.987663 + 0.156597i \(0.949948\pi\)
\(558\) 3.01353 + 5.21959i 0.127573 + 0.220963i
\(559\) −2.40525 19.7345i −0.101731 0.834682i
\(560\) 0 0
\(561\) −7.42641 + 12.8629i −0.313543 + 0.543073i
\(562\) −2.84441 −0.119984
\(563\) −19.0336 −0.802170 −0.401085 0.916041i \(-0.631367\pi\)
−0.401085 + 0.916041i \(0.631367\pi\)
\(564\) −5.40833 + 9.36750i −0.227732 + 0.394443i
\(565\) 21.3468 36.9737i 0.898065 1.55549i
\(566\) 2.61730 + 4.53330i 0.110013 + 0.190549i
\(567\) 0 0
\(568\) −6.00000 10.3923i −0.251754 0.436051i
\(569\) −27.3944 −1.14844 −0.574218 0.818703i \(-0.694694\pi\)
−0.574218 + 0.818703i \(0.694694\pi\)
\(570\) 15.5838 + 26.9920i 0.652735 + 1.13057i
\(571\) −10.8625 + 18.8144i −0.454581 + 0.787358i −0.998664 0.0516739i \(-0.983544\pi\)
0.544083 + 0.839031i \(0.316878\pi\)
\(572\) −0.780347 6.40258i −0.0326280 0.267705i
\(573\) 55.6201 2.32356
\(574\) 0 0
\(575\) −10.9083 + 18.8938i −0.454909 + 0.787925i
\(576\) −23.3764 + 40.4891i −0.974015 + 1.68704i
\(577\) −16.8525 + 29.1894i −0.701579 + 1.21517i 0.266333 + 0.963881i \(0.414188\pi\)
−0.967912 + 0.251289i \(0.919145\pi\)
\(578\) 21.1556 0.879957
\(579\) 2.61730 4.53330i 0.108771 0.188398i
\(580\) −1.13659 −0.0471942
\(581\) 0 0
\(582\) −14.5875 + 25.2662i −0.604670 + 1.04732i
\(583\) −56.7527 −2.35046
\(584\) 8.64436 14.9725i 0.357706 0.619565i
\(585\) 50.6930 + 21.5712i 2.09590 + 0.891861i
\(586\) 2.27317 + 3.93725i 0.0939038 + 0.162646i
\(587\) 14.2752 24.7254i 0.589200 1.02052i −0.405137 0.914256i \(-0.632776\pi\)
0.994337 0.106269i \(-0.0338904\pi\)
\(588\) 0 0
\(589\) −1.25694 2.17708i −0.0517913 0.0897051i
\(590\) 12.4542 + 21.5712i 0.512730 + 0.888074i
\(591\) −34.3133 −1.41146
\(592\) −4.60555 −0.189287
\(593\) 11.3937 + 19.7345i 0.467885 + 0.810400i 0.999327 0.0366946i \(-0.0116829\pi\)
−0.531442 + 0.847095i \(0.678350\pi\)
\(594\) −25.5369 44.2311i −1.04779 1.81483i
\(595\) 0 0
\(596\) 0.0777949 0.134745i 0.00318660 0.00551936i
\(597\) −1.25694 2.17708i −0.0514431 0.0891020i
\(598\) −28.5504 12.1490i −1.16751 0.496808i
\(599\) −3.75694 + 6.50721i −0.153504 + 0.265877i −0.932513 0.361135i \(-0.882389\pi\)
0.779009 + 0.627013i \(0.215723\pi\)
\(600\) 28.5504 1.16556
\(601\) 14.7114 25.4809i 0.600091 1.03939i −0.392716 0.919660i \(-0.628464\pi\)
0.992807 0.119728i \(-0.0382023\pi\)
\(602\) 0 0
\(603\) 5.30278 0.215946
\(604\) −0.940285 + 1.62862i −0.0382597 + 0.0662677i
\(605\) 68.8907 2.80081
\(606\) −16.2250 + 28.1025i −0.659095 + 1.14159i
\(607\) −10.2172 + 17.6966i −0.414702 + 0.718285i −0.995397 0.0958363i \(-0.969447\pi\)
0.580695 + 0.814121i \(0.302781\pi\)
\(608\) 2.44524 4.23527i 0.0991674 0.171763i
\(609\) 0 0
\(610\) −21.6333 −0.875907
\(611\) 5.40833 + 44.3742i 0.218797 + 1.79519i
\(612\) −0.700369 + 1.21307i −0.0283107 + 0.0490356i
