Properties

Label 637.2.h.i.165.3
Level $637$
Weight $2$
Character 637.165
Analytic conductor $5.086$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(165,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.165"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,1,10,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.59066497296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 7x^{6} + 38x^{4} - 16x^{3} + 15x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 165.3
Root \(-0.115680 - 0.200364i\) of defining polynomial
Character \(\chi\) \(=\) 637.165
Dual form 637.2.h.i.471.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.231361 q^{2} +(-1.66113 - 2.87716i) q^{3} -1.94647 q^{4} +(-1.11568 - 1.93242i) q^{5} +(-0.384320 - 0.665661i) q^{6} -0.913059 q^{8} +(-4.01868 + 6.96056i) q^{9} +(-0.258125 - 0.447085i) q^{10} +(-1.66113 - 2.87716i) q^{11} +(3.23334 + 5.60030i) q^{12} +(-3.40300 - 1.19146i) q^{13} +(-3.70657 + 6.41997i) q^{15} +3.68170 q^{16} +1.37578 q^{17} +(-0.929766 + 1.61040i) q^{18} +(1.61766 - 2.80186i) q^{19} +(2.17164 + 3.76139i) q^{20} +(-0.384320 - 0.665661i) q^{22} +0.838502 q^{23} +(1.51671 + 2.62701i) q^{24} +(0.0105144 - 0.0182115i) q^{25} +(-0.787321 - 0.275657i) q^{26} +16.7354 q^{27} +(0.303571 - 0.525800i) q^{29} +(-0.857556 + 1.48533i) q^{30} +(0.857556 - 1.48533i) q^{31} +2.67792 q^{32} +(-5.51868 + 9.55864i) q^{33} +0.318302 q^{34} +(7.82225 - 13.5485i) q^{36} +1.55361 q^{37} +(0.374262 - 0.648241i) q^{38} +(2.22480 + 11.7701i) q^{39} +(1.01868 + 1.76441i) q^{40} +(-4.58892 + 7.94824i) q^{41} +(-0.615680 - 1.06639i) q^{43} +(3.23334 + 5.60030i) q^{44} +17.9343 q^{45} +0.193997 q^{46} +(-0.814085 - 1.41004i) q^{47} +(-6.11577 - 10.5928i) q^{48} +(0.00243263 - 0.00421343i) q^{50} +(-2.28535 - 3.95833i) q^{51} +(6.62385 + 2.31915i) q^{52} +(-4.19803 + 7.27121i) q^{53} +3.87192 q^{54} +(-3.70657 + 6.41997i) q^{55} -10.7485 q^{57} +(0.0702344 - 0.121650i) q^{58} -8.82234 q^{59} +(7.21474 - 12.4963i) q^{60} +(2.73334 - 4.73428i) q^{61} +(0.198405 - 0.343647i) q^{62} -6.74383 q^{64} +(1.49426 + 7.90530i) q^{65} +(-1.27681 + 2.21149i) q^{66} +(5.09287 + 8.82111i) q^{67} -2.67792 q^{68} +(-1.39286 - 2.41250i) q^{69} +(2.60714 + 4.51570i) q^{71} +(3.66929 - 6.35540i) q^{72} +(-1.98177 + 3.43253i) q^{73} +0.359445 q^{74} -0.0698632 q^{75} +(-3.14872 + 5.45375i) q^{76} +(0.514731 + 2.72315i) q^{78} +(-3.22525 - 5.58630i) q^{79} +(-4.10760 - 7.11457i) q^{80} +(-15.7436 - 27.2687i) q^{81} +(-1.06170 + 1.83891i) q^{82} +4.64055 q^{83} +(-1.53493 - 2.65858i) q^{85} +(-0.142444 - 0.246721i) q^{86} -2.01708 q^{87} +(1.51671 + 2.62701i) q^{88} -9.12826 q^{89} +4.14929 q^{90} -1.63212 q^{92} -5.69803 q^{93} +(-0.188347 - 0.326227i) q^{94} -7.21915 q^{95} +(-4.44836 - 7.70479i) q^{96} +(-7.67944 - 13.3012i) q^{97} +26.7022 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + q^{3} + 10 q^{4} - 7 q^{5} - 5 q^{6} - 12 q^{8} - 7 q^{9} - 11 q^{10} + q^{11} + 12 q^{12} - 4 q^{13} - 3 q^{15} + 38 q^{16} + 8 q^{17} + 3 q^{18} + q^{19} - 2 q^{20} - 5 q^{22} - 4 q^{23}+ \cdots + 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.231361 0.163597 0.0817984 0.996649i \(-0.473934\pi\)
0.0817984 + 0.996649i \(0.473934\pi\)
\(3\) −1.66113 2.87716i −0.959052 1.66113i −0.724811 0.688948i \(-0.758073\pi\)
−0.234241 0.972179i \(-0.575260\pi\)
\(4\) −1.94647 −0.973236
\(5\) −1.11568 1.93242i −0.498947 0.864202i 0.501052 0.865417i \(-0.332947\pi\)
−0.999999 + 0.00121496i \(0.999613\pi\)
\(6\) −0.384320 0.665661i −0.156898 0.271755i
\(7\) 0 0
\(8\) −0.913059 −0.322815
\(9\) −4.01868 + 6.96056i −1.33956 + 2.32019i
\(10\) −0.258125 0.447085i −0.0816262 0.141381i
\(11\) −1.66113 2.87716i −0.500848 0.867495i −1.00000 0.000980003i \(-0.999688\pi\)
0.499151 0.866515i \(-0.333645\pi\)
\(12\) 3.23334 + 5.60030i 0.933384 + 1.61667i
\(13\) −3.40300 1.19146i −0.943823 0.330452i
\(14\) 0 0
\(15\) −3.70657 + 6.41997i −0.957033 + 1.65763i
\(16\) 3.68170 0.920425
\(17\) 1.37578 0.333676 0.166838 0.985984i \(-0.446644\pi\)
0.166838 + 0.985984i \(0.446644\pi\)
\(18\) −0.929766 + 1.61040i −0.219148 + 0.379575i
\(19\) 1.61766 2.80186i 0.371116 0.642791i −0.618622 0.785689i \(-0.712309\pi\)
0.989737 + 0.142898i \(0.0456420\pi\)
\(20\) 2.17164 + 3.76139i 0.485594 + 0.841073i
\(21\) 0 0
\(22\) −0.384320 0.665661i −0.0819372 0.141919i
\(23\) 0.838502 0.174840 0.0874199 0.996172i \(-0.472138\pi\)
0.0874199 + 0.996172i \(0.472138\pi\)
\(24\) 1.51671 + 2.62701i 0.309596 + 0.536237i
\(25\) 0.0105144 0.0182115i 0.00210289 0.00364231i
\(26\) −0.787321 0.275657i −0.154406 0.0540609i
\(27\) 16.7354 3.22073
\(28\) 0 0
\(29\) 0.303571 0.525800i 0.0563717 0.0976386i −0.836462 0.548024i \(-0.815380\pi\)
0.892834 + 0.450386i \(0.148713\pi\)
\(30\) −0.857556 + 1.48533i −0.156568 + 0.271183i
\(31\) 0.857556 1.48533i 0.154022 0.266773i −0.778681 0.627420i \(-0.784111\pi\)
0.932702 + 0.360647i \(0.117444\pi\)
\(32\) 2.67792 0.473394
\(33\) −5.51868 + 9.55864i −0.960679 + 1.66395i
\(34\) 0.318302 0.0545883
\(35\) 0 0
\(36\) 7.82225 13.5485i 1.30371 2.25809i
\(37\) 1.55361 0.255413 0.127706 0.991812i \(-0.459239\pi\)
0.127706 + 0.991812i \(0.459239\pi\)
\(38\) 0.374262 0.648241i 0.0607133 0.105159i
\(39\) 2.22480 + 11.7701i 0.356253 + 1.88473i
\(40\) 1.01868 + 1.76441i 0.161068 + 0.278978i
\(41\) −4.58892 + 7.94824i −0.716668 + 1.24131i 0.245644 + 0.969360i \(0.421001\pi\)
−0.962313 + 0.271946i \(0.912333\pi\)
\(42\) 0 0
\(43\) −0.615680 1.06639i −0.0938904 0.162623i 0.815255 0.579103i \(-0.196597\pi\)
−0.909145 + 0.416480i \(0.863264\pi\)
\(44\) 3.23334 + 5.60030i 0.487444 + 0.844277i
\(45\) 17.9343 2.67348
\(46\) 0.193997 0.0286032
\(47\) −0.814085 1.41004i −0.118747 0.205675i 0.800525 0.599300i \(-0.204554\pi\)
−0.919271 + 0.393625i \(0.871221\pi\)
\(48\) −6.11577 10.5928i −0.882735 1.52894i
\(49\) 0 0
\(50\) 0.00243263 0.00421343i 0.000344025 0.000595870i
\(51\) −2.28535 3.95833i −0.320012 0.554278i
\(52\) 6.62385 + 2.31915i 0.918562 + 0.321608i
\(53\) −4.19803 + 7.27121i −0.576644 + 0.998777i 0.419217 + 0.907886i \(0.362305\pi\)
−0.995861 + 0.0908909i \(0.971029\pi\)
\(54\) 3.87192 0.526901
\(55\) −3.70657 + 6.41997i −0.499794 + 0.865669i
\(56\) 0 0
\(57\) −10.7485 −1.42368
\(58\) 0.0702344 0.121650i 0.00922223 0.0159734i
\(59\) −8.82234 −1.14857 −0.574285 0.818655i \(-0.694720\pi\)
−0.574285 + 0.818655i \(0.694720\pi\)
\(60\) 7.21474 12.4963i 0.931419 1.61326i
\(61\) 2.73334 4.73428i 0.349968 0.606162i −0.636276 0.771462i \(-0.719526\pi\)
0.986243 + 0.165300i \(0.0528592\pi\)
\(62\) 0.198405 0.343647i 0.0251974 0.0436432i
\(63\) 0 0
\(64\) −6.74383 −0.842979
\(65\) 1.49426 + 7.90530i 0.185341 + 0.980532i
\(66\) −1.27681 + 2.21149i −0.157164 + 0.272216i
\(67\) 5.09287 + 8.82111i 0.622193 + 1.07767i 0.989077 + 0.147403i \(0.0470913\pi\)
