Properties

Label 637.2.h.h.165.4
Level $637$
Weight $2$
Character 637.165
Analytic conductor $5.086$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(165,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.165"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,-1,10,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.59066497296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 7x^{6} + 38x^{4} - 16x^{3} + 15x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 165.4
Root \(-1.11000 - 1.92258i\) of defining polynomial
Character \(\chi\) \(=\) 637.165
Dual form 637.2.h.h.471.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.22001 q^{2} +(-0.274776 - 0.475925i) q^{3} +2.92843 q^{4} +(2.11000 + 3.65463i) q^{5} +(-0.610004 - 1.05656i) q^{6} +2.06113 q^{8} +(1.34900 - 2.33653i) q^{9} +(4.68423 + 8.11332i) q^{10} +(0.274776 + 0.475925i) q^{11} +(-0.804662 - 1.39372i) q^{12} +(-2.95900 + 2.06017i) q^{13} +(1.15956 - 2.00841i) q^{15} -1.28114 q^{16} -2.37888 q^{17} +(2.99478 - 5.18712i) q^{18} +(1.80534 - 3.12694i) q^{19} +(6.17901 + 10.7024i) q^{20} +(0.610004 + 1.05656i) q^{22} +5.81890 q^{23} +(-0.566349 - 0.980945i) q^{24} +(-6.40423 + 11.0925i) q^{25} +(-6.56900 + 4.57360i) q^{26} -3.13134 q^{27} +(1.79945 - 3.11673i) q^{29} +(2.57422 - 4.45868i) q^{30} +(2.57422 - 4.45868i) q^{31} -6.96640 q^{32} +(0.151003 - 0.261545i) q^{33} -5.28114 q^{34} +(3.95045 - 6.84238i) q^{36} -0.329543 q^{37} +(4.00787 - 6.94184i) q^{38} +(1.79355 + 0.842178i) q^{39} +(4.34900 + 7.53268i) q^{40} +(3.14579 - 5.44866i) q^{41} +(-1.61000 - 2.78861i) q^{43} +(0.804662 + 1.39372i) q^{44} +11.3856 q^{45} +12.9180 q^{46} +(-4.10479 - 7.10970i) q^{47} +(0.352026 + 0.609727i) q^{48} +(-14.2174 + 24.6253i) q^{50} +(0.653659 + 1.13217i) q^{51} +(-8.66524 + 6.03308i) q^{52} +(-1.32933 + 2.30247i) q^{53} -6.95160 q^{54} +(-1.15956 + 2.00841i) q^{55} -1.98426 q^{57} +(3.99478 - 6.91917i) q^{58} -1.80753 q^{59} +(3.39568 - 5.88149i) q^{60} +(-0.304662 + 0.527691i) q^{61} +(5.71479 - 9.89831i) q^{62} -12.9032 q^{64} +(-13.7727 - 6.46709i) q^{65} +(0.335228 - 0.580633i) q^{66} +(-5.18490 - 8.98052i) q^{67} -6.96640 q^{68} +(-1.59889 - 2.76936i) q^{69} +(5.59889 + 9.69756i) q^{71} +(2.78046 - 4.81590i) q^{72} +(-2.45310 + 4.24890i) q^{73} -0.731589 q^{74} +7.03891 q^{75} +(5.28682 - 9.15705i) q^{76} +(3.98169 + 1.86964i) q^{78} +(7.00855 + 12.1392i) q^{79} +(-2.70321 - 4.68210i) q^{80} +(-3.18657 - 5.51931i) q^{81} +(6.98367 - 12.0961i) q^{82} -5.73159 q^{83} +(-5.01945 - 8.69395i) q^{85} +(-3.57422 - 6.19073i) q^{86} -1.97777 q^{87} +(0.566349 + 0.980945i) q^{88} -7.46755 q^{89} +25.2760 q^{90} +17.0403 q^{92} -2.82933 q^{93} +(-9.11266 - 15.7836i) q^{94} +15.2371 q^{95} +(1.91420 + 3.31549i) q^{96} +(3.42035 + 5.92422i) q^{97} +1.48269 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - q^{3} + 10 q^{4} + 7 q^{5} + 5 q^{6} - 12 q^{8} - 7 q^{9} + 11 q^{10} + q^{11} - 12 q^{12} + 4 q^{13} - 3 q^{15} + 38 q^{16} - 8 q^{17} + 3 q^{18} - q^{19} + 2 q^{20} - 5 q^{22} - 4 q^{23}+ \cdots + 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.22001 1.56978 0.784891 0.619633i \(-0.212719\pi\)
0.784891 + 0.619633i \(0.212719\pi\)