\(613\) −10.5458 18.2659i −0.425942 0.737754i 0.570566 0.821252i \(-0.306724\pi\)
−0.996508 + 0.0834983i \(0.973391\pi\)
\(614\) −19.9060 −0.803342
\(615\) −31.1677 53.9840i −1.25680 2.17685i
\(616\) 0 0
\(617\) 20.9222 + 36.2383i 0.842296 + 1.45890i 0.887949 + 0.459943i \(0.152130\pi\)
−0.0456524 + 0.998957i \(0.514537\pi\)
\(618\) 9.17914 15.8987i 0.369239 0.639541i
\(619\) −11.2617 + 19.5058i −0.452644 + 0.784003i −0.998549 0.0538439i \(-0.982853\pi\)
0.545905 + 0.837847i \(0.316186\pi\)
\(620\) −0.761141 −0.0305682
\(621\) 43.8301 1.75884
\(622\) −11.0896 + 19.2077i −0.444652 + 0.770160i
\(623\) 0 0
\(624\) 4.15139 + 34.0612i 0.166189 + 1.36354i
\(625\) 15.3028 + 26.5052i 0.612111 + 1.06021i
\(626\) 8.64436 + 14.9725i 0.345498 + 0.598420i
\(627\) 24.5278 + 42.4833i 0.979544 + 1.69662i
\(628\) 1.44073 2.49541i 0.0574913 0.0995778i
\(629\) −1.21656 −0.0485076
\(630\) 0 0
\(631\) −6.04584 10.4717i −0.240681 0.416872i 0.720227 0.693738i \(-0.244037\pi\)
−0.960908 + 0.276866i \(0.910704\pi\)
\(632\) −0.908327 1.57327i −0.0361313 0.0625813i
\(633\) 43.2218 1.71791
\(634\) 5.34861 + 9.26407i 0.212421 + 0.367923i
\(635\) −8.38021 −0.332558
\(636\) −8.38021 −0.332297
\(637\) 0 0
\(638\) 10.0278 0.397003
\(639\) 21.2111 0.839098
\(640\) 11.6579 + 20.1921i 0.460819 + 0.798161i
\(641\) 3.51388 0.138790 0.0693949 0.997589i \(-0.477893\pi\)
0.0693949 + 0.997589i \(0.477893\pi\)
\(642\) 17.4608 + 30.2430i 0.689122 + 1.19359i
\(643\) 4.19010 + 7.25747i 0.165242 + 0.286207i 0.936741 0.350023i \(-0.113826\pi\)
−0.771499 + 0.636230i \(0.780493\pi\)
\(644\) 0 0
\(645\) 45.7805 1.80261
\(646\) −1.63751 + 2.83625i −0.0644270 + 0.111591i
\(647\) 1.13659 + 1.96862i 0.0446838 + 0.0773946i 0.887502 0.460803i \(-0.152439\pi\)
−0.842819 + 0.538198i \(0.819105\pi\)
\(648\) −4.81665 8.34269i −0.189216 0.327732i
\(649\) 19.6019 + 33.9515i 0.769441 + 1.33271i
\(650\) 12.3982 9.32544i 0.486299 0.365774i
\(651\) 0 0
\(652\) −2.60555 + 4.51295i −0.102041 + 0.176741i
\(653\) 21.7527 0.851250 0.425625 0.904900i \(-0.360054\pi\)
0.425625 + 0.904900i \(0.360054\pi\)
\(654\) 23.3158 0.911719
\(655\) −24.5278 + 42.4833i −0.958379 + 1.65996i
\(656\) 12.3982 21.4744i 0.484070 0.838434i
\(657\) 15.2797 + 26.4652i 0.596118 + 1.03251i
\(658\) 0 0
\(659\) −11.8167 20.4670i −0.460311 0.797283i 0.538665 0.842520i \(-0.318929\pi\)
−0.998976 + 0.0452373i \(0.985596\pi\)
\(660\) 14.8528 0.578145
\(661\) 4.89047 + 8.47055i 0.190217 + 0.329466i 0.945322 0.326138i \(-0.105747\pi\)
−0.755105 + 0.655604i \(0.772414\pi\)
\(662\) 0.454163 0.786634i 0.0176516 0.0305734i
\(663\) 1.09660 + 8.99734i 0.0425883 + 0.349428i
\(664\) −19.9060 −0.772504
\(665\) 0 0
\(666\) 4.81665 8.34269i 0.186642 0.323273i
\(667\) −4.30278 + 7.45263i −0.166604 + 0.288567i
\(668\) 0.740358 1.28234i 0.0286453 0.0496151i