−0.366884 + 0.930267i \(0.619575\pi\)
\(68\) −2.67792 −0.324745
\(69\) −1.39286 2.41250i −0.167680 0.290431i
\(70\) 0 0
\(71\) 2.60714 + 4.51570i 0.309411 + 0.535915i 0.978234 0.207507i \(-0.0665349\pi\)
−0.668823 + 0.743422i \(0.733202\pi\)
\(72\) 3.66929 6.35540i 0.432430 0.748992i
\(73\) −1.98177 + 3.43253i −0.231949 + 0.401748i −0.958382 0.285490i \(-0.907844\pi\)
0.726432 + 0.687238i \(0.241177\pi\)
\(74\) 0.359445 0.0417847
\(75\) −0.0698632 −0.00806711
\(76\) −3.14872 + 5.45375i −0.361183 + 0.625588i
\(77\) 0 0
\(78\) 0.514731 + 2.72315i 0.0582818 + 0.308336i
\(79\) −3.22525 5.58630i −0.362869 0.628508i 0.625562 0.780174i \(-0.284870\pi\)
−0.988432 + 0.151666i \(0.951536\pi\)
\(80\) −4.10760 7.11457i −0.459243 0.795433i
\(81\) −15.7436 27.2687i −1.74929 3.02985i
\(82\) −1.06170 + 1.83891i −0.117245 + 0.203074i
\(83\) 4.64055 0.509367 0.254684 0.967024i \(-0.418029\pi\)
0.254684 + 0.967024i \(0.418029\pi\)
\(84\) 0 0
\(85\) −1.53493 2.65858i −0.166487 0.288363i
\(86\) −0.142444 0.246721i −0.0153602 0.0266046i
\(87\) −2.01708 −0.216253
\(88\) 1.51671 + 2.62701i 0.161681 + 0.280041i
\(89\) −9.12826 −0.967593 −0.483797 0.875180i \(-0.660743\pi\)
−0.483797 + 0.875180i \(0.660743\pi\)
\(90\) 4.14929 0.437373
\(91\) 0 0
\(92\) −1.63212 −0.170160
\(93\) −5.69803 −0.590859
\(94\) −0.188347 0.326227i −0.0194266 0.0336478i
\(95\) −7.21915 −0.740669
\(96\) −4.44836 7.70479i −0.454009 0.786367i
\(97\) −7.67944 13.3012i −0.779729 1.35053i −0.932098 0.362206i \(-0.882024\pi\)
0.152369 0.988324i \(-0.451310\pi\)
\(98\) 0 0
\(99\) 26.7022 2.68367
\(100\) −0.0204660 + 0.0354482i −0.00204660 + 0.00354482i
\(101\) −3.97521 6.88527i −0.395548 0.685110i 0.597623 0.801777i \(-0.296112\pi\)
−0.993171 + 0.116668i \(0.962779\pi\)
\(102\) −0.528739 0.915804i −0.0523530 0.0906781i
\(103\) 0.347412 + 0.601736i 0.0342316 + 0.0592908i 0.882634 0.470062i \(-0.155768\pi\)
−0.848402 + 0.529352i \(0.822435\pi\)
\(104\) 3.10714 + 1.08787i 0.304680 + 0.106675i
\(105\) 0 0
\(106\) −0.971261 + 1.68227i −0.0943372 + 0.163397i
\(107\) 8.94647 0.864888 0.432444 0.901661i \(-0.357651\pi\)
0.432444 + 0.901661i \(0.357651\pi\)
\(108\) −32.5750 −3.13453
\(109\) 1.13634 1.96820i 0.108841 0.188519i −0.806460 0.591289i \(-0.798619\pi\)
0.915301 + 0.402770i \(0.131953\pi\)
\(110\) −0.857556 + 1.48533i −0.0817647 + 0.141621i
\(111\) −2.58075 4.46999i −0.244954 0.424272i
\(112\) 0 0
\(113\) 4.75239 + 8.23138i 0.447067 + 0.774343i 0.998194 0.0600786i \(-0.0191351\pi\)
−0.551126 + 0.834422i \(0.685802\pi\)
\(114\) −2.48679 −0.232909
\(115\) −0.935501 1.62033i −0.0872359 0.151097i
\(116\) −0.590892 + 1.02346i −0.0548630 + 0.0950254i
\(117\) 21.9688 18.8987i 2.03102 1.74719i
\(118\) −2.04114 −0.187902
\(119\) 0 0
\(120\) 3.38432 5.86181i 0.308945 0.535108i
\(121\) −0.0186821 + 0.0323584i −0.00169837 + 0.00294167i
\(122\) 0.632387 1.09533i 0.0572536 0.0991662i
\(123\) 30.4911 2.74929
\(124\) −1.66921 + 2.89115i −0.149899 + 0.259633i
\(125\) −11.2037 −1.00209
\(126\) 0 0
\(127\) −9.21672 + 15.9638i −0.817851 + 1.41656i 0.0894111 + 0.995995i \(0.471502\pi\)
−0.907262 + 0.420565i \(0.861832\pi\)
\(128\) −6.91610 −0.611302
\(129\) −2.04545 + 3.54282i −0.180091 + 0.311928i
\(130\) 0.345714 + 1.82898i 0.0303212 + 0.160412i
\(131\) −0.874176 1.51412i −0.0763771 0.132289i 0.825307 0.564684i \(-0.191002\pi\)
−0.901684 + 0.432395i \(0.857669\pi\)
\(132\) 10.7420 18.6056i 0.934968 1.61941i
\(133\) 0 0
\(134\) 1.17829 + 2.04086i 0.101789 + 0.176303i
\(135\) −18.6714 32.3397i −1.60697 2.78336i
\(136\) −1.25617 −0.107716
\(137\) −18.0032 −1.53812 −0.769059 0.639178i \(-0.779275\pi\)
−0.769059 + 0.639178i \(0.779275\pi\)
\(138\) −0.322253 0.558158i −0.0274320 0.0475136i
\(139\) 6.95896 + 12.0533i 0.590251 + 1.02235i 0.994198 + 0.107563i \(0.0343048\pi\)
−0.403947 + 0.914782i \(0.632362\pi\)
\(140\) 0 0
\(141\) −2.70460 + 4.68450i −0.227768 + 0.394506i
\(142\) 0.603190 + 1.04476i 0.0506186 + 0.0876740i
\(143\) 2.22480 + 11.7701i 0.186047 + 0.984268i
\(144\) −14.7956 + 25.6267i −1.23296 + 2.13556i
\(145\) −1.35475 −0.112506
\(146\) −0.458505 + 0.794154i −0.0379462 + 0.0657247i
\(147\) 0 0
\(148\) −3.02407 −0.248577
\(149\) 7.96515 13.7961i 0.652531 1.13022i −0.329976 0.943989i \(-0.607041\pi\)
0.982507 0.186227i \(-0.0596261\pi\)
\(150\) −0.0161636 −0.00131975
\(151\) 6.97484 12.0808i 0.567604 0.983120i −0.429198 0.903211i \(-0.641204\pi\)
0.996802 0.0799092i \(-0.0254630\pi\)
\(152\) −1.47702 + 2.55827i −0.119802 + 0.207503i
\(153\) −5.52883 + 9.57621i −0.446979 + 0.774190i
\(154\) 0 0
\(155\) −3.82703 −0.307395
\(156\) −4.33051 22.9102i −0.346718 1.83429i
\(157\) −6.48733 + 11.2364i −0.517745 + 0.896761i 0.482042 + 0.876148i \(0.339895\pi\)
−0.999788 + 0.0206132i \(0.993438\pi\)
\(158\) −0.746198 1.29245i −0.0593643 0.102822i
\(159\) 27.8939 2.21213
\(160\) −2.98770 5.17485i −0.236199 0.409108i
\(161\) 0 0
\(162\) −3.64244 6.30890i −0.286177 0.495674i
\(163\) −9.20423 + 15.9422i −0.720931 + 1.24869i 0.239697 + 0.970848i \(0.422952\pi\)
−0.960627 + 0.277841i \(0.910381\pi\)
\(164\) 8.93220 15.4710i 0.697488 1.20808i
\(165\) 24.6283 1.91731
\(166\) 1.07364 0.0833308
\(167\) −9.24967 + 16.0209i −0.715761 + 1.23973i 0.246904 + 0.969040i \(0.420587\pi\)
−0.962665 + 0.270695i \(0.912747\pi\)
\(168\) 0 0
\(169\) 10.1608 + 8.10909i 0.781603 + 0.623776i
\(170\) −0.355123 0.615091i −0.0272367 0.0471753i
\(171\) 13.0017 + 22.5196i 0.994264 + 1.72212i
\(172\) 1.19840 + 2.07570i 0.0913775 + 0.158270i
\(173\) −8.59906 + 14.8940i −0.653774 + 1.13237i 0.328425 + 0.944530i \(0.393482\pi\)
−0.982200 + 0.187840i \(0.939851\pi\)
\(174\) −0.466673 −0.0353784
\(175\) 0 0
\(176\) −6.11577 10.5928i −0.460993 0.798464i
\(177\) 14.6550 + 25.3832i 1.10154 + 1.90792i
\(178\) −2.11192 −0.158295
\(179\) −7.24431 12.5475i −0.541465 0.937845i −0.998820 0.0485608i \(-0.984537\pi\)
0.457355 0.889284i \(-0.348797\pi\)
\(180\) −34.9085 −2.60193
\(181\) −6.85484 −0.509516 −0.254758 0.967005i \(-0.581996\pi\)
−0.254758 + 0.967005i \(0.581996\pi\)
\(182\) 0 0
\(183\) −18.1617 −1.34255
\(184\) −0.765602 −0.0564409
\(185\) −1.73334 3.00223i −0.127437 0.220728i
\(186\) −1.31830 −0.0966626
\(187\) −2.28535 3.95833i −0.167121 0.289462i
\(188\) 1.58459 + 2.74460i 0.115568 + 0.200170i
\(189\) 0 0
\(190\) −1.67023 −0.121171
\(191\) 1.42581 2.46958i 0.103168 0.178693i −0.809820 0.586678i \(-0.800435\pi\)
0.912988 + 0.407986i \(0.133769\pi\)
\(192\) 11.2024 + 19.4030i 0.808460 + 1.40029i
\(193\) 5.02525 + 8.70398i 0.361725 + 0.626526i 0.988245 0.152879i \(-0.0488546\pi\)
−0.626520 + 0.779406i \(0.715521\pi\)
\(194\) −1.77672 3.07737i −0.127561 0.220942i
\(195\) 20.2626 17.4309i 1.45104 1.24826i
\(196\) 0 0
\(197\) 12.7085 22.0119i 0.905447 1.56828i 0.0851299 0.996370i \(-0.472869\pi\)