\(3\) −0.274776 0.475925i −0.158642 0.274776i 0.775737 0.631056i \(-0.217378\pi\)
−0.934379 + 0.356280i \(0.884045\pi\)
\(4\) 2.92843 1.46422
\(5\) 2.11000 + 3.65463i 0.943622 + 1.63440i 0.758486 + 0.651689i \(0.225939\pi\)
0.185136 + 0.982713i \(0.440727\pi\)
\(6\) −0.610004 1.05656i −0.249033 0.431338i
\(7\) 0 0
\(8\) 2.06113 0.728720
\(9\) 1.34900 2.33653i 0.449666 0.778844i
\(10\) 4.68423 + 8.11332i 1.48128 + 2.56566i
\(11\) 0.274776 + 0.475925i 0.0828480 + 0.143497i 0.904472 0.426533i \(-0.140265\pi\)
−0.821624 + 0.570030i \(0.806932\pi\)
\(12\) −0.804662 1.39372i −0.232286 0.402331i
\(13\) −2.95900 + 2.06017i −0.820679 + 0.571389i
\(14\) 0 0
\(15\) 1.15956 2.00841i 0.299396 0.518569i
\(16\) −1.28114 −0.320285
\(17\) −2.37888 −0.576964 −0.288482 0.957485i \(-0.593151\pi\)
−0.288482 + 0.957485i \(0.593151\pi\)
\(18\) 2.99478 5.18712i 0.705877 1.22262i
\(19\) 1.80534 3.12694i 0.414174 0.717370i −0.581168 0.813784i \(-0.697404\pi\)
0.995341 + 0.0964139i \(0.0307372\pi\)
\(20\) 6.17901 + 10.7024i 1.38167 + 2.39312i
\(21\) 0 0
\(22\) 0.610004 + 1.05656i 0.130053 + 0.225259i
\(23\) 5.81890 1.21332 0.606662 0.794960i \(-0.292508\pi\)
0.606662 + 0.794960i \(0.292508\pi\)
\(24\) −0.566349 0.980945i −0.115605 0.200235i
\(25\) −6.40423 + 11.0925i −1.28085 + 2.21849i
\(26\) −6.56900 + 4.57360i −1.28829 + 0.896957i
\(27\) −3.13134 −0.602626
\(28\) 0 0
\(29\) 1.79945 3.11673i 0.334149 0.578762i −0.649172 0.760641i \(-0.724885\pi\)
0.983321 + 0.181879i \(0.0582179\pi\)
\(30\) 2.57422 4.45868i 0.469986 0.814040i
\(31\) 2.57422 4.45868i 0.462344 0.800803i −0.536733 0.843752i \(-0.680342\pi\)
0.999077 + 0.0429489i \(0.0136753\pi\)
\(32\) −6.96640 −1.23150
\(33\) 0.151003 0.261545i 0.0262863 0.0455292i
\(34\) −5.28114 −0.905708
\(35\) 0 0
\(36\) 3.95045 6.84238i 0.658408 1.14040i
\(37\) −0.329543 −0.0541766 −0.0270883 0.999633i \(-0.508624\pi\)
−0.0270883 + 0.999633i \(0.508624\pi\)
\(38\) 4.00787 6.94184i 0.650163 1.12611i
\(39\) 1.79355 + 0.842178i 0.287198 + 0.134856i
\(40\) 4.34900 + 7.53268i 0.687637 + 1.19102i
\(41\) 3.14579 5.44866i 0.491289 0.850938i −0.508660 0.860967i \(-0.669859\pi\)
0.999950 + 0.0100292i \(0.00319244\pi\)
\(42\) 0 0
\(43\) −1.61000 2.78861i −0.245523 0.425259i 0.716755 0.697325i \(-0.245626\pi\)
−0.962279 + 0.272066i \(0.912293\pi\)
\(44\) 0.804662 + 1.39372i 0.121307 + 0.210111i
\(45\) 11.3856 1.69726
\(46\) 12.9180 1.90466
\(47\) −4.10479 7.10970i −0.598745 1.03706i −0.993007 0.118058i \(-0.962333\pi\)
0.394262 0.918998i \(-0.371000\pi\)
\(48\) 0.352026 + 0.609727i 0.0508106 + 0.0880065i
\(49\) 0 0
\(50\) −14.2174 + 24.6253i −2.01065 + 3.48255i
\(51\) 0.653659 + 1.13217i 0.0915306 + 0.158536i
\(52\) −8.66524 + 6.03308i −1.20165 + 0.836638i
\(53\) −1.32933 + 2.30247i −0.182598 + 0.316269i −0.942764 0.333459i \(-0.891784\pi\)
0.760167 + 0.649728i \(0.225117\pi\)
\(54\) −6.95160 −0.945992
\(55\) −1.15956 + 2.00841i −0.156354 + 0.270814i
\(56\) 0 0
\(57\) −1.98426 −0.262821
\(58\) 3.99478 6.91917i 0.524541 0.908531i
\(59\) −1.80753 −0.235320 −0.117660 0.993054i \(-0.537539\pi\)
−0.117660 + 0.993054i \(0.537539\pi\)
\(60\) 3.39568 5.88149i 0.438381 0.759297i