\(669\) −39.0000 −1.50783
\(670\) 1.87694 3.25096i 0.0725127 0.125596i
\(671\) −34.0491 −1.31445
\(672\) 0 0
\(673\) −6.10555 + 10.5751i −0.235352 + 0.407641i −0.959375 0.282135i \(-0.908958\pi\)
0.724023 + 0.689776i \(0.242291\pi\)
\(674\) 9.27502 0.357260
\(675\) −10.9575 + 18.9790i −0.421755 + 0.730501i
\(676\) −2.72918 2.83625i −0.104969 0.109087i
\(677\) −3.18559 5.51761i −0.122432 0.212059i 0.798294 0.602268i \(-0.205736\pi\)
−0.920726 + 0.390209i \(0.872403\pi\)
\(678\) −27.8100 + 48.1684i −1.06804 + 1.84990i
\(679\) 0 0
\(680\) 3.77082 + 6.53125i 0.144604 + 0.250462i
\(681\) −39.4958 68.4087i −1.51348 2.62143i
\(682\) 6.71532 0.257143
\(683\) 3.60555 0.137963 0.0689813 0.997618i \(-0.478025\pi\)
0.0689813 + 0.997618i \(0.478025\pi\)
\(684\) 2.31316 + 4.00651i 0.0884459 + 0.153193i
\(685\) −3.88596 6.73069i −0.148475 0.257166i
\(686\) 0 0
\(687\) −29.9361 + 51.8508i −1.14213 + 1.97823i
\(688\) 9.10555 + 15.7713i 0.347146 + 0.601274i
\(689\) −27.6780 + 20.8182i −1.05445 + 0.793110i
\(690\) 35.7250 61.8775i 1.36003 2.35564i
\(691\) 32.9126 1.25205 0.626026 0.779802i \(-0.284680\pi\)
0.626026 + 0.779802i \(0.284680\pi\)
\(692\) 3.62181 6.27316i 0.137681 0.238470i
\(693\) 0 0
\(694\) −1.02776 −0.0390131
\(695\) −24.5278 + 42.4833i −0.930391 + 1.61148i
\(696\) 11.2617 0.426872
\(697\) 3.27502 5.67250i 0.124050 0.214861i
\(698\) 15.5838 26.9920i 0.589857 1.02166i
\(699\) 34.4454 59.6611i 1.30284 2.25659i
\(700\) 0 0
\(701\) −27.0278 −1.02082 −0.510412 0.859930i \(-0.670507\pi\)
−0.510412 + 0.859930i \(0.670507\pi\)
\(702\) −28.6791 12.2037i −1.08242 0.460601i
\(703\) −2.00902 + 3.47972i −0.0757716 + 0.131240i
\(704\) 26.0458 + 45.1127i 0.981639 + 1.70025i
\(705\) −102.940 −3.87694
\(706\) 4.15012 + 7.18821i 0.156192 + 0.270532i
\(707\) 0 0
\(708\) 2.89445 + 5.01333i 0.108780 + 0.188413i
\(709\) −0.137510 + 0.238174i −0.00516428 + 0.00894480i −0.868596 0.495521i \(-0.834977\pi\)
0.863432 + 0.504466i \(0.168311\pi\)
\(710\) 7.50778 13.0038i 0.281762 0.488026i
\(711\) 3.21110 0.120426
\(712\) 25.9331 0.971883
\(713\) −2.88145 + 4.99082i −0.107911 + 0.186908i
\(714\) 0 0
\(715\) 49.0555 36.8975i 1.83457 1.37989i
\(716\) 2.17914 + 3.77439i 0.0814384 + 0.141056i
\(717\) −16.7204 28.9606i −0.624436 1.08155i
\(718\) −14.9222 25.8460i −0.556892 0.964565i
\(719\) −10.8254 + 18.7502i −0.403721 + 0.699265i −0.994172 0.107808i \(-0.965617\pi\)
0.590451 + 0.807074i \(0.298950\pi\)
\(720\) −50.4654 −1.88074
\(721\) 0 0
\(722\) −6.96804 12.0690i −0.259324 0.449162i
\(723\) 2.89445 + 5.01333i 0.107646 + 0.186448i
\(724\) −2.80148 −0.104116
\(725\) −2.15139 3.72631i −0.0799005 0.138392i
\(726\) −89.7492 −3.33090
\(727\) −23.3958 −0.867701 −0.433850 0.900985i \(-0.642845\pi\)
−0.433850 + 0.900985i \(0.642845\pi\)
\(728\) 0 0