0.820317 0.571910i \(-0.193797\pi\)
\(198\) 6.17783 0.439039
\(199\) 12.4466 0.882313 0.441157 0.897430i \(-0.354568\pi\)
0.441157 + 0.897430i \(0.354568\pi\)
\(200\) −0.00960030 + 0.0166282i −0.000678843 + 0.00117579i
\(201\) 16.9198 29.3059i 1.19343 2.06708i
\(202\) −0.919708 1.59298i −0.0647104 0.112082i
\(203\) 0 0
\(204\) 4.44836 + 7.70479i 0.311448 + 0.539443i
\(205\) 20.4791 1.43032
\(206\) 0.0803776 + 0.139218i 0.00560017 + 0.00969979i
\(207\) −3.36967 + 5.83645i −0.234209 + 0.405661i
\(208\) −12.5288 4.38660i −0.868718 0.304156i
\(209\) −10.7485 −0.743491
\(210\) 0 0
\(211\) 12.1961 21.1243i 0.839617 1.45426i −0.0505979 0.998719i \(-0.516113\pi\)
0.890215 0.455540i \(-0.150554\pi\)
\(212\) 8.17136 14.1532i 0.561211 0.972046i
\(213\) 8.66158 15.0023i 0.593482 1.02794i
\(214\) 2.06986 0.141493
\(215\) −1.37381 + 2.37950i −0.0936927 + 0.162281i
\(216\) −15.2804 −1.03970
\(217\) 0 0
\(218\) 0.262904 0.455363i 0.0178061 0.0308411i
\(219\) 13.1679 0.889805
\(220\) 7.21474 12.4963i 0.486418 0.842500i
\(221\) −4.68178 1.63919i −0.314931 0.110264i
\(222\) −0.597084 1.03418i −0.0400737 0.0694096i
\(223\) 11.3247 19.6149i 0.758357 1.31351i −0.185331 0.982676i \(-0.559336\pi\)
0.943688 0.330837i \(-0.107331\pi\)
\(224\) 0 0
\(225\) 0.0845083 + 0.146373i 0.00563389 + 0.00975818i
\(226\) 1.09952 + 1.90442i 0.0731388 + 0.126680i
\(227\) −1.28506 −0.0852925 −0.0426462 0.999090i \(-0.513579\pi\)
−0.0426462 + 0.999090i \(0.513579\pi\)
\(228\) 20.9217 1.38557
\(229\) −2.32225 4.02226i −0.153459 0.265798i 0.779038 0.626977i \(-0.215708\pi\)
−0.932497 + 0.361178i \(0.882375\pi\)
\(230\) −0.216438 0.374882i −0.0142715 0.0247190i
\(231\) 0 0
\(232\) −0.277178 + 0.480086i −0.0181976 + 0.0315192i
\(233\) −5.94386 10.2951i −0.389395 0.674452i 0.602973 0.797762i \(-0.293983\pi\)
−0.992368 + 0.123309i \(0.960649\pi\)
\(234\) 5.08272 4.37242i 0.332268 0.285834i
\(235\) −1.81652 + 3.14630i −0.118497 + 0.205242i
\(236\) 17.1724 1.11783
\(237\) −10.7151 + 18.5591i −0.696021 + 1.20554i
\(238\) 0 0
\(239\) −4.17783 −0.270242 −0.135121 0.990829i \(-0.543142\pi\)
−0.135121 + 0.990829i \(0.543142\pi\)
\(240\) −13.6465 + 23.6364i −0.880877 + 1.52572i
\(241\) −4.03341 −0.259815 −0.129907 0.991526i \(-0.541468\pi\)
−0.129907 + 0.991526i \(0.541468\pi\)
\(242\) −0.00432231 + 0.00748646i −0.000277849 + 0.000481248i
\(243\) −27.2010 + 47.1135i −1.74495 + 3.02233i
\(244\) −5.32036 + 9.21514i −0.340601 + 0.589939i
\(245\) 0 0
\(246\) 7.05444 0.449775
\(247\) −8.84320 + 7.60737i −0.562679 + 0.484045i
\(248\) −0.782999 + 1.35619i −0.0497205 + 0.0861184i
\(249\) −7.70855 13.3516i −0.488509 0.846123i
\(250\) −2.59210 −0.163939
\(251\) 13.9343 + 24.1348i 0.879523 + 1.52338i 0.851866 + 0.523760i \(0.175471\pi\)
0.0276571 + 0.999617i \(0.491195\pi\)
\(252\) 0 0
\(253\) −1.39286 2.41250i −0.0875683 0.151673i
\(254\) −2.13239 + 3.69340i −0.133798 + 0.231745i
\(255\) −5.09943 + 8.83247i −0.319339 + 0.553111i
\(256\) 11.8875 0.742972
\(257\) 7.14064 0.445421 0.222710 0.974885i \(-0.428510\pi\)
0.222710 + 0.974885i \(0.428510\pi\)
\(258\) −0.473236 + 0.819669i −0.0294624 + 0.0510304i
\(259\) 0 0
\(260\) −2.90855 15.3874i −0.180380 0.954289i
\(261\) 2.43991 + 4.22605i 0.151027 + 0.261586i
\(262\) −0.202250 0.350308i −0.0124951 0.0216421i
\(263\) −10.6596 18.4630i −0.657300 1.13848i −0.981312 0.192423i \(-0.938365\pi\)
0.324012 0.946053i \(-0.394968\pi\)
\(264\) 5.03888 8.72760i 0.310122 0.537147i
\(265\) 18.7347 1.15086
\(266\) 0 0
\(267\) 15.1632 + 26.2634i 0.927972 + 1.60729i
\(268\) −9.91313 17.1700i −0.605540 1.04883i
\(269\) −2.78875 −0.170033 −0.0850167 0.996380i \(-0.527094\pi\)
−0.0850167 + 0.996380i \(0.527094\pi\)
\(270\) −4.31982 7.48215i −0.262896 0.455349i
\(271\) 15.4747 0.940024 0.470012 0.882660i \(-0.344250\pi\)
0.470012 + 0.882660i \(0.344250\pi\)
\(272\) 5.06521 0.307123
\(273\) 0 0
\(274\) −4.16524 −0.251631
\(275\) −0.0698632 −0.00421291
\(276\) 2.71116 + 4.69587i 0.163193 + 0.282658i
\(277\) 5.52955 0.332238 0.166119 0.986106i \(-0.446876\pi\)
0.166119 + 0.986106i \(0.446876\pi\)
\(278\) 1.61003 + 2.78866i 0.0965633 + 0.167252i
\(279\) 6.89249 + 11.9381i 0.412642 + 0.714718i
\(280\) 0 0
\(281\) −31.4871 −1.87836 −0.939182 0.343419i \(-0.888415\pi\)
−0.939182 + 0.343419i \(0.888415\pi\)
\(282\) −0.625738 + 1.08381i −0.0372621 + 0.0645399i
\(283\) −3.67559 6.36631i −0.218491 0.378438i 0.735856 0.677138i \(-0.236780\pi\)
−0.954347 + 0.298700i \(0.903447\pi\)
\(284\) −5.07473 8.78969i −0.301130 0.521572i
\(285\) 11.9919 + 20.7706i 0.710340 + 1.23034i
\(286\) 0.514731 + 2.72315i 0.0304367 + 0.161023i
\(287\) 0 0
\(288\) −10.7617 + 18.6398i −0.634140 + 1.09836i
\(289\) −15.1072 −0.888660
\(290\) −0.313437 −0.0184056
\(291\) −25.5130 + 44.1899i −1.49560 + 2.59046i
\(292\) 3.85747 6.68133i 0.225741 0.390995i
\(293\) −6.76675 11.7204i −0.395318 0.684710i 0.597824 0.801627i \(-0.296032\pi\)
−0.993142 + 0.116917i \(0.962699\pi\)
\(294\) 0 0
\(295\) 9.84291 + 17.0484i 0.573076 + 0.992597i
\(296\) −1.41854 −0.0824510
\(297\) −27.7996 48.1503i −1.61310 2.79397i
\(298\) 1.84282 3.19187i 0.106752 0.184900i
\(299\) −2.85342 0.999043i −0.165018 0.0577761i
\(300\) 0.135987 0.00785120
\(301\) 0 0
\(302\) 1.61370 2.79502i 0.0928583 0.160835i
\(303\) −13.2067 + 22.8746i −0.758703 + 1.31411i
\(304\) 5.95572 10.3156i 0.341584 0.591641i
\(305\) −12.1981 −0.698462
\(306\) −1.27915 + 2.21556i −0.0731243 + 0.126655i
\(307\) 3.30609 0.188688 0.0943442 0.995540i \(-0.469925\pi\)
0.0943442 + 0.995540i \(0.469925\pi\)
\(308\) 0 0
\(309\) 1.15419 1.99912i 0.0656597 0.113726i
\(310\) −0.885425 −0.0502888
\(311\) −17.1531 + 29.7101i −0.972665 + 1.68470i −0.285229 + 0.958459i \(0.592070\pi\)
−0.687435 + 0.726246i \(0.741264\pi\)
\(312\) −2.03137 10.7468i −0.115004 0.608419i
\(313\) 3.60714 + 6.24775i 0.203888 + 0.353144i 0.949778 0.312925i \(-0.101309\pi\)
−0.745890 + 0.666069i \(0.767976\pi\)
\(314\) −1.50091 + 2.59966i −0.0847015 + 0.146707i
\(315\) 0 0
\(316\) 6.27787 + 10.8736i 0.353158 + 0.611687i
\(317\) 4.02020 + 6.96319i 0.225797 + 0.391092i 0.956558 0.291541i \(-0.0941681\pi\)
−0.730761 + 0.682633i \(0.760835\pi\)
\(318\) 6.45355 0.361897
\(319\) −2.01708 −0.112935
\(320\) 7.52396 + 13.0319i 0.420602 + 0.728504i
\(321\) −14.8612 25.7404i −0.829472 1.43669i
\(322\) 0 0
\(323\) 2.22554 3.85475i 0.123832 0.214484i
\(324\) 30.6444 + 53.0777i 1.70247 + 2.94876i
\(325\) −0.0574790 + 0.0494463i −0.00318836 + 0.00274279i
\(326\) −2.12950 + 3.68840i −0.117942 + 0.204281i
\(327\) −7.55040 −0.417538
\(328\) 4.18995 7.25721i 0.231351 0.400712i
\(329\) 0 0
\(330\) 5.69803 0.313666
\(331\) −0.446843 + 0.773955i −0.0245607 + 0.0425404i −0.878045 0.478579i \(-0.841152\pi\)
0.853484 + 0.521119i \(0.174485\pi\)
\(332\) −9.03271 −0.495734