\(61\) −0.304662 + 0.527691i −0.0390080 + 0.0675639i −0.884870 0.465838i \(-0.845753\pi\)
0.845862 + 0.533401i \(0.179086\pi\)
\(62\) 5.71479 9.89831i 0.725779 1.25709i
\(63\) 0 0
\(64\) −12.9032 −1.61290
\(65\) −13.7727 6.46709i −1.70829 0.802144i
\(66\) 0.335228 0.580633i 0.0412638 0.0714709i
\(67\) −5.18490 8.98052i −0.633437 1.09714i −0.986844 0.161675i \(-0.948310\pi\)
0.353407 0.935470i \(-0.385023\pi\)
\(68\) −6.96640 −0.844801
\(69\) −1.59889 2.76936i −0.192484 0.333392i
\(70\) 0 0
\(71\) 5.59889 + 9.69756i 0.664466 + 1.15089i 0.979430 + 0.201785i \(0.0646743\pi\)
−0.314964 + 0.949104i \(0.601992\pi\)
\(72\) 2.78046 4.81590i 0.327680 0.567559i
\(73\) −2.45310 + 4.24890i −0.287114 + 0.497296i −0.973120 0.230300i \(-0.926029\pi\)
0.686005 + 0.727596i \(0.259363\pi\)
\(74\) −0.731589 −0.0850455
\(75\) 7.03891 0.812783
\(76\) 5.28682 9.15705i 0.606440 1.05039i
\(77\) 0 0
\(78\) 3.98169 + 1.86964i 0.450838 + 0.211695i
\(79\) 7.00855 + 12.1392i 0.788524 + 1.36576i 0.926871 + 0.375379i \(0.122488\pi\)
−0.138348 + 0.990384i \(0.544179\pi\)
\(80\) −2.70321 4.68210i −0.302228 0.523474i
\(81\) −3.18657 5.51931i −0.354064 0.613257i
\(82\) 6.98367 12.0961i 0.771217 1.33579i
\(83\) −5.73159 −0.629124 −0.314562 0.949237i \(-0.601858\pi\)
−0.314562 + 0.949237i \(0.601858\pi\)
\(84\) 0 0
\(85\) −5.01945 8.69395i −0.544436 0.942991i
\(86\) −3.57422 6.19073i −0.385418 0.667564i
\(87\) −1.97777 −0.212040
\(88\) 0.566349 + 0.980945i 0.0603730 + 0.104569i
\(89\) −7.46755 −0.791559 −0.395779 0.918346i \(-0.629526\pi\)
−0.395779 + 0.918346i \(0.629526\pi\)
\(90\) 25.2760 2.66433
\(91\) 0 0
\(92\) 17.0403 1.77657
\(93\) −2.82933 −0.293388
\(94\) −9.11266 15.7836i −0.939899 1.62795i
\(95\) 15.2371 1.56329
\(96\) 1.91420 + 3.31549i 0.195367 + 0.338386i
\(97\) 3.42035 + 5.92422i 0.347284 + 0.601514i 0.985766 0.168123i \(-0.0537706\pi\)
−0.638482 + 0.769637i \(0.720437\pi\)
\(98\) 0 0
\(99\) 1.48269 0.149015
\(100\) −18.7544 + 32.4835i −1.87544 + 3.24835i
\(101\) −2.87956 4.98755i −0.286527 0.496280i 0.686451 0.727176i \(-0.259168\pi\)
−0.972978 + 0.230896i \(0.925834\pi\)
\(102\) 1.45113 + 2.51343i 0.143683 + 0.248866i
\(103\) −0.285888 0.495173i −0.0281694 0.0487908i 0.851597 0.524197i \(-0.175634\pi\)
−0.879766 + 0.475406i \(0.842301\pi\)
\(104\) −6.09889 + 4.24629i −0.598045 + 0.416383i
\(105\) 0 0
\(106\) −2.95113 + 5.11150i −0.286639 + 0.496473i
\(107\) 4.07157 0.393613 0.196807 0.980442i \(-0.436943\pi\)
0.196807 + 0.980442i \(0.436943\pi\)
\(108\) −9.16992 −0.882376
\(109\) −7.65434 + 13.2577i −0.733153 + 1.26986i 0.222376 + 0.974961i \(0.428619\pi\)
−0.955529 + 0.294897i \(0.904715\pi\)
\(110\) −2.57422 + 4.45868i −0.245442 + 0.425119i
\(111\) 0.0905505 + 0.156838i 0.00859467 + 0.0148864i
\(112\) 0 0
\(113\) −6.08846 10.5455i −0.572754 0.992039i −0.996282 0.0861558i \(-0.972542\pi\)
0.423528 0.905883i \(-0.360792\pi\)
\(114\) −4.40506 −0.412572
\(115\) 12.2779 + 21.2659i 1.14492 + 1.98306i
\(116\) 5.26956 9.12714i 0.489266 0.847434i
\(117\) 0.821977 + 9.69296i 0.0759918 + 0.896115i
\(118\) −4.01273 −0.369402
\(119\) 0 0
\(120\) 2.39000 4.13959i 0.218176 0.377892i
\(121\) 5.34900 9.26473i 0.486272 0.842249i
\(122\) −0.676353 + 1.17148i −0.0612341 + 0.106061i