\(729\) −40.3305 −1.49372
\(730\) 21.6333 0.800685
\(731\) 2.40525 + 4.16601i 0.0889613 + 0.154085i
\(732\) −5.02776 −0.185831
\(733\) 20.0381 + 34.7070i 0.740124 + 1.28193i 0.952438 + 0.304731i \(0.0985666\pi\)
−0.212314 + 0.977201i \(0.568100\pi\)
\(734\) −18.4253 31.9136i −0.680091 1.17795i
\(735\) 0 0
\(736\) −11.2111 −0.413247
\(737\) 2.95416 5.11676i 0.108818 0.188478i
\(738\) 25.9331 + 44.9174i 0.954610 + 1.65343i
\(739\) 9.39445 + 16.2717i 0.345580 + 0.598563i 0.985459 0.169913i \(-0.0543487\pi\)
−0.639879 + 0.768476i \(0.721015\pi\)
\(740\) 0.608282 + 1.05358i 0.0223609 + 0.0387302i
\(741\) 27.5459 + 11.7215i 1.01192 + 0.430600i
\(742\) 0 0
\(743\) 18.8486 32.6468i 0.691489 1.19769i −0.279862 0.960040i \(-0.590289\pi\)
0.971350 0.237653i \(-0.0763781\pi\)
\(744\) 7.54163 0.276490
\(745\) 1.48072 0.0542492
\(746\) −10.6194 + 18.3934i −0.388805 + 0.673430i
\(747\) 17.5929 30.4717i 0.643689 1.11490i
\(748\) 0.780347 + 1.35160i 0.0285323 + 0.0494194i
\(749\) 0 0
\(750\) −9.17914 15.8987i −0.335175 0.580540i
\(751\) −4.39445 −0.160356 −0.0801779 0.996781i \(-0.525549\pi\)
−0.0801779 + 0.996781i \(0.525549\pi\)
\(752\) −20.4743 35.4626i −0.746622 1.29319i
\(753\) 32.4500 56.2050i 1.18254 2.04822i
\(754\) 4.89047 3.67841i 0.178101 0.133960i
\(755\) −17.8970 −0.651339
\(756\) 0 0
\(757\) 22.1194 38.3120i 0.803944 1.39247i −0.113057 0.993588i \(-0.536064\pi\)
0.917001 0.398884i \(-0.130602\pi\)
\(758\) 8.54584 14.8018i 0.310399 0.537626i
\(759\) 56.2283 97.3903i 2.04096 3.53505i
\(760\) 24.9083 0.903520
\(761\) 2.14110 3.70849i 0.0776147 0.134433i −0.824606 0.565708i \(-0.808603\pi\)
0.902220 + 0.431275i \(0.141936\pi\)
\(762\) 10.9175 0.395500
\(763\) 0 0
\(764\) 2.92221 5.06141i 0.105722 0.183115i
\(765\) −13.3305 −0.481966
\(766\) −12.5703 + 21.7724i −0.454184 + 0.786670i
\(767\) 22.0139 + 9.36750i 0.794875 + 0.338241i
\(768\) 10.2172 + 17.6966i 0.368680 + 0.638573i
\(769\) 15.4518 26.7632i 0.557205 0.965107i −0.440523 0.897741i \(-0.645207\pi\)
0.997728 0.0673662i \(-0.0214596\pi\)
\(770\) 0 0
\(771\) 32.8305 + 56.8641i 1.18236 + 2.04791i
\(772\) −0.275019 0.476347i −0.00989816 0.0171441i
\(773\) −34.9216 −1.25604 −0.628021 0.778196i \(-0.716135\pi\)
−0.628021 + 0.778196i \(0.716135\pi\)
\(774\) −38.0917 −1.36918
\(775\) −1.44073 2.49541i −0.0517524 0.0896379i
\(776\) 11.6579 + 20.1921i 0.418494 + 0.724853i
\(777\) 0 0
\(778\) −4.57779 + 7.92897i −0.164122 + 0.284267i
\(779\) −10.8167 18.7350i −0.387547 0.671251i
\(780\) 7.24362 5.44835i 0.259363 0.195082i
\(781\) 11.8167 20.4670i 0.422833 0.732368i
\(782\) 7.50778 0.268478
\(783\) −4.32218 + 7.48624i −0.154462 + 0.267536i
\(784\) 0 0
\(785\) 27.4222 0.978740
\(786\) 31.9542 55.3462i 1.13977 1.97413i
\(787\) 41.5569 1.48134 0.740672 0.671867i \(-0.234507\pi\)