\(333\) −6.24348 + 10.8140i −0.342141 + 0.592605i
\(334\) −2.14001 + 3.70661i −0.117096 + 0.202817i
\(335\) 11.3640 19.6831i 0.620883 1.07540i
\(336\) 0 0
\(337\) 15.0717 0.821007 0.410504 0.911859i \(-0.365353\pi\)
0.410504 + 0.911859i \(0.365353\pi\)
\(338\) 2.35082 + 1.87613i 0.127868 + 0.102048i
\(339\) 15.7886 27.3467i 0.857521 1.48527i
\(340\) 2.98770 + 5.17485i 0.162031 + 0.280646i
\(341\) −5.69803 −0.308566
\(342\) 3.00808 + 5.21015i 0.162658 + 0.281733i
\(343\) 0 0
\(344\) 0.562153 + 0.973677i 0.0303092 + 0.0524971i
\(345\) −3.10797 + 5.38316i −0.167327 + 0.289820i
\(346\) −1.98949 + 3.44589i −0.106955 + 0.185252i
\(347\) −16.4164 −0.881276 −0.440638 0.897685i \(-0.645248\pi\)
−0.440638 + 0.897685i \(0.645248\pi\)
\(348\) 3.92619 0.210466
\(349\) 17.1861 29.7672i 0.919950 1.59340i 0.120462 0.992718i \(-0.461562\pi\)
0.799488 0.600682i \(-0.205104\pi\)
\(350\) 0 0
\(351\) −56.9506 19.9396i −3.03980 1.06430i
\(352\) −4.44836 7.70479i −0.237098 0.410667i
\(353\) −11.9581 20.7121i −0.636467 1.10239i −0.986202 0.165545i \(-0.947062\pi\)
0.349735 0.936849i \(-0.386272\pi\)
\(354\) 3.39060 + 5.87269i 0.180208 + 0.312130i
\(355\) 5.81747 10.0762i 0.308759 0.534787i
\(356\) 17.7679 0.941697
\(357\) 0 0
\(358\) −1.67605 2.90300i −0.0885819 0.153428i
\(359\) 3.08937 + 5.35095i 0.163051 + 0.282412i 0.935961 0.352103i \(-0.114533\pi\)
−0.772911 + 0.634515i \(0.781200\pi\)
\(360\) −16.3750 −0.863040
\(361\) 4.26638 + 7.38958i 0.224546 + 0.388925i
\(362\) −1.58594 −0.0833552
\(363\) 0.124133 0.00651531
\(364\) 0 0
\(365\) 8.84411 0.462922
\(366\) −4.20190 −0.219637
\(367\) 9.92798 + 17.1958i 0.518236 + 0.897612i 0.999776 + 0.0211872i \(0.00674460\pi\)
−0.481539 + 0.876425i \(0.659922\pi\)
\(368\) 3.08711 0.160927
\(369\) −36.8828 63.8829i −1.92004 3.32561i
\(370\) −0.401026 0.694598i −0.0208484 0.0361104i
\(371\) 0 0
\(372\) 11.0911 0.575045
\(373\) −15.0975 + 26.1497i −0.781721 + 1.35398i 0.149217 + 0.988804i \(0.452325\pi\)
−0.930938 + 0.365176i \(0.881009\pi\)
\(374\) −0.528739 0.915804i −0.0273405 0.0473551i
\(375\) 18.6108 + 32.2349i 0.961058 + 1.66460i
\(376\) 0.743308 + 1.28745i 0.0383332 + 0.0663950i
\(377\) −1.65952 + 1.42761i −0.0854697 + 0.0735254i
\(378\) 0 0
\(379\) 2.16121 3.74333i 0.111014 0.192282i −0.805165 0.593050i \(-0.797923\pi\)
0.916179 + 0.400768i \(0.131257\pi\)
\(380\) 14.0519 0.720846
\(381\) 61.2405 3.13745
\(382\) 0.329878 0.571365i 0.0168780 0.0292336i
\(383\) −8.67407 + 15.0239i −0.443224 + 0.767687i −0.997927 0.0643617i \(-0.979499\pi\)
0.554702 + 0.832049i \(0.312832\pi\)
\(384\) 11.4885 + 19.8987i 0.586271 + 1.01545i
\(385\) 0 0
\(386\) 1.16264 + 2.01376i 0.0591771 + 0.102498i
\(387\) 9.89690 0.503087
\(388\) 14.9478 + 25.8904i 0.758860 + 1.31438i
\(389\) 12.6737 21.9515i 0.642582 1.11299i −0.342272 0.939601i \(-0.611196\pi\)
0.984854 0.173384i \(-0.0554702\pi\)
\(390\) 4.68798 4.03284i 0.237385 0.204211i
\(391\) 1.15360 0.0583398
\(392\) 0 0
\(393\) −2.90423 + 5.03028i −0.146499 + 0.253744i
\(394\) 2.94026 5.09268i 0.148128 0.256566i
\(395\) −7.19671 + 12.4651i −0.362106 + 0.627185i
\(396\) −51.9750 −2.61184
\(397\) −13.5375 + 23.4476i −0.679425 + 1.17680i 0.295729 + 0.955272i \(0.404437\pi\)
−0.975154 + 0.221527i \(0.928896\pi\)
\(398\) 2.87965 0.144344
\(399\) 0 0
\(400\) 0.0387110 0.0670494i 0.00193555 0.00335247i
\(401\) −29.2858 −1.46246 −0.731232 0.682129i \(-0.761054\pi\)
−0.731232 + 0.682129i \(0.761054\pi\)
\(402\) 3.91458 6.78025i 0.195241 0.338168i
\(403\) −4.68798 + 4.03284i −0.233525 + 0.200890i
\(404\) 7.73764 + 13.4020i 0.384962 + 0.666774i
\(405\) −35.1296 + 60.8462i −1.74560 + 3.02347i
\(406\) 0 0
\(407\) −2.58075 4.46999i −0.127923 0.221569i
\(408\) 2.08666 + 3.61419i 0.103305 + 0.178929i
\(409\) −23.3713 −1.15563 −0.577817 0.816166i \(-0.696095\pi\)
−0.577817 + 0.816166i \(0.696095\pi\)
\(410\) 4.73805 0.233996
\(411\) 29.9056 + 51.7980i 1.47513 + 2.55501i
\(412\) −0.676229 1.17126i −0.0333154 0.0577040i
\(413\) 0 0
\(414\) −0.779611 + 1.35033i −0.0383158 + 0.0663649i
\(415\) −5.17738 8.96748i −0.254147 0.440196i
\(416\) −9.11296 3.19064i −0.446800 0.156434i
\(417\) 23.1194 40.0440i 1.13216 1.96096i
\(418\) −2.48679 −0.121633
\(419\) 7.30320 12.6495i 0.356785 0.617969i −0.630637 0.776078i \(-0.717206\pi\)
0.987422 + 0.158109i \(0.0505397\pi\)
\(420\) 0 0
\(421\) 10.2728 0.500668 0.250334 0.968160i \(-0.419460\pi\)
0.250334 + 0.968160i \(0.419460\pi\)
\(422\) 2.82171 4.88734i 0.137359 0.237912i
\(423\) 13.0862 0.636273
\(424\) 3.83305 6.63904i 0.186149 0.322420i
\(425\) 0.0144656 0.0250551i 0.000701682 0.00121535i
\(426\) 2.00395 3.47095i 0.0970917 0.168168i
\(427\) 0 0
\(428\) −17.4141 −0.841740
\(429\) 30.1688 25.9528i 1.45656 1.25301i
\(430\) −0.317845 + 0.550523i −0.0153278 + 0.0265486i
\(431\) 6.25087 + 10.8268i 0.301094 + 0.521510i 0.976384 0.216042i \(-0.0693149\pi\)
−0.675290 + 0.737552i \(0.735982\pi\)
\(432\) 61.6147 2.96444
\(433\) −5.47361 9.48057i −0.263045 0.455607i 0.704005 0.710195i \(-0.251393\pi\)
−0.967050 + 0.254588i \(0.918060\pi\)
\(434\) 0 0
\(435\) 2.25041 + 3.89783i 0.107899 + 0.186887i
\(436\) −2.21185 + 3.83104i −0.105928 + 0.183473i
\(437\) 1.35641 2.34937i 0.0648858 0.112386i
\(438\) 3.04654 0.145569
\(439\) 17.9179 0.855176 0.427588 0.903974i \(-0.359363\pi\)
0.427588 + 0.903974i \(0.359363\pi\)
\(440\) 3.38432 5.86181i 0.161341 0.279451i
\(441\) 0 0
\(442\) −1.08318 0.379244i −0.0515217 0.0180388i
\(443\) −13.8597 24.0057i −0.658494 1.14055i −0.981005 0.193980i \(-0.937860\pi\)
0.322511 0.946566i \(-0.395473\pi\)
\(444\) 5.02336 + 8.70071i 0.238398 + 0.412917i
\(445\) 10.1842 + 17.6396i 0.482778 + 0.836196i
\(446\) 2.62009 4.53813i 0.124065 0.214887i
\(447\) −52.9245 −2.50324
\(448\) 0 0
\(449\) 0.0829898 + 0.143743i 0.00391653 + 0.00678363i 0.867977 0.496604i \(-0.165420\pi\)
−0.864060 + 0.503388i \(0.832087\pi\)
\(450\) 0.0195519 + 0.0338649i 0.000921686 + 0.00159641i
\(451\) 30.4911 1.43577
\(452\) −9.25039 16.0222i −0.435102 0.753619i
\(453\) −46.3444 −2.17745
\(454\) −0.297313 −0.0139536
\(455\) 0 0
\(456\) 9.81404 0.459584
\(457\) 31.7354 1.48452 0.742260 0.670112i \(-0.233754\pi\)
0.742260 + 0.670112i \(0.233754\pi\)
\(458\) −0.537278 0.930593i −0.0251054 0.0434838i
\(459\) 23.0242 1.07468
\(460\) 1.82093 + 3.15394i 0.0849011 + 0.147053i
\(461\) 14.5328 + 25.1715i 0.676859 + 1.17235i 0.975922 + 0.218121i \(0.0699926\pi\)
−0.299063 + 0.954233i \(0.596674\pi\)
\(462\) 0 0
\(463\) 6.31904 0.293671 0.146835 0.989161i \(-0.453091\pi\)
0.146835 + 0.989161i \(0.453091\pi\)
\(464\) 1.11766 1.93584i 0.0518859 0.0898690i
\(465\) 6.35718 + 11.0110i 0.294807 + 0.510621i
\(466\) −1.37518 2.38188i −0.0637038 0.110338i
\(467\) −17.3204 29.9999i −0.801495 1.38823i −0.918632 0.395114i \(-0.870705\pi\)