\(123\) −3.45754 −0.311756
\(124\) 7.53844 13.0570i 0.676972 1.17255i
\(125\) −32.9518 −2.94730
\(126\) 0 0
\(127\) −0.980336 + 1.69799i −0.0869907 + 0.150672i −0.906238 0.422768i \(-0.861058\pi\)
0.819247 + 0.573441i \(0.194392\pi\)
\(128\) −14.7124 −1.30040
\(129\) −0.884779 + 1.53248i −0.0779005 + 0.134928i
\(130\) −30.5755 14.3570i −2.68165 1.25919i
\(131\) 3.25011 + 5.62935i 0.283963 + 0.491838i 0.972357 0.233498i \(-0.0750174\pi\)
−0.688394 + 0.725337i \(0.741684\pi\)
\(132\) 0.442203 0.765918i 0.0384888 0.0666646i
\(133\) 0 0
\(134\) −11.5105 19.9368i −0.994358 1.72228i
\(135\) −6.60714 11.4439i −0.568652 0.984934i
\(136\) −4.90319 −0.420445
\(137\) −15.2576 −1.30354 −0.651770 0.758416i \(-0.725973\pi\)
−0.651770 + 0.758416i \(0.725973\pi\)
\(138\) −3.54955 6.14800i −0.302158 0.523353i
\(139\) 8.74801 + 15.1520i 0.741997 + 1.28518i 0.951585 + 0.307386i \(0.0994544\pi\)
−0.209588 + 0.977790i \(0.567212\pi\)
\(140\) 0 0
\(141\) −2.25579 + 3.90714i −0.189972 + 0.329041i
\(142\) 12.4296 + 21.5287i 1.04307 + 1.80665i
\(143\) −1.79355 0.842178i −0.149984 0.0704264i
\(144\) −1.72825 + 2.99342i −0.144021 + 0.249452i
\(145\) 15.1873 1.26124
\(146\) −5.44591 + 9.43260i −0.450707 + 0.780647i
\(147\) 0 0
\(148\) −0.965046 −0.0793263
\(149\) −2.27743 + 3.94463i −0.186574 + 0.323156i −0.944106 0.329642i \(-0.893072\pi\)
0.757531 + 0.652799i \(0.226405\pi\)
\(150\) 15.6264 1.27589
\(151\) 3.16456 5.48118i 0.257528 0.446052i −0.708051 0.706161i \(-0.750425\pi\)
0.965579 + 0.260109i \(0.0837586\pi\)
\(152\) 3.72105 6.44504i 0.301817 0.522762i
\(153\) −3.20911 + 5.55833i −0.259441 + 0.449365i
\(154\) 0 0
\(155\) 21.7265 1.74511
\(156\) 5.25229 + 2.46626i 0.420520 + 0.197459i
\(157\) −8.15502 + 14.1249i −0.650841 + 1.12729i 0.332078 + 0.943252i \(0.392250\pi\)
−0.982919 + 0.184038i \(0.941083\pi\)
\(158\) 15.5590 + 26.9490i 1.23781 + 2.14395i
\(159\) 1.46107 0.115871
\(160\) −14.6991 25.4597i −1.16207 2.01276i
\(161\) 0 0
\(162\) −7.07422 12.2529i −0.555803 0.962680i
\(163\) −11.7999 + 20.4381i −0.924241 + 1.60083i −0.131463 + 0.991321i \(0.541967\pi\)
−0.792778 + 0.609511i \(0.791366\pi\)
\(164\) 9.21223 15.9561i 0.719354 1.24596i
\(165\) 1.27447 0.0992173
\(166\) −12.7242 −0.987587
\(167\) 8.91513 15.4415i 0.689874 1.19490i −0.282005 0.959413i \(-0.590999\pi\)
0.971878 0.235483i \(-0.0756673\pi\)
\(168\) 0 0
\(169\) 4.51137 12.1921i 0.347028 0.937855i
\(170\) −11.1432 19.3006i −0.854646 1.48029i
\(171\) −4.87080 8.43647i −0.372479 0.645153i
\(172\) −4.71479 8.16626i −0.359499 0.622671i
\(173\) 3.78568 6.55699i 0.287820 0.498518i −0.685469 0.728101i \(-0.740403\pi\)
0.973289 + 0.229583i \(0.0737363\pi\)
\(174\) −4.39068 −0.332856
\(175\) 0 0
\(176\) −0.352026 0.609727i −0.0265350 0.0459599i
\(177\) 0.496665 + 0.860249i 0.0373316 + 0.0646603i
\(178\) −16.5780 −1.24258
\(179\) 11.4017 + 19.7483i 0.852201 + 1.47606i 0.879218 + 0.476420i \(0.158066\pi\)
−0.0270166 + 0.999635i \(0.508601\pi\)
\(180\) 33.3419 2.48515
\(181\) 13.9294 1.03536 0.517681 0.855574i \(-0.326795\pi\)
0.517681 + 0.855574i \(0.326795\pi\)
\(182\) 0 0
\(183\) 0.334855 0.0247532
\(184\) 11.9935 0.884174
\(185\) −0.695338 1.20436i −0.0511222 0.0885463i