0.740672 + 0.671867i \(0.234507\pi\)
\(788\) −1.80278 + 3.12250i −0.0642212 + 0.111234i
\(789\) 19.3377 33.4939i 0.688441 1.19242i
\(790\) 1.13659 1.96862i 0.0404379 0.0700405i
\(791\) 0 0
\(792\) −93.9916 −3.33985
\(793\) −16.6056 + 12.4900i −0.589680 + 0.443533i
\(794\) 3.75389 6.50192i 0.133220 0.230745i
\(795\) −39.8764 69.0679i −1.41427 2.44959i
\(796\) −0.264152 −0.00936261
\(797\) −17.2887 29.9449i −0.612398 1.06070i −0.990835 0.135077i \(-0.956872\pi\)
0.378437 0.925627i \(-0.376462\pi\)
\(798\) 0 0
\(799\) −5.40833 9.36750i −0.191333 0.331398i
\(800\) 2.80278 4.85455i 0.0990931 0.171634i
\(801\) −22.9196 + 39.6978i −0.809823 + 1.40265i
\(802\) −19.6972 −0.695533
\(803\) 34.0491 1.20157
\(804\) 0.436217 0.755550i 0.0153842 0.0266462i
\(805\) 0 0
\(806\) 3.27502 2.46333i 0.115358 0.0867672i
\(807\) −13.7111 23.7483i −0.482654 0.835981i
\(808\) 12.9665 + 22.4587i 0.456161 + 0.790095i
\(809\) 8.01388 + 13.8804i 0.281753 + 0.488010i 0.971817 0.235738i \(-0.0757508\pi\)
−0.690064 + 0.723749i \(0.742417\pi\)
\(810\) 6.02706 10.4392i 0.211769 0.366795i
\(811\) 21.9150 0.769541 0.384771 0.923012i \(-0.374281\pi\)
0.384771 + 0.923012i \(0.374281\pi\)
\(812\) 0 0
\(813\) −42.7708 74.0812i −1.50004 2.59814i
\(814\) −5.36669 9.29538i −0.188102 0.325803i
\(815\) −49.5930 −1.73717
\(816\) −4.15139 7.19041i −0.145328 0.251715i
\(817\) 15.8880 0.555850
\(818\) 21.0426 0.735738
\(819\) 0 0
\(820\) −6.55004 −0.228737
\(821\) 1.84441 0.0643704 0.0321852 0.999482i \(-0.489753\pi\)
0.0321852 + 0.999482i \(0.489753\pi\)
\(822\) 5.06254 + 8.76857i 0.176576 + 0.305839i
\(823\) −44.2666 −1.54304 −0.771519 0.636207i \(-0.780503\pi\)
−0.771519 + 0.636207i \(0.780503\pi\)
\(824\) −7.33571 12.7058i −0.255552 0.442628i
\(825\) 28.1142 + 48.6952i 0.978810 + 1.69535i
\(826\) 0 0
\(827\) 51.7527 1.79962 0.899809 0.436283i \(-0.143705\pi\)
0.899809 + 0.436283i \(0.143705\pi\)
\(828\) 5.30278 9.18468i 0.184284 0.319190i
\(829\) 7.81192 + 13.5306i 0.271319 + 0.469938i 0.969200 0.246276i \(-0.0792068\pi\)
−0.697881 + 0.716214i \(0.745873\pi\)
\(830\) −12.4542 21.5712i −0.432290 0.748749i
\(831\) −20.4743 35.4626i −0.710246 1.23018i
\(832\) 29.2508 + 12.4470i 1.01409 + 0.431521i
\(833\) 0 0
\(834\) 31.9542 55.3462i 1.10648 1.91648i
\(835\) 14.0917 0.487662
\(836\) 5.15463 0.178276
\(837\) −2.89445 + 5.01333i −0.100047 + 0.173286i
\(838\) 5.45877 9.45486i 0.188570 0.326613i
\(839\) 11.8300 + 20.4901i 0.408415 + 0.707396i 0.994712 0.102700i \(-0.0327481\pi\)
−0.586297 + 0.810096i \(0.699415\pi\)
\(840\) 0 0
\(841\) 13.6514 + 23.6449i 0.470738 + 0.815341i
\(842\) 40.4222 1.39304
\(843\) −3.14561 5.44835i −0.108340 0.187651i
\(844\) 2.27082 3.93317i 0.0781648 0.135385i
\(845\) 10.3892 35.9893i 0.357400 1.23807i
\(846\) 85.6512 2.94475
\(847\) 0 0