0.117137 0.993116i \(-0.462628\pi\)
\(468\) −42.7617 + 36.7858i −1.97666 + 1.70042i
\(469\) 0 0
\(470\) −0.420271 + 0.727931i −0.0193857 + 0.0335769i
\(471\) 43.1051 1.98618
\(472\) 8.05532 0.370776
\(473\) −2.04545 + 3.54282i −0.0940497 + 0.162899i
\(474\) −2.47906 + 4.29385i −0.113867 + 0.197223i
\(475\) −0.0340175 0.0589200i −0.00156083 0.00270343i
\(476\) 0 0
\(477\) −33.7411 58.4413i −1.54490 2.67585i
\(478\) −0.966587 −0.0442107
\(479\) −3.57115 6.18541i −0.163170 0.282619i 0.772834 0.634608i \(-0.218839\pi\)
−0.936004 + 0.351990i \(0.885505\pi\)
\(480\) −9.92590 + 17.1922i −0.453053 + 0.784711i
\(481\) −5.28695 1.85107i −0.241064 0.0844015i
\(482\) −0.933174 −0.0425049
\(483\) 0 0
\(484\) 0.0363642 0.0629847i 0.00165292 0.00286294i
\(485\) −17.1356 + 29.6797i −0.778087 + 1.34769i
\(486\) −6.29325 + 10.9002i −0.285468 + 0.494444i
\(487\) −18.5003 −0.838327 −0.419163 0.907911i \(-0.637677\pi\)
−0.419163 + 0.907911i \(0.637677\pi\)
\(488\) −2.49570 + 4.32267i −0.112975 + 0.195678i
\(489\) 61.1575 2.76564
\(490\) 0 0
\(491\) 7.63904 13.2312i 0.344745 0.597116i −0.640563 0.767906i \(-0.721299\pi\)
0.985307 + 0.170790i \(0.0546321\pi\)
\(492\) −59.3500 −2.67571
\(493\) 0.417647 0.723386i 0.0188099 0.0325796i
\(494\) −2.04597 + 1.76005i −0.0920525 + 0.0791883i
\(495\) −29.7911 51.5997i −1.33901 2.31923i
\(496\) 3.15726 5.46854i 0.141765 0.245545i
\(497\) 0 0
\(498\) −1.78346 3.08904i −0.0799186 0.138423i
\(499\) −6.23916 10.8065i −0.279303 0.483767i 0.691909 0.721985i \(-0.256770\pi\)
−0.971212 + 0.238218i \(0.923437\pi\)
\(500\) 21.8077 0.975272
\(501\) 61.4595 2.74581
\(502\) 3.22384 + 5.58386i 0.143887 + 0.249220i
\(503\) −1.29004 2.23441i −0.0575200 0.0996276i 0.835832 0.548986i \(-0.184986\pi\)
−0.893352 + 0.449358i \(0.851653\pi\)
\(504\) 0 0
\(505\) −8.87013 + 15.3635i −0.394716 + 0.683668i
\(506\) −0.322253 0.558158i −0.0143259 0.0248132i
\(507\) 6.45266 42.7045i 0.286573 1.89658i
\(508\) 17.9401 31.0731i 0.795962 1.37865i
\(509\) −35.6808 −1.58152 −0.790761 0.612125i \(-0.790315\pi\)
−0.790761 + 0.612125i \(0.790315\pi\)
\(510\) −1.17981 + 2.04349i −0.0522428 + 0.0904872i
\(511\) 0 0
\(512\) 16.5825 0.732850
\(513\) 27.0721 46.8903i 1.19526 2.07026i
\(514\) 1.65206 0.0728694
\(515\) 0.775202 1.34269i 0.0341595 0.0591660i
\(516\) 3.98140 6.89599i 0.175272 0.303579i
\(517\) −2.70460 + 4.68450i −0.118948 + 0.206024i
\(518\) 0 0
\(519\) 57.1365 2.50801
\(520\) −1.36435 7.21801i −0.0598308 0.316531i
\(521\) −10.4819 + 18.1551i −0.459219 + 0.795390i −0.998920 0.0464666i \(-0.985204\pi\)
0.539701 + 0.841857i \(0.318537\pi\)
\(522\) 0.564499 + 0.977742i 0.0247075 + 0.0427946i
\(523\) 22.8263 0.998124 0.499062 0.866566i \(-0.333678\pi\)
0.499062 + 0.866566i \(0.333678\pi\)
\(524\) 1.70156 + 2.94719i 0.0743330 + 0.128749i
\(525\) 0 0
\(526\) −2.46622 4.27161i −0.107532 0.186251i
\(527\) 1.17981 2.04349i 0.0513933 0.0890158i
\(528\) −20.3181 + 35.1920i −0.884233 + 1.53154i
\(529\) −22.2969 −0.969431
\(530\) 4.33447 0.188277
\(531\) 35.4542 61.4084i 1.53858 2.66490i
\(532\) 0 0
\(533\) 25.0861 21.5803i 1.08660 0.934749i
\(534\) 3.50817 + 6.07632i 0.151813 + 0.262948i
\(535\) −9.98140 17.2883i −0.431534 0.747438i
\(536\) −4.65009 8.05419i −0.200853 0.347888i
\(537\) −24.0674 + 41.6860i −1.03859 + 1.79888i
\(538\) −0.645208 −0.0278169
\(539\) 0 0
\(540\) 36.3433 + 62.9484i 1.56397 + 2.70887i
\(541\) −15.1096 26.1706i −0.649611 1.12516i −0.983216 0.182447i \(-0.941598\pi\)
0.333604 0.942713i \(-0.391735\pi\)
\(542\) 3.58025 0.153785
\(543\) 11.3868 + 19.7224i 0.488652 + 0.846371i
\(544\) 3.68423 0.157960
\(545\) −5.07116 −0.217225
\(546\) 0 0
\(547\) −16.8223 −0.719271 −0.359636 0.933093i \(-0.617099\pi\)
−0.359636 + 0.933093i \(0.617099\pi\)
\(548\) 35.0427 1.49695
\(549\) 21.9688 + 38.0511i 0.937606 + 1.62398i
\(550\) −0.0161636 −0.000689219
\(551\) −0.982146 1.70113i −0.0418408 0.0724704i
\(552\) 1.27176 + 2.20276i 0.0541298 + 0.0937555i
\(553\) 0 0
\(554\) 1.27932 0.0543531
\(555\) −5.75858 + 9.97416i −0.244438 + 0.423379i
\(556\) −13.5454 23.4614i −0.574454 0.994984i
\(557\) 5.24591 + 9.08619i 0.222276 + 0.384994i 0.955499 0.294995i \(-0.0953179\pi\)
−0.733222 + 0.679989i \(0.761985\pi\)
\(558\) 1.59465 + 2.76202i 0.0675070 + 0.116926i
\(559\) 0.824600 + 4.36249i 0.0348768 + 0.184513i
\(560\) 0 0
\(561\) −7.59250 + 13.1506i −0.320555 + 0.555218i
\(562\) −7.28489 −0.307294
\(563\) −30.9474 −1.30428 −0.652138 0.758100i \(-0.726128\pi\)
−0.652138 + 0.758100i \(0.726128\pi\)
\(564\) 5.26442 9.11825i 0.221672 0.383947i
\(565\) 10.6043 18.3672i 0.446126 0.772713i
\(566\) −0.850388 1.47292i −0.0357445 0.0619112i
\(567\) 0 0
\(568\) −2.38047 4.12310i −0.0998825 0.173002i
\(569\) −36.9089 −1.54730 −0.773651 0.633612i \(-0.781572\pi\)
−0.773651 + 0.633612i \(0.781572\pi\)
\(570\) 2.77446 + 4.80551i 0.116209 + 0.201280i
\(571\) 0.885467 1.53367i 0.0370556 0.0641822i −0.846903 0.531748i \(-0.821535\pi\)
0.883958 + 0.467565i \(0.154869\pi\)
\(572\) −4.33051 22.9102i −0.181068 0.957925i
\(573\) −9.47383 −0.395775
\(574\) 0 0
\(575\) 0.00881638 0.0152704i 0.000367668 0.000636820i
\(576\) 27.1013 46.9409i 1.12922 1.95587i
\(577\) −4.91999 + 8.52168i −0.204822 + 0.354762i −0.950076 0.312019i \(-0.898995\pi\)
0.745254 + 0.666781i \(0.232328\pi\)
\(578\) −3.49522 −0.145382
\(579\) 16.6951 28.9168i 0.693826 1.20174i
\(580\) 2.63699 0.109495
\(581\) 0 0
\(582\) −5.90272 + 10.2238i −0.244675 + 0.423790i
\(583\) 27.8939 1.15525
\(584\) 1.80948 3.13411i 0.0748767 0.129690i
\(585\) −61.0303 21.3680i −2.52329 0.883457i
\(586\) −1.56556 2.71163i −0.0646727 0.112016i
\(587\) −7.56917 + 13.1102i −0.312413 + 0.541116i −0.978884 0.204415i \(-0.934471\pi\)
0.666471 + 0.745531i \(0.267804\pi\)
\(588\) 0 0
\(589\) −2.77446 4.80551i −0.114320 0.198007i
\(590\) 2.27726 + 3.94434i 0.0937535 + 0.162386i
\(591\) −84.4420 −3.47348
\(592\) 5.71994 0.235088
\(593\) 4.58574 + 7.94274i 0.188314 + 0.326169i 0.944688 0.327970i \(-0.106364\pi\)
−0.756374 + 0.654139i \(0.773031\pi\)
\(594\) −6.43174 11.1401i −0.263898 0.457084i
\(595\) 0 0
\(596\) −15.5040 + 26.8536i −0.635067 + 1.09997i
\(597\) −20.6753 35.8107i −0.846184 1.46563i
\(598\) −0.660171 0.231139i −0.0269964 0.00945199i
\(599\) 9.29053 16.0917i 0.379601 0.657488i −0.611403 0.791319i \(-0.709395\pi\)
0.991004 + 0.133831i \(0.0427280\pi\)
\(600\) 0.0637892 0.00260418
\(601\) −6.70179 + 11.6078i −0.273372 + 0.473494i −0.969723 0.244207i \(-0.921472\pi\)
0.696351 + 0.717701i \(0.254806\pi\)
\(602\) 0 0
\(603\) −81.8665 −3.33386
\(604\) −13.5763 + 23.5149i −0.552413 + 0.956808i
\(605\) 0.0833731 0.00338960
\(606\) −3.05550 + 5.29229i −0.124121 + 0.214984i
\(607\) 6.31812 10.9433i 0.256445 0.444175i −0.708842 0.705367i \(-0.750782\pi\)
0.965287 + 0.261192i \(0.0841155\pi\)