\(186\) −6.28114 −0.460556
\(187\) −0.653659 1.13217i −0.0478003 0.0827925i
\(188\) −12.0206 20.8203i −0.876692 1.51848i
\(189\) 0 0
\(190\) 33.8265 2.45403
\(191\) 6.33591 10.9741i 0.458450 0.794059i −0.540429 0.841390i \(-0.681738\pi\)
0.998879 + 0.0473305i \(0.0150714\pi\)
\(192\) 3.54548 + 6.14096i 0.255873 + 0.443185i
\(193\) 2.07746 + 3.59827i 0.149539 + 0.259009i 0.931057 0.364873i \(-0.118888\pi\)
−0.781518 + 0.623882i \(0.785554\pi\)
\(194\) 7.59321 + 13.1518i 0.545160 + 0.944246i
\(195\) 0.706545 + 8.33177i 0.0505968 + 0.596650i
\(196\) 0 0
\(197\) 3.42510 5.93245i 0.244028 0.422669i −0.717830 0.696219i \(-0.754864\pi\)
0.961858 + 0.273549i \(0.0881977\pi\)
\(198\) 3.29157 0.233922
\(199\) −0.813587 −0.0576737 −0.0288368 0.999584i \(-0.509180\pi\)
−0.0288368 + 0.999584i \(0.509180\pi\)
\(200\) −13.2000 + 22.8630i −0.933379 + 1.61666i
\(201\) −2.84937 + 4.93525i −0.200979 + 0.348106i
\(202\) −6.39265 11.0724i −0.449785 0.779051i
\(203\) 0 0
\(204\) 1.91420 + 3.31549i 0.134021 + 0.232131i
\(205\) 26.5505 1.85437
\(206\) −0.634674 1.09929i −0.0442198 0.0765910i
\(207\) 7.84968 13.5960i 0.545590 0.944990i
\(208\) 3.79089 2.63937i 0.262851 0.183007i
\(209\) 1.98426 0.137254
\(210\) 0 0
\(211\) 6.98670 12.1013i 0.480984 0.833089i −0.518778 0.854909i \(-0.673613\pi\)
0.999762 + 0.0218200i \(0.00694608\pi\)
\(212\) −3.89286 + 6.74264i −0.267363 + 0.463086i
\(213\) 3.07688 5.32931i 0.210824 0.365158i
\(214\) 9.03891 0.617887
\(215\) 6.79423 11.7679i 0.463363 0.802568i
\(216\) −6.45410 −0.439146
\(217\) 0 0
\(218\) −16.9927 + 29.4322i −1.15089 + 1.99340i
\(219\) 2.69621 0.182193
\(220\) −3.39568 + 5.88149i −0.228937 + 0.396530i
\(221\) 7.03912 4.90091i 0.473502 0.329671i
\(222\) 0.201023 + 0.348182i 0.0134918 + 0.0233684i
\(223\) 6.76700 11.7208i 0.453152 0.784882i −0.545428 0.838158i \(-0.683633\pi\)
0.998580 + 0.0532758i \(0.0169662\pi\)
\(224\) 0 0
\(225\) 17.2786 + 29.9274i 1.15191 + 1.99516i
\(226\) −13.5164 23.4111i −0.899099 1.55729i
\(227\) −5.36751 −0.356254 −0.178127 0.984007i \(-0.557004\pi\)
−0.178127 + 0.984007i \(0.557004\pi\)
\(228\) −5.81076 −0.384827
\(229\) −1.54955 2.68390i −0.102397 0.177357i 0.810275 0.586050i \(-0.199318\pi\)
−0.912672 + 0.408693i \(0.865985\pi\)
\(230\) 27.2570 + 47.2106i 1.79728 + 3.11297i
\(231\) 0 0
\(232\) 3.70890 6.42399i 0.243501 0.421756i
\(233\) 10.1856 + 17.6419i 0.667280 + 1.15576i 0.978662 + 0.205478i \(0.0658748\pi\)
−0.311382 + 0.950285i \(0.600792\pi\)
\(234\) 1.82480 + 21.5185i 0.119291 + 1.40671i
\(235\) 17.3222 30.0030i 1.12998 1.95718i
\(236\) −5.29323 −0.344560
\(237\) 3.85156 6.67109i 0.250186 0.433334i
\(238\) 0 0
\(239\) −1.29157 −0.0835449 −0.0417725 0.999127i \(-0.513300\pi\)
−0.0417725 + 0.999127i \(0.513300\pi\)
\(240\) −1.48555 + 2.57305i −0.0958920 + 0.166090i
\(241\) 2.13270 0.137379 0.0686896 0.997638i \(-0.478118\pi\)
0.0686896 + 0.997638i \(0.478118\pi\)
\(242\) 11.8748 20.5678i 0.763342 1.32215i
\(243\) −6.44819 + 11.1686i −0.413652 + 0.716466i
\(244\) −0.892184 + 1.54531i −0.0571162 + 0.0989282i
\(245\) 0 0
\(246\) −7.67577 −0.489389
\(247\) 1.10004 + 12.9719i 0.0699938 + 0.825385i
\(248\) 5.30581 9.18993i 0.336919 0.583561i