\(848\) 15.8625 27.4746i 0.544720 0.943483i
\(849\) −5.78890 + 10.0267i −0.198674 + 0.344114i
\(850\) −1.87694 + 3.25096i −0.0643786 + 0.111507i
\(851\) 9.21110 0.315753
\(852\) 1.74487 3.02220i 0.0597782 0.103539i
\(853\) −14.1431 −0.484251 −0.242126 0.970245i \(-0.577845\pi\)
−0.242126 + 0.970245i \(0.577845\pi\)
\(854\) 0 0
\(855\) −22.0139 + 38.1292i −0.752859 + 1.30399i
\(856\) 27.9083 0.953887
\(857\) 23.7920 41.2089i 0.812719 1.40767i −0.0982356 0.995163i \(-0.531320\pi\)
0.910954 0.412507i \(-0.135347\pi\)
\(858\) −63.9083 + 48.0692i −2.18179 + 1.64105i
\(859\) −12.3982 21.4744i −0.423023 0.732697i 0.573211 0.819408i \(-0.305698\pi\)
−0.996234 + 0.0867110i \(0.972364\pi\)
\(860\) 2.40525 4.16601i 0.0820183 0.142060i
\(861\) 0 0
\(862\) 16.8944 + 29.2620i 0.575427 + 0.996669i
\(863\) 5.90833 + 10.2335i 0.201122 + 0.348353i 0.948890 0.315607i \(-0.102208\pi\)
−0.747768 + 0.663960i \(0.768875\pi\)
\(864\) −11.2617 −0.383130
\(865\) 68.9361 2.34390
\(866\) −5.45877 9.45486i −0.185496 0.321289i
\(867\) 23.3958 + 40.5226i 0.794562 + 1.37622i
\(868\) 0 0
\(869\) 1.78890 3.09846i 0.0606842 0.105108i
\(870\) 7.04584 + 12.2037i 0.238876 + 0.413746i
\(871\) −0.436217 3.57907i −0.0147806 0.121272i
\(872\) 9.31665 16.1369i 0.315502 0.546465i
\(873\) −41.2128 −1.39484
\(874\) 12.3982 21.4744i 0.419377 0.726382i
\(875\) 0 0
\(876\) 5.02776 0.169872
\(877\) 19.1972 33.2506i 0.648244 1.12279i −0.335298 0.942112i \(-0.608837\pi\)
0.983542 0.180680i \(-0.0578297\pi\)
\(878\) 19.9060 0.671796
\(879\) −5.02776 + 8.70833i −0.169582 + 0.293725i
\(880\) −28.1142 + 48.6952i −0.947728 + 1.64151i
\(881\) −17.7249 + 30.7005i −0.597168 + 1.03433i 0.396069 + 0.918221i \(0.370374\pi\)
−0.993237 + 0.116105i \(0.962959\pi\)
\(882\) 0 0
\(883\) −31.6056 −1.06361 −0.531806 0.846866i \(-0.678486\pi\)
−0.531806 + 0.846866i \(0.678486\pi\)
\(884\) 0.876369 + 0.372918i 0.0294755 + 0.0125426i
\(885\) −27.5459 + 47.7109i −0.925944 + 1.60378i
\(886\) 19.6972 + 34.1166i 0.661741 + 1.14617i
\(887\) 46.1033 1.54800 0.773998 0.633188i \(-0.218254\pi\)
0.773998 + 0.633188i \(0.218254\pi\)
\(888\) −6.02706 10.4392i −0.202255 0.350316i
\(889\) 0 0
\(890\) 16.2250 + 28.1025i 0.543863 + 0.941998i
\(891\) 9.48612 16.4304i 0.317797 0.550441i
\(892\) −2.04901 + 3.54899i −0.0686059 + 0.118829i
\(893\) −35.7250 −1.19549
\(894\) −1.92904 −0.0645168
\(895\) −20.7385 + 35.9201i −0.693211 + 1.20068i
\(896\) 0 0
\(897\) −8.30278 68.1225i −0.277222 2.27454i
\(898\) 5.48612 + 9.50224i 0.183074 + 0.317094i
\(899\) −0.568293 0.984312i −0.0189536 0.0328286i
\(900\) 2.65139 + 4.59234i 0.0883796 + 0.153078i
\(901\) 4.19010 7.25747i 0.139593 0.241782i
\(902\) 57.7890 1.92416
\(903\) 0 0
\(904\) 22.2250 + 38.4948i 0.739192 + 1.28032i
\(905\) −13.3305 23.0892i −0.443122 0.767510i
\(906\) 23.3158 0.774615