\(608\) 4.33195 7.50316i 0.175684 0.304293i
\(609\) 0 0
\(610\) −2.82217 −0.114266
\(611\) 1.09033 + 5.76831i 0.0441100 + 0.233361i
\(612\) 10.7617 18.6398i 0.435016 0.753470i
\(613\) −12.8540 22.2637i −0.519167 0.899223i −0.999752 0.0222753i \(-0.992909\pi\)
0.480585 0.876948i \(-0.340424\pi\)
\(614\) 0.764900 0.0308688
\(615\) −34.0183 58.9214i −1.37175 2.37594i
\(616\) 0 0
\(617\) 3.29810 + 5.71248i 0.132777 + 0.229976i 0.924746 0.380585i \(-0.124277\pi\)
−0.791969 + 0.610561i \(0.790944\pi\)
\(618\) 0.267035 0.462518i 0.0107417 0.0186052i
\(619\) −10.5062 + 18.1973i −0.422280 + 0.731410i −0.996162 0.0875280i \(-0.972103\pi\)
0.573883 + 0.818938i \(0.305437\pi\)
\(620\) 7.44921 0.299168
\(621\) 14.0327 0.563112
\(622\) −3.96856 + 6.87375i −0.159125 + 0.275612i
\(623\) 0 0
\(624\) 8.19103 + 43.3341i 0.327904 + 1.73475i
\(625\) 12.4472 + 21.5592i 0.497888 + 0.862368i
\(626\) 0.834551 + 1.44549i 0.0333554 + 0.0577732i
\(627\) 17.8547 + 30.9252i 0.713046 + 1.23503i
\(628\) 12.6274 21.8713i 0.503888 0.872760i
\(629\) 2.13743 0.0852250
\(630\) 0 0
\(631\) −13.0105 22.5349i −0.517940 0.897099i −0.999783 0.0208412i \(-0.993366\pi\)
0.481842 0.876258i \(-0.339968\pi\)
\(632\) 2.94485 + 5.10063i 0.117140 + 0.202892i
\(633\) −81.0373 −3.22095
\(634\) 0.930117 + 1.61101i 0.0369397 + 0.0639814i
\(635\) 41.1316 1.63226
\(636\) −54.2946 −2.15292
\(637\) 0 0
\(638\) −0.466673 −0.0184758
\(639\) −41.9091 −1.65790
\(640\) 7.71615 + 13.3648i 0.305008 + 0.528289i
\(641\) 18.5339 0.732044 0.366022 0.930606i \(-0.380719\pi\)
0.366022 + 0.930606i \(0.380719\pi\)
\(642\) −3.43830 5.95532i −0.135699 0.235038i
\(643\) −7.22328 12.5111i −0.284858 0.493389i 0.687716 0.725979i \(-0.258613\pi\)
−0.972575 + 0.232590i \(0.925280\pi\)
\(644\) 0 0
\(645\) 9.12826 0.359425
\(646\) 0.514903 0.891838i 0.0202586 0.0350889i
\(647\) 14.6438 + 25.3637i 0.575706 + 0.997152i 0.995965 + 0.0897473i \(0.0286059\pi\)
−0.420259 + 0.907404i \(0.638061\pi\)
\(648\) 14.3748 + 24.8979i 0.564696 + 0.978082i
\(649\) 14.6550 + 25.3832i 0.575260 + 0.996379i
\(650\) −0.0132984 + 0.0114399i −0.000521605 + 0.000448711i
\(651\) 0 0
\(652\) 17.9158 31.0310i 0.701636 1.21527i
\(653\) −30.9615 −1.21162 −0.605808 0.795611i \(-0.707150\pi\)
−0.605808 + 0.795611i \(0.707150\pi\)
\(654\) −1.74687 −0.0683079
\(655\) −1.95060 + 3.37854i −0.0762164 + 0.132011i
\(656\) −16.8950 + 29.2630i −0.659639 + 1.14253i
\(657\) −15.9282 27.5885i −0.621420 1.07633i
\(658\) 0 0
\(659\) 18.5414 + 32.1146i 0.722270 + 1.25101i 0.960088 + 0.279699i \(0.0902347\pi\)
−0.237817 + 0.971310i \(0.576432\pi\)
\(660\) −47.9384 −1.86600
\(661\) −10.2009 17.6685i −0.396770 0.687226i 0.596555 0.802572i \(-0.296536\pi\)
−0.993325 + 0.115346i \(0.963202\pi\)
\(662\) −0.103382 + 0.179063i −0.00401806 + 0.00695948i
\(663\) 3.06083 + 16.1931i 0.118873 + 0.628889i
\(664\) −4.23710 −0.164431
\(665\) 0 0
\(666\) −1.44450 + 2.50194i −0.0559731 + 0.0969483i
\(667\) 0.254545 0.440885i 0.00985601 0.0170711i
\(668\) 18.0042 31.1842i 0.696605 1.20655i
\(669\) −75.2469 −2.90921
\(670\) 2.62919 4.55389i 0.101574 0.175932i
\(671\) −18.1617 −0.701123
\(672\) 0 0
\(673\) −7.25551 + 12.5669i −0.279679 + 0.484419i −0.971305 0.237837i \(-0.923562\pi\)
0.691626 + 0.722256i \(0.256895\pi\)
\(674\) 3.48700 0.134314
\(675\) 0.175963 0.304777i 0.00677283 0.0117309i
\(676\) −19.7778 15.7841i −0.760684 0.607081i
\(677\) −1.75738 3.04388i −0.0675417 0.116986i 0.830277 0.557351i \(-0.188182\pi\)
−0.897819 + 0.440365i \(0.854849\pi\)
\(678\) 3.65287 6.32696i 0.140288 0.242985i
\(679\) 0 0
\(680\) 1.40148 + 2.42744i 0.0537444 + 0.0930881i
\(681\) 2.13465 + 3.69732i 0.0817999 + 0.141682i
\(682\) −1.31830 −0.0504804
\(683\) −27.0753 −1.03601 −0.518003 0.855379i \(-0.673324\pi\)
−0.518003 + 0.855379i \(0.673324\pi\)
\(684\) −25.3074 43.8338i −0.967654 1.67603i
\(685\) 20.0858 + 34.7897i 0.767440 + 1.32925i
\(686\) 0 0
\(687\) −7.71511 + 13.3630i −0.294350 + 0.509829i
\(688\) −2.26675 3.92613i −0.0864190 0.149682i
\(689\) 22.9493 19.7421i 0.874298 0.752116i
\(690\) −0.719062 + 1.24545i −0.0273742 + 0.0474136i
\(691\) −29.7404 −1.13138 −0.565690 0.824618i \(-0.691390\pi\)
−0.565690 + 0.824618i \(0.691390\pi\)
\(692\) 16.7378 28.9908i 0.636277 1.10206i
\(693\) 0 0
\(694\) −3.79810 −0.144174
\(695\) 15.5280 26.8952i 0.589009 1.02019i
\(696\) 1.84171 0.0698099
\(697\) −6.31334 + 10.9350i −0.239135 + 0.414194i
\(698\) 3.97619 6.88696i 0.150501 0.260675i
\(699\) −19.7470 + 34.2028i −0.746900 + 1.29367i
\(700\) 0 0
\(701\) 18.2888 0.690760 0.345380 0.938463i \(-0.387750\pi\)
0.345380 + 0.938463i \(0.387750\pi\)
\(702\) −13.1761 4.61324i −0.497301 0.174115i
\(703\) 2.51321 4.35301i 0.0947876 0.164177i
\(704\) 11.2024 + 19.4030i 0.422205 + 0.731280i
\(705\) 12.0699 0.454577
\(706\) −2.76664 4.79197i −0.104124 0.180348i
\(707\) 0 0
\(708\) −28.5256 49.4078i −1.07206 1.85686i
\(709\) 14.3402 24.8379i 0.538557 0.932808i −0.460425 0.887699i \(-0.652303\pi\)
0.998982 0.0451098i \(-0.0143638\pi\)
\(710\) 1.34594 2.33123i 0.0505121 0.0874895i
\(711\) 51.8451 1.94434
\(712\) 8.33464 0.312354
\(713\) 0.719062 1.24545i 0.0269291 0.0466426i
\(714\) 0 0
\(715\) 20.2626 17.4309i 0.757779 0.651880i
\(716\) 14.1008 + 24.4234i 0.526973 + 0.912744i
\(717\) 6.93991 + 12.0203i 0.259176 + 0.448905i
\(718\) 0.714760 + 1.23800i 0.0266746 + 0.0462018i
\(719\) 12.7381 22.0631i 0.475052 0.822813i −0.524540 0.851386i \(-0.675763\pi\)
0.999592 + 0.0285723i \(0.00909607\pi\)
\(720\) 66.0285 2.46074
\(721\) 0 0
\(722\) 0.987073 + 1.70966i 0.0367350 + 0.0636270i
\(723\) 6.70001 + 11.6048i 0.249176 + 0.431586i
\(724\) 13.3428 0.495879
\(725\) −0.00638375 0.0110570i −0.000237086 0.000410646i
\(726\) 0.0287196 0.00106588
\(727\) 9.02572 0.334746 0.167373 0.985894i \(-0.446472\pi\)
0.167373 + 0.985894i \(0.446472\pi\)
\(728\) 0 0
\(729\) 86.2759 3.19540
\(730\) 2.04618 0.0757325
\(731\) −0.847041 1.46712i −0.0313290 0.0542633i
\(732\) 35.3512 1.30662
\(733\) −3.78535 6.55641i −0.139815 0.242167i 0.787612 0.616172i \(-0.211317\pi\)
−0.927426 + 0.374006i \(0.877984\pi\)
\(734\) 2.29695 + 3.97843i 0.0847818 + 0.146846i
\(735\) 0 0
\(736\) 2.24544 0.0827681
\(737\) 16.9198 29.3059i 0.623249 1.07950i
\(738\) −8.53323 14.7800i −0.314113 0.544059i
\(739\) 3.18648 + 5.51914i 0.117216 + 0.203025i 0.918664 0.395041i \(-0.129270\pi\)
−0.801447 + 0.598066i \(0.795936\pi\)
\(740\) 3.37389 + 5.84375i 0.124027 + 0.214821i
\(741\) 36.5772 + 12.8064i 1.34370 + 0.470457i
\(742\) 0 0
\(743\) 11.4148 19.7711i 0.418770 0.725330i −0.577046 0.816711i \(-0.695795\pi\)
0.995816 + 0.0913811i \(0.0291281\pi\)
\(744\) 5.20264 0.190738
\(745\) −35.5463 −1.30231
\(746\) −3.49298 + 6.05002i −0.127887 + 0.221507i
\(747\) −18.6489 + 32.3009i −0.682328 + 1.18183i
\(748\) 4.44836 + 7.70479i 0.162648 + 0.281715i