\(249\) 1.57490 + 2.72781i 0.0998053 + 0.172868i
\(250\) −73.1532 −4.62662
\(251\) 15.3856 + 26.6486i 0.971128 + 1.68204i 0.692164 + 0.721741i \(0.256658\pi\)
0.278964 + 0.960302i \(0.410009\pi\)
\(252\) 0 0
\(253\) 1.59889 + 2.76936i 0.100521 + 0.174108i
\(254\) −2.17635 + 3.76955i −0.136557 + 0.236523i
\(255\) −2.75845 + 4.77777i −0.172741 + 0.299196i
\(256\) −6.85521 −0.428451
\(257\) −1.47361 −0.0919213 −0.0459607 0.998943i \(-0.514635\pi\)
−0.0459607 + 0.998943i \(0.514635\pi\)
\(258\) −1.96422 + 3.40212i −0.122287 + 0.211807i
\(259\) 0 0
\(260\) −40.3324 18.9385i −2.50131 1.17451i
\(261\) −4.85489 8.40892i −0.300510 0.520499i
\(262\) 7.21526 + 12.4972i 0.445760 + 0.772079i
\(263\) −3.33847 5.78240i −0.205859 0.356558i 0.744547 0.667570i \(-0.232665\pi\)
−0.950406 + 0.311012i \(0.899332\pi\)
\(264\) 0.311238 0.539079i 0.0191553 0.0331780i
\(265\) −11.2196 −0.689214
\(266\) 0 0
\(267\) 2.05190 + 3.55400i 0.125574 + 0.217501i
\(268\) −15.1837 26.2989i −0.927489 1.60646i
\(269\) 7.57573 0.461900 0.230950 0.972966i \(-0.425817\pi\)
0.230950 + 0.972966i \(0.425817\pi\)
\(270\) −14.6679 25.4055i −0.892660 1.54613i
\(271\) 20.5680 1.24942 0.624709 0.780858i \(-0.285218\pi\)
0.624709 + 0.780858i \(0.285218\pi\)
\(272\) 3.04768 0.184793
\(273\) 0 0
\(274\) −33.8719 −2.04628
\(275\) −7.03891 −0.424462
\(276\) −4.68225 8.10989i −0.281838 0.488158i
\(277\) 5.70541 0.342805 0.171402 0.985201i \(-0.445170\pi\)
0.171402 + 0.985201i \(0.445170\pi\)
\(278\) 19.4207 + 33.6376i 1.16477 + 2.01745i
\(279\) −6.94523 12.0295i −0.415800 0.720187i
\(280\) 0 0
\(281\) −6.37315 −0.380190 −0.190095 0.981766i \(-0.560880\pi\)
−0.190095 + 0.981766i \(0.560880\pi\)
\(282\) −5.00787 + 8.67389i −0.298214 + 0.516523i
\(283\) −13.5097 23.3995i −0.803068 1.39096i −0.917587 0.397534i \(-0.869866\pi\)
0.114519 0.993421i \(-0.463467\pi\)
\(284\) 16.3960 + 28.3987i 0.972923 + 1.68515i
\(285\) −4.18679 7.25173i −0.248004 0.429555i
\(286\) −3.98169 1.86964i −0.235443 0.110554i
\(287\) 0 0
\(288\) −9.39766 + 16.2772i −0.553762 + 0.959144i
\(289\) −11.3409 −0.667113
\(290\) 33.7160 1.97987
\(291\) 1.87966 3.25566i 0.110187 0.190850i
\(292\) −7.18376 + 12.4426i −0.420398 + 0.728150i
\(293\) 2.43736 + 4.22163i 0.142392 + 0.246630i 0.928397 0.371590i \(-0.121187\pi\)
−0.786005 + 0.618220i \(0.787854\pi\)
\(294\) 0 0
\(295\) −3.81389 6.60586i −0.222053 0.384608i
\(296\) −0.679232 −0.0394796
\(297\) −0.860415 1.49028i −0.0499264 0.0864750i
\(298\) −5.05592 + 8.75710i −0.292881 + 0.507285i
\(299\) −17.2181 + 11.9879i −0.995750 + 0.693281i
\(300\) 20.6130 1.19009
\(301\) 0 0
\(302\) 7.02535 12.1683i 0.404263 0.700205i
\(303\) −1.58247 + 2.74091i −0.0909104 + 0.157461i
\(304\) −2.31290 + 4.00605i −0.132654 + 0.229763i
\(305\) −2.57135 −0.147235
\(306\) −7.12424 + 12.3395i −0.407266 + 0.705405i
\(307\) 16.1760 0.923212 0.461606 0.887085i \(-0.347273\pi\)
0.461606 + 0.887085i \(0.347273\pi\)
\(308\) 0 0
\(309\) −0.157110 + 0.272123i −0.00893769 + 0.0154805i
\(310\) 48.2329 2.73945
\(311\) 0.654032 1.13282i 0.0370868 0.0642362i −0.846886 0.531774i \(-0.821526\pi\)
0.883973 + 0.467538i \(0.154859\pi\)
\(312\) 3.69674 + 1.73584i 0.209287 + 0.0982726i