\(907\) −9.42221 16.3197i −0.312859 0.541888i 0.666121 0.745844i \(-0.267953\pi\)
−0.978980 + 0.203956i \(0.934620\pi\)
\(908\) −8.30023 −0.275453
\(909\) −45.8391 −1.52039
\(910\) 0 0
\(911\) −10.9361 −0.362329 −0.181164 0.983453i \(-0.557987\pi\)
−0.181164 + 0.983453i \(0.557987\pi\)
\(912\) −27.4222 −0.908040
\(913\) −19.6019 33.9515i −0.648728 1.12363i
\(914\) −17.4500 −0.577193
\(915\) −23.9241 41.4377i −0.790905 1.36989i
\(916\) 3.14561 + 5.44835i 0.103934 + 0.180019i
\(917\) 0 0
\(918\) 7.54163 0.248911
\(919\) 5.72498 9.91596i 0.188850 0.327097i −0.756017 0.654552i \(-0.772857\pi\)
0.944867 + 0.327454i \(0.106191\pi\)
\(920\) −28.5504 49.4507i −0.941278 1.63034i
\(921\) −22.0139 38.1292i −0.725382 1.25640i
\(922\) −8.24813 14.2862i −0.271638 0.470490i
\(923\) −1.74487 14.3163i −0.0574330 0.471226i
\(924\) 0 0
\(925\) −2.30278 + 3.98852i −0.0757148 + 0.131142i
\(926\) 36.7527 1.20777
\(927\) 25.9331 0.851754
\(928\) 1.10555 1.91487i 0.0362915 0.0628587i
\(929\) −4.19010 + 7.25747i −0.137473 + 0.238110i −0.926539 0.376198i \(-0.877231\pi\)
0.789067 + 0.614308i \(0.210565\pi\)
\(930\) 4.71841 + 8.17252i 0.154723 + 0.267988i
\(931\) 0 0
\(932\) −3.61943 6.26904i −0.118558 0.205349i
\(933\) −49.0555 −1.60601
\(934\) −9.21265 15.9568i −0.301447 0.522122i
\(935\) −7.42641 + 12.8629i −0.242869 + 0.420662i
\(936\) −45.8391 + 34.4782i −1.49830 + 1.12696i
\(937\) 46.4474 1.51737 0.758685 0.651458i \(-0.225842\pi\)
0.758685 + 0.651458i \(0.225842\pi\)
\(938\) 0 0
\(939\) −19.1194 + 33.1158i −0.623939 + 1.08069i
\(940\) −5.40833 + 9.36750i −0.176400 + 0.305534i
\(941\) −22.3513 + 38.7135i −0.728630 + 1.26202i 0.228832 + 0.973466i \(0.426509\pi\)
−0.957462 + 0.288559i \(0.906824\pi\)
\(942\) −35.7250 −1.16398
\(943\) −24.7965 + 42.9488i −0.807485 + 1.39861i
\(944\) −21.9150 −0.713274
\(945\) 0 0
\(946\) −21.2208 + 36.7555i −0.689947 + 1.19502i
\(947\) 53.1194 1.72615 0.863075 0.505076i \(-0.168536\pi\)
0.863075 + 0.505076i \(0.168536\pi\)
\(948\) 0.264152 0.457524i 0.00857925 0.0148597i
\(949\) 16.6056 12.4900i 0.539039 0.405442i
\(950\) 6.19912 + 10.7372i 0.201126 + 0.348361i
\(951\) −11.8300 + 20.4901i −0.383613 + 0.664437i
\(952\) 0 0
\(953\) −20.8028 36.0315i −0.673868 1.16717i −0.976798 0.214161i \(-0.931298\pi\)
0.302930 0.953013i \(-0.402035\pi\)
\(954\) 33.1791 + 57.4680i 1.07421 + 1.86059i
\(955\) 55.6201 1.79982
\(956\) −3.51388 −0.113647
\(957\) 11.0896 + 19.2077i 0.358476 + 0.620898i
\(958\) −0.740358 1.28234i −0.0239199 0.0414305i
\(959\) 0 0
\(960\) −36.6013 + 63.3954i −1.18130 + 2.04608i
\(961\) 15.1194 + 26.1876i 0.487724 + 0.844762i
\(962\) −6.02706 2.56468i −0.194320 0.0826885i
\(963\) −24.6653 + 42.7215i −0.794827 + 1.37668i
\(964\) 0.608282 0.0195915
\(965\) 2.61730 4.53330i 0.0842539 0.145932i
\(966\) 0 0