\(749\) 0 0
\(750\) 4.30581 + 7.45788i 0.157226 + 0.272323i
\(751\) 39.3695 1.43661 0.718307 0.695726i \(-0.244917\pi\)
0.718307 + 0.695726i \(0.244917\pi\)
\(752\) −2.99722 5.19133i −0.109297 0.189308i
\(753\) 46.2931 80.1821i 1.68702 2.92200i
\(754\) −0.383948 + 0.330292i −0.0139826 + 0.0120285i
\(755\) −31.1268 −1.13282
\(756\) 0 0
\(757\) −4.36357 + 7.55792i −0.158597 + 0.274697i −0.934363 0.356323i \(-0.884030\pi\)
0.775766 + 0.631020i \(0.217364\pi\)
\(758\) 0.500020 0.866060i 0.0181615 0.0314567i
\(759\) −4.62743 + 8.01494i −0.167965 + 0.290924i
\(760\) 6.59151 0.239099
\(761\) −11.4195 + 19.7792i −0.413958 + 0.716996i −0.995318 0.0966503i \(-0.969187\pi\)
0.581361 + 0.813646i \(0.302520\pi\)
\(762\) 14.1687 0.513276
\(763\) 0 0
\(764\) −2.77531 + 4.80697i −0.100407 + 0.173910i
\(765\) 24.6736 0.892076
\(766\) −2.00684 + 3.47595i −0.0725101 + 0.125591i
\(767\) 30.0224 + 10.5115i 1.08405 + 0.379547i
\(768\) −19.7467 34.2023i −0.712548 1.23417i
\(769\) 17.4174 30.1679i 0.628089 1.08788i −0.359846 0.933012i \(-0.617171\pi\)
0.987935 0.154871i \(-0.0494960\pi\)
\(770\) 0 0
\(771\) −11.8615 20.5447i −0.427182 0.739900i
\(772\) −9.78150 16.9421i −0.352044 0.609758i
\(773\) 33.2743 1.19679 0.598397 0.801200i \(-0.295804\pi\)
0.598397 + 0.801200i \(0.295804\pi\)
\(774\) 2.28975 0.0823035
\(775\) −0.0180334 0.0312348i −0.000647780 0.00112199i
\(776\) 7.01178 + 12.1448i 0.251708 + 0.435971i
\(777\) 0 0
\(778\) 2.93220 5.07872i 0.105124 0.182081i
\(779\) 14.8466 + 25.7150i 0.531934 + 0.921336i
\(780\) −39.4406 + 33.9288i −1.41220 + 1.21485i
\(781\) 8.66158 15.0023i 0.309936 0.536825i
\(782\) 0.266897 0.00954421
\(783\) 5.08038 8.79947i 0.181558 0.314467i
\(784\) 0 0
\(785\) 28.9512 1.03331
\(786\) −0.671926 + 1.16381i −0.0239668 + 0.0415117i
\(787\) 27.8157 0.991524 0.495762 0.868458i \(-0.334889\pi\)
0.495762 + 0.868458i \(0.334889\pi\)
\(788\) −24.7368 + 42.8455i −0.881213 + 1.52631i
\(789\) −35.4139 + 61.3387i −1.26077 + 2.18372i
\(790\) −1.66504 + 2.88393i −0.0592393 + 0.102606i
\(791\) 0 0
\(792\) −24.3806 −0.866329
\(793\) −14.9423 + 12.8541i −0.530615 + 0.456462i
\(794\) −3.13204 + 5.42484i −0.111152 + 0.192521i
\(795\) −31.1206 53.9025i −1.10374 1.91173i
\(796\) −24.2269 −0.858699
\(797\) 17.9343 + 31.0630i 0.635264 + 1.10031i 0.986459 + 0.164007i \(0.0524421\pi\)
−0.351195 + 0.936302i \(0.614225\pi\)
\(798\) 0 0
\(799\) −1.12000 1.93990i −0.0396228 0.0686288i
\(800\) 0.0281568 0.0487690i 0.000995493 0.00172424i
\(801\) 36.6836 63.5378i 1.29615 2.24500i
\(802\) −6.77559 −0.239254
\(803\) 13.1679 0.464686
\(804\) −32.9339 + 57.0432i −1.16149 + 2.01176i
\(805\) 0 0
\(806\) −1.08461 + 0.933040i −0.0382039 + 0.0328649i
\(807\) 4.63247 + 8.02368i 0.163071 + 0.282447i
\(808\) 3.62960 + 6.28666i 0.127689 + 0.221164i
\(809\) 8.91223 + 15.4364i 0.313337 + 0.542716i 0.979083 0.203463i \(-0.0652196\pi\)
−0.665745 + 0.746179i \(0.731886\pi\)
\(810\) −8.12761 + 14.0774i −0.285575 + 0.494630i
\(811\) −25.2152 −0.885425 −0.442713 0.896664i \(-0.645984\pi\)
−0.442713 + 0.896664i \(0.645984\pi\)
\(812\) 0 0
\(813\) −25.7055 44.5233i −0.901532 1.56150i
\(814\) −0.597084 1.03418i −0.0209278 0.0362480i
\(815\) 41.0759 1.43883
\(816\) −8.41395 14.5734i −0.294547 0.510171i
\(817\) −3.98384 −0.139377
\(818\) −5.40719 −0.189058
\(819\) 0 0
\(820\) −39.8619 −1.39204
\(821\) −10.4559 −0.364915 −0.182457 0.983214i \(-0.558405\pi\)
−0.182457 + 0.983214i \(0.558405\pi\)
\(822\) 6.91899 + 11.9840i 0.241327 + 0.417991i
\(823\) −33.2405 −1.15869 −0.579346 0.815082i \(-0.696692\pi\)
−0.579346 + 0.815082i \(0.696692\pi\)
\(824\) −0.317208 0.549420i −0.0110505 0.0191400i
\(825\) 0.116052 + 0.201007i 0.00404040 + 0.00699817i
\(826\) 0 0
\(827\) −37.9927 −1.32113 −0.660567 0.750767i \(-0.729684\pi\)
−0.660567 + 0.750767i \(0.729684\pi\)
\(828\) 6.55898 11.3605i 0.227940 0.394804i
\(829\) 8.34721 + 14.4578i 0.289911 + 0.502140i 0.973788 0.227457i \(-0.0730411\pi\)
−0.683877 + 0.729597i \(0.739708\pi\)
\(830\) −1.19784 2.07472i −0.0415777 0.0720147i
\(831\) −9.18528 15.9094i −0.318634 0.551890i
\(832\) 22.9493 + 8.03501i 0.795623 + 0.278564i
\(833\) 0 0
\(834\) 5.34893 9.26462i 0.185218 0.320808i
\(835\) 41.2787 1.42851
\(836\) 20.9217 0.723592
\(837\) 14.3515 24.8576i 0.496062 0.859204i
\(838\) 1.68967 2.92660i 0.0583688 0.101098i
\(839\) −23.3206 40.3924i −0.805115 1.39450i −0.916213 0.400691i \(-0.868770\pi\)
0.111098 0.993809i \(-0.464563\pi\)
\(840\) 0 0
\(841\) 14.3157 + 24.7955i 0.493644 + 0.855017i
\(842\) 2.37673 0.0819077
\(843\) 52.3041 + 90.5934i 1.80145 + 3.12020i
\(844\) −23.7395 + 41.1179i −0.817146 + 1.41534i
\(845\) 4.33387 28.6821i 0.149090 0.986695i
\(846\) 3.02763 0.104092
\(847\) 0 0
\(848\) −15.4559 + 26.7704i −0.530758 + 0.919299i
\(849\) −12.2112 + 21.1505i −0.419089 + 0.725883i
\(850\) 0.00334676 0.00579676i 0.000114793 0.000198827i
\(851\) 1.30271 0.0446563
\(852\) −16.8595 + 29.2016i −0.577598 + 1.00043i
\(853\) −39.5640 −1.35464 −0.677322 0.735686i \(-0.736860\pi\)
−0.677322 + 0.735686i \(0.736860\pi\)
\(854\) 0 0
\(855\) 29.0115 50.2493i 0.992171 1.71849i
\(856\) −8.16866 −0.279199
\(857\) −9.78065 + 16.9406i −0.334101 + 0.578679i −0.983312 0.181929i \(-0.941766\pi\)
0.649211 + 0.760608i \(0.275099\pi\)
\(858\) 6.97989 6.00445i 0.238289 0.204989i
\(859\) −5.08158 8.80155i −0.173381 0.300305i 0.766219 0.642580i \(-0.222136\pi\)
−0.939600 + 0.342275i \(0.888803\pi\)
\(860\) 2.67407 4.63163i 0.0911851 0.157937i
\(861\) 0 0
\(862\) 1.44621 + 2.50490i 0.0492580 + 0.0853174i
\(863\) −13.4451 23.2877i −0.457678 0.792722i 0.541160 0.840920i \(-0.317985\pi\)
−0.998838 + 0.0481982i \(0.984652\pi\)
\(864\) 44.8160 1.52467
\(865\) 38.3752 1.30480
\(866\) −1.26638 2.19343i −0.0430333 0.0745358i
\(867\) 25.0950 + 43.4658i 0.852271 + 1.47618i
\(868\) 0 0
\(869\) −10.7151 + 18.5591i −0.363485 + 0.629575i
\(870\) 0.520658 + 0.901806i 0.0176519 + 0.0305741i
\(871\) −6.82103 36.0862i −0.231122 1.22273i
\(872\) −1.03754 + 1.79708i −0.0351357 + 0.0608568i
\(873\) 123.445 4.17798
\(874\) 0.313820 0.543552i 0.0106151 0.0183859i
\(875\) 0 0
\(876\) −25.6310 −0.865991
\(877\) 0.850801 1.47363i 0.0287295 0.0497610i −0.851303 0.524674i \(-0.824187\pi\)
0.880033 + 0.474913i \(0.157521\pi\)
\(878\) 4.14551 0.139904
\(879\) −22.4809 + 38.9380i −0.758260 + 1.31335i
\(880\) −13.6465 + 23.6364i −0.460023 + 0.796783i
\(881\) −5.65448 + 9.79384i −0.190504 + 0.329963i −0.945417 0.325862i \(-0.894346\pi\)
0.754913 + 0.655825i \(0.227679\pi\)
\(882\) 0 0
\(883\) −46.9068 −1.57854 −0.789270 0.614047i \(-0.789541\pi\)
−0.789270 + 0.614047i \(0.789541\pi\)
\(884\) 9.11296 + 3.19064i 0.306502 + 0.107313i
\(885\) 32.7006 56.6392i 1.09922 1.90390i
\(886\) −3.20659 5.55398i −0.107728 0.186590i