\(313\) −6.59889 11.4296i −0.372991 0.646040i 0.617033 0.786937i \(-0.288335\pi\)
−0.990024 + 0.140897i \(0.955001\pi\)
\(314\) −18.1042 + 31.3574i −1.02168 + 1.76960i
\(315\) 0 0
\(316\) 20.5241 + 35.5488i 1.15457 + 1.99977i
\(317\) 4.03776 + 6.99360i 0.226783 + 0.392800i 0.956853 0.290573i \(-0.0938458\pi\)
−0.730070 + 0.683373i \(0.760512\pi\)
\(318\) 3.24359 0.181892
\(319\) 1.97777 0.110734
\(320\) −27.2258 47.1564i −1.52197 2.63613i
\(321\) −1.11877 1.93776i −0.0624435 0.108155i
\(322\) 0 0
\(323\) −4.29470 + 7.43863i −0.238963 + 0.413897i
\(324\) −9.33168 16.1629i −0.518426 0.897941i
\(325\) −3.90226 46.0164i −0.216458 2.55253i
\(326\) −26.1959 + 45.3726i −1.45086 + 2.51296i
\(327\) 8.41290 0.465234
\(328\) 6.48388 11.2304i 0.358012 0.620096i
\(329\) 0 0
\(330\) 2.82933 0.155750
\(331\) 7.47256 12.9429i 0.410729 0.711403i −0.584241 0.811580i \(-0.698608\pi\)
0.994970 + 0.100177i \(0.0319409\pi\)
\(332\) −16.7846 −0.921174
\(333\) −0.444553 + 0.769988i −0.0243613 + 0.0421951i
\(334\) 19.7917 34.2802i 1.08295 1.87573i
\(335\) 21.8803 37.8979i 1.19545 2.07058i
\(336\) 0 0
\(337\) −17.1695 −0.935282 −0.467641 0.883918i \(-0.654896\pi\)
−0.467641 + 0.883918i \(0.654896\pi\)
\(338\) 10.0153 27.0666i 0.544759 1.47223i
\(339\) −3.34592 + 5.79530i −0.181725 + 0.314758i
\(340\) −14.6991 25.4597i −0.797173 1.38074i
\(341\) 2.82933 0.153217
\(342\) −10.8132 18.7290i −0.584712 1.01275i
\(343\) 0 0
\(344\) −3.31843 5.74769i −0.178918 0.309895i
\(345\) 6.74733 11.6867i 0.363264 0.629192i
\(346\) 8.40423 14.5566i 0.451814 0.782565i
\(347\) −3.93845 −0.211427 −0.105713 0.994397i \(-0.533713\pi\)
−0.105713 + 0.994397i \(0.533713\pi\)
\(348\) −5.79178 −0.310472
\(349\) −8.58883 + 14.8763i −0.459750 + 0.796310i −0.998947 0.0458695i \(-0.985394\pi\)
0.539198 + 0.842179i \(0.318728\pi\)
\(350\) 0 0
\(351\) 9.26563 6.45110i 0.494563 0.344334i
\(352\) −1.91420 3.31549i −0.102027 0.176716i
\(353\) 9.09821 + 15.7586i 0.484249 + 0.838744i 0.999836 0.0180932i \(-0.00575957\pi\)
−0.515587 + 0.856837i \(0.672426\pi\)
\(354\) 1.10260 + 1.90976i 0.0586025 + 0.101503i
\(355\) −23.6274 + 40.9238i −1.25401 + 2.17201i
\(356\) −21.8682 −1.15901
\(357\) 0 0
\(358\) 25.3118 + 43.8413i 1.33777 + 2.31709i
\(359\) −8.15631 14.1272i −0.430474 0.745603i 0.566440 0.824103i \(-0.308320\pi\)
−0.996914 + 0.0785003i \(0.974987\pi\)
\(360\) 23.4671 1.23683
\(361\) 2.98148 + 5.16408i 0.156920 + 0.271794i
\(362\) 30.9233 1.62529
\(363\) −5.87909 −0.308572
\(364\) 0 0
\(365\) −20.7042 −1.08371
\(366\) 0.743381 0.0388571
\(367\) 18.0982 + 31.3469i 0.944716 + 1.63630i 0.756319 + 0.654203i \(0.226996\pi\)
0.188398 + 0.982093i \(0.439671\pi\)
\(368\) −7.45482 −0.388610
\(369\) −8.48731 14.7005i −0.441832 0.765275i
\(370\) −1.54366 2.67369i −0.0802508 0.138998i
\(371\) 0 0
\(372\) −8.28551 −0.429584
\(373\) −4.89892 + 8.48518i −0.253657 + 0.439346i −0.964530 0.263974i \(-0.914967\pi\)
0.710873 + 0.703320i \(0.248300\pi\)
\(374\) −1.45113 2.51343i −0.0750361 0.129966i
\(375\) 9.05435 + 15.6826i 0.467564 + 0.809845i
\(376\) −8.46051 14.6540i −0.436317 0.755724i
\(377\) 1.09645 + 12.9296i 0.0564699 + 0.665907i
\(378\) 0 0
\(379\) −6.53275 + 11.3151i −0.335565 + 0.581216i −0.983593 0.180401i \(-0.942261\pi\)