\(967\) 22.4500 0.721942 0.360971 0.932577i \(-0.382445\pi\)
0.360971 + 0.932577i \(0.382445\pi\)
\(968\) −35.8625 + 62.1157i −1.15266 + 1.99647i
\(969\) −7.24362 −0.232699
\(970\) −14.5875 + 25.2662i −0.468375 + 0.811250i
\(971\) −5.06254 + 8.76857i −0.162465 + 0.281397i −0.935752 0.352659i \(-0.885278\pi\)
0.773287 + 0.634056i \(0.218611\pi\)
\(972\) −1.61279 + 2.79344i −0.0517303 + 0.0895996i
\(973\) 0 0
\(974\) 36.0833 1.15618
\(975\) 31.5736 + 13.4354i 1.01116 + 0.430278i
\(976\) 9.51680 16.4836i 0.304625 0.527626i
\(977\) 20.0139 + 34.6651i 0.640301 + 1.10903i 0.985366 + 0.170454i \(0.0545236\pi\)
−0.345065 + 0.938579i \(0.612143\pi\)
\(978\) 64.6085 2.06595
\(979\) 25.5369 + 44.2311i 0.816161 + 1.41363i
\(980\) 0 0
\(981\) 16.4680 + 28.5235i 0.525784 + 0.910685i
\(982\) −8.28890 + 14.3568i −0.264509 + 0.458144i
\(983\) 6.50327 11.2640i 0.207422 0.359265i −0.743480 0.668758i \(-0.766826\pi\)
0.950902 + 0.309493i \(0.100159\pi\)
\(984\) 64.8999 2.06893
\(985\) −34.3133 −1.09331
\(986\) −0.740358 + 1.28234i −0.0235778 + 0.0408380i
\(987\) 0 0
\(988\) 2.51388 1.89083i 0.0799771 0.0601554i
\(989\) −18.2111 31.5426i −0.579079 1.00299i
\(990\) −58.8056 101.854i −1.86897 3.23714i
\(991\) 23.1653 + 40.1234i 0.735869 + 1.27456i 0.954341 + 0.298719i \(0.0965594\pi\)
−0.218472 + 0.975843i \(0.570107\pi\)
\(992\) 0.740358 1.28234i 0.0235064 0.0407143i
\(993\) 2.00902 0.0637543
\(994\) 0 0
\(995\) −1.25694 2.17708i −0.0398476 0.0690182i
\(996\) −2.89445 5.01333i −0.0917141 0.158854i
\(997\) −44.1742 −1.39901 −0.699506 0.714627i \(-0.746596\pi\)
−0.699506 + 0.714627i \(0.746596\pi\)
\(998\) 20.4083 + 35.3483i 0.646014 + 1.11893i
\(999\) 9.25264 0.292741
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.h.j.165.1 8
7.2 even 3 637.2.g.i.373.4 8
7.3 odd 6 637.2.f.h.295.4 yes 8
7.4 even 3 637.2.f.h.295.3 8
7.5 odd 6 637.2.g.i.373.3 8
7.6 odd 2 inner 637.2.h.j.165.2 8
13.3 even 3 637.2.g.i.263.4 8
91.3 odd 6 637.2.f.h.393.4 yes 8
91.4 even 6 8281.2.a.bo.1.4 4
91.16 even 3 inner 637.2.h.j.471.1 8
91.17 odd 6 8281.2.a.bo.1.3 4
91.55 odd 6 637.2.g.i.263.3 8
91.68 odd 6 inner 637.2.h.j.471.2 8
91.74 even 3 8281.2.a.bu.1.2 4
91.81 even 3 637.2.f.h.393.3 yes 8
91.87 odd 6 8281.2.a.bu.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.f.h.295.3 8 7.4 even 3
637.2.f.h.295.4 yes 8 7.3 odd 6
637.2.f.h.393.3 yes 8 91.81 even 3
637.2.f.h.393.4 yes 8 91.3 odd 6
637.2.g.i.263.3 8 91.55 odd 6
637.2.g.i.263.4 8 13.3 even 3
637.2.g.i.373.3 8 7.5 odd 6
637.2.g.i.373.4 8 7.2 even 3
637.2.h.j.165.1 8 1.1 even 1 trivial
637.2.h.j.165.2 8 7.6 odd 2 inner
637.2.h.j.471.1 8 91.16 even 3 inner
637.2.h.j.471.2 8 91.68 odd 6 inner
8281.2.a.bo.1.3 4 91.17 odd 6
8281.2.a.bo.1.4 4 91.4 even 6
8281.2.a.bu.1.1 4 91.87 odd 6
8281.2.a.bu.1.2 4 91.74 even 3