\(887\) 2.44692 0.0821594 0.0410797 0.999156i \(-0.486920\pi\)
0.0410797 + 0.999156i \(0.486920\pi\)
\(888\) 2.35638 + 4.08136i 0.0790748 + 0.136962i
\(889\) 0 0
\(890\) 2.35623 + 4.08111i 0.0789810 + 0.136799i
\(891\) −52.3041 + 90.5934i −1.75225 + 3.03499i
\(892\) −22.0432 + 38.1799i −0.738060 + 1.27836i
\(893\) −5.26764 −0.176275
\(894\) −12.2447 −0.409523
\(895\) −16.1647 + 27.9980i −0.540325 + 0.935871i
\(896\) 0 0
\(897\) 1.86550 + 9.86928i 0.0622872 + 0.329526i
\(898\) 0.0192006 + 0.0332564i 0.000640732 + 0.00110978i
\(899\) −0.520658 0.901806i −0.0173649 0.0300769i
\(900\) −0.164493 0.284910i −0.00548310 0.00949701i
\(901\) −5.77557 + 10.0036i −0.192412 + 0.333268i
\(902\) 7.05444 0.234887
\(903\) 0 0
\(904\) −4.33921 7.51574i −0.144320 0.249970i
\(905\) 7.64781 + 13.2464i 0.254222 + 0.440325i
\(906\) −10.7223 −0.356224
\(907\) 20.7083 + 35.8678i 0.687607 + 1.19097i 0.972610 + 0.232443i \(0.0746719\pi\)
−0.285003 + 0.958526i \(0.591995\pi\)
\(908\) 2.50133 0.0830097
\(909\) 63.9004 2.11944
\(910\) 0 0
\(911\) −11.9951 −0.397416 −0.198708 0.980059i \(-0.563675\pi\)
−0.198708 + 0.980059i \(0.563675\pi\)
\(912\) −39.5728 −1.31039
\(913\) −7.70855 13.3516i −0.255116 0.441873i
\(914\) 7.34233 0.242863
\(915\) 20.2626 + 35.0959i 0.669862 + 1.16023i
\(916\) 4.52020 + 7.82922i 0.149352 + 0.258685i
\(917\) 0 0
\(918\) 5.32691 0.175814
\(919\) −22.4708 + 38.9206i −0.741243 + 1.28387i 0.210686 + 0.977554i \(0.432430\pi\)
−0.951930 + 0.306317i \(0.900903\pi\)
\(920\) 0.854167 + 1.47946i 0.0281611 + 0.0487764i
\(921\) −5.49183 9.51213i −0.180962 0.313435i
\(922\) 3.36232 + 5.82370i 0.110732 + 0.191793i
\(923\) −3.49182 18.4732i −0.114935 0.608054i
\(924\) 0 0
\(925\) 0.0163354 0.0282937i 0.000537103 0.000930290i
\(926\) 1.46198 0.0480436
\(927\) −5.58456 −0.183421
\(928\) 0.812938 1.40805i 0.0266860 0.0462215i
\(929\) 14.1298 24.4735i 0.463582 0.802948i −0.535554 0.844501i \(-0.679897\pi\)
0.999136 + 0.0415530i \(0.0132305\pi\)
\(930\) 1.47080 + 2.54751i 0.0482295 + 0.0835360i
\(931\) 0 0
\(932\) 11.5696 + 20.0391i 0.378973 + 0.656401i
\(933\) 113.974 3.73134
\(934\) −4.00727 6.94080i −0.131122 0.227110i
\(935\) −5.09943 + 8.83247i −0.166769 + 0.288853i
\(936\) −20.0588 + 17.2556i −0.655643 + 0.564018i
\(937\) −32.4601 −1.06042 −0.530212 0.847865i \(-0.677888\pi\)
−0.530212 + 0.847865i \(0.677888\pi\)
\(938\) 0 0
\(939\) 11.9838 20.7566i 0.391078 0.677366i
\(940\) 3.53580 6.12419i 0.115325 0.199749i
\(941\) −6.30253 + 10.9163i −0.205457 + 0.355861i −0.950278 0.311402i \(-0.899201\pi\)
0.744822 + 0.667264i \(0.232535\pi\)
\(942\) 9.97283 0.324932
\(943\) −3.84782 + 6.66462i −0.125302 + 0.217030i
\(944\) −32.4812 −1.05717
\(945\) 0 0
\(946\) −0.473236 + 0.819669i −0.0153862 + 0.0266497i
\(947\) −13.2802 −0.431548 −0.215774 0.976443i \(-0.569228\pi\)
−0.215774 + 0.976443i \(0.569228\pi\)
\(948\) 20.8567 36.1248i 0.677393 1.17328i
\(949\) 10.8337 9.31971i 0.351677 0.302531i
\(950\) −0.00787031 0.0136318i −0.000255347 0.000442273i
\(951\) 13.3561 23.1335i 0.433102 0.750155i
\(952\) 0 0
\(953\) 29.2159 + 50.6035i 0.946397 + 1.63921i 0.752930 + 0.658101i \(0.228640\pi\)
0.193467 + 0.981107i \(0.438027\pi\)
\(954\) −7.80637 13.5210i −0.252741 0.437760i
\(955\) −6.36301 −0.205902
\(956\) 8.13204 0.263009
\(957\) 3.35062 + 5.80345i 0.108310 + 0.187599i
\(958\) −0.826224 1.43106i −0.0266941 0.0462355i
\(959\) 0 0
\(960\) 24.9965 43.2952i 0.806759 1.39735i
\(961\) 14.0292 + 24.2993i 0.452555 + 0.783848i
\(962\) −1.22319 0.428265i −0.0394373 0.0138078i
\(963\) −35.9530 + 62.2725i −1.15857 + 2.00670i
\(964\) 7.85093 0.252861
\(965\) 11.2131 19.4217i 0.360964 0.625207i
\(966\) 0 0
\(967\) 33.2182 1.06823 0.534113 0.845413i \(-0.320646\pi\)
0.534113 + 0.845413i \(0.320646\pi\)
\(968\) 0.0170579 0.0295451i 0.000548261 0.000949616i
\(969\) −14.7876 −0.475047
\(970\) −3.96451 + 6.86673i −0.127293 + 0.220477i
\(971\) 8.38890 14.5300i 0.269213 0.466290i −0.699446 0.714685i \(-0.746570\pi\)
0.968659 + 0.248395i \(0.0799032\pi\)
\(972\) 52.9460 91.7052i 1.69824 2.94144i
\(973\) 0 0
\(974\) −4.28023 −0.137148
\(975\) 0.237745 + 0.0832393i 0.00761392 + 0.00266579i
\(976\) 10.0633 17.4302i 0.322119 0.557927i
\(977\) 25.0211 + 43.3378i 0.800496 + 1.38650i 0.919290 + 0.393581i \(0.128764\pi\)
−0.118793 + 0.992919i \(0.537903\pi\)
\(978\) 14.1495 0.452450
\(979\) 15.1632 + 26.2634i 0.484618 + 0.839382i
\(980\) 0 0
\(981\) 9.13316 + 15.8191i 0.291599 + 0.505065i
\(982\) 1.76737 3.06118i 0.0563992 0.0976862i
\(983\) 8.33707 14.4402i 0.265911 0.460572i −0.701891 0.712285i \(-0.747661\pi\)
0.967802 + 0.251713i \(0.0809939\pi\)
\(984\) −27.8402 −0.887512
\(985\) −56.7147 −1.80708
\(986\) 0.0966271 0.167363i 0.00307723 0.00532993i
\(987\) 0 0
\(988\) 17.2130 14.8075i 0.547620 0.471090i
\(989\) −0.516249 0.894170i −0.0164158 0.0284330i
\(990\) −6.89249 11.9381i −0.219058 0.379419i
\(991\) −10.1642 17.6050i −0.322878 0.559241i 0.658203 0.752841i \(-0.271317\pi\)
−0.981081 + 0.193600i \(0.937984\pi\)
\(992\) 2.29646 3.97759i 0.0729128 0.126289i
\(993\) 2.96905 0.0942201
\(994\) 0 0
\(995\) −13.8864 24.0519i −0.440228 0.762497i
\(996\) 15.0045 + 25.9885i 0.475435 + 0.823478i
\(997\) −6.27646 −0.198777 −0.0993887 0.995049i \(-0.531689\pi\)
−0.0993887 + 0.995049i \(0.531689\pi\)
\(998\) −1.44350 2.50021i −0.0456931 0.0791427i
\(999\) 26.0003 0.822614
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.h.i.165.3 8
7.2 even 3 637.2.g.j.373.2 8
7.3 odd 6 91.2.f.c.22.2 8
7.4 even 3 637.2.f.i.295.2 8
7.5 odd 6 637.2.g.k.373.2 8
7.6 odd 2 637.2.h.h.165.3 8
13.3 even 3 637.2.g.j.263.2 8
21.17 even 6 819.2.o.h.568.3 8
28.3 even 6 1456.2.s.q.113.1 8
91.3 odd 6 91.2.f.c.29.2 yes 8
91.4 even 6 8281.2.a.bt.1.2 4
91.16 even 3 inner 637.2.h.i.471.3 8
91.17 odd 6 1183.2.a.l.1.2 4
91.45 even 12 1183.2.c.g.337.4 8
91.55 odd 6 637.2.g.k.263.2 8
91.59 even 12 1183.2.c.g.337.5 8
91.68 odd 6 637.2.h.h.471.3 8
91.74 even 3 8281.2.a.bp.1.3 4
91.81 even 3 637.2.f.i.393.2 8
91.87 odd 6 1183.2.a.k.1.3 4
273.185 even 6 819.2.o.h.757.3 8
364.3 even 6 1456.2.s.q.1121.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.f.c.22.2 8 7.3 odd 6
91.2.f.c.29.2 yes 8 91.3 odd 6
637.2.f.i.295.2 8 7.4 even 3
637.2.f.i.393.2 8 91.81 even 3
637.2.g.j.263.2 8 13.3 even 3
637.2.g.j.373.2 8 7.2 even 3
637.2.g.k.263.2 8 91.55 odd 6
637.2.g.k.373.2 8 7.5 odd 6
637.2.h.h.165.3 8 7.6 odd 2
637.2.h.h.471.3 8 91.68 odd 6
637.2.h.i.165.3 8 1.1 even 1 trivial
637.2.h.i.471.3 8 91.16 even 3 inner
819.2.o.h.568.3 8 21.17 even 6
819.2.o.h.757.3 8 273.185 even 6
1183.2.a.k.1.3 4 91.87 odd 6
1183.2.a.l.1.2 4 91.17 odd 6
1183.2.c.g.337.4 8 91.45 even 12
1183.2.c.g.337.5 8 91.59 even 12
1456.2.s.q.113.1 8 28.3 even 6
1456.2.s.q.1121.1 8 364.3 even 6
8281.2.a.bp.1.3 4 91.74 even 3
8281.2.a.bt.1.2 4 91.4 even 6