0.648028 + 0.761616i \(0.275594\pi\)
\(380\) 44.6209 2.28900
\(381\) 1.07749 0.0552014
\(382\) 14.0658 24.3626i 0.719667 1.24650i
\(383\) −13.8965 + 24.0694i −0.710076 + 1.22989i 0.254753 + 0.967006i \(0.418006\pi\)
−0.964828 + 0.262881i \(0.915327\pi\)
\(384\) 4.04260 + 7.00199i 0.206298 + 0.357319i
\(385\) 0 0
\(386\) 4.61198 + 7.98818i 0.234744 + 0.406588i
\(387\) −8.68756 −0.441614
\(388\) 10.0163 + 17.3487i 0.508499 + 0.880747i
\(389\) −6.85233 + 11.8686i −0.347427 + 0.601761i −0.985792 0.167973i \(-0.946278\pi\)
0.638365 + 0.769734i \(0.279611\pi\)
\(390\) 1.56854 + 18.4966i 0.0794259 + 0.936611i
\(391\) −13.8425 −0.700044
\(392\) 0 0
\(393\) 1.78610 3.09361i 0.0900968 0.156052i
\(394\) 7.60375 13.1701i 0.383071 0.663499i
\(395\) −29.5761 + 51.2274i −1.48814 + 2.57753i
\(396\) 4.34195 0.218191
\(397\) −3.95597 + 6.85194i −0.198545 + 0.343889i −0.948057 0.318101i \(-0.896955\pi\)
0.749512 + 0.661991i \(0.230288\pi\)
\(398\) −1.80617 −0.0905351
\(399\) 0 0
\(400\) 8.20472 14.2110i 0.410236 0.710549i
\(401\) −16.5442 −0.826180 −0.413090 0.910690i \(-0.635550\pi\)
−0.413090 + 0.910690i \(0.635550\pi\)
\(402\) −6.32562 + 10.9563i −0.315493 + 0.546451i
\(403\) 1.56854 + 18.4966i 0.0781344 + 0.921381i
\(404\) −8.43261 14.6057i −0.419538 0.726661i
\(405\) 13.4474 23.2915i 0.668205 1.15737i
\(406\) 0 0
\(407\) −0.0905505 0.156838i −0.00448842 0.00777417i
\(408\) 1.34728 + 2.33355i 0.0667002 + 0.115528i
\(409\) 25.7819 1.27483 0.637416 0.770520i \(-0.280003\pi\)
0.637416 + 0.770520i \(0.280003\pi\)
\(410\) 58.9423 2.91095
\(411\) 4.19240 + 7.26146i 0.206796 + 0.358181i
\(412\) −0.837205 1.45008i −0.0412461 0.0714404i
\(413\) 0 0
\(414\) 17.4263 30.1833i 0.856458 1.48343i
\(415\) −12.0937 20.9469i −0.593655 1.02824i
\(416\) 20.6136 14.3520i 1.01066 0.703665i
\(417\) 4.80748 8.32680i 0.235423 0.407765i
\(418\) 4.40506 0.215459
\(419\) −11.8436 + 20.5137i −0.578596 + 1.00216i 0.417044 + 0.908886i \(0.363066\pi\)
−0.995641 + 0.0932720i \(0.970267\pi\)
\(420\) 0 0
\(421\) −20.8246 −1.01493 −0.507465 0.861672i \(-0.669417\pi\)
−0.507465 + 0.861672i \(0.669417\pi\)
\(422\) 15.5105 26.8650i 0.755041 1.30777i
\(423\) −22.1494 −1.07694
\(424\) −2.73993 + 4.74570i −0.133063 + 0.230471i
\(425\) 15.2349 26.3877i 0.739002 1.27999i
\(426\) 6.83069 11.8311i 0.330948 0.573219i
\(427\) 0 0
\(428\) 11.9233 0.576335
\(429\) 0.0920100 + 1.08501i 0.00444228 + 0.0523846i
\(430\) 15.0832 26.1249i 0.727378 1.25986i
\(431\) −9.97521 17.2776i −0.480489 0.832232i 0.519260 0.854616i \(-0.326208\pi\)
−0.999749 + 0.0223845i \(0.992874\pi\)
\(432\) 4.01168 0.193012
\(433\) −0.00834083 0.0144467i −0.000400835 0.000694266i 0.865825 0.500347i \(-0.166794\pi\)
−0.866226 + 0.499653i \(0.833461\pi\)
\(434\) 0 0
\(435\) −4.17311 7.22804i −0.200085 0.346558i
\(436\) −22.4152 + 38.8243i −1.07349 + 1.85935i
\(437\) 10.5051 18.1954i 0.502527 0.870402i
\(438\) 5.98561 0.286004
\(439\) 13.4960 0.644130 0.322065 0.946718i \(-0.395623\pi\)
0.322065 + 0.946718i \(0.395623\pi\)
\(440\) −2.39000 + 4.13959i −0.113939 + 0.197347i
\(441\) 0 0
\(442\) 15.6269 10.8801i 0.743296 0.517512i
\(443\) 7.50552 + 12.9999i 0.356598 + 0.617646i 0.987390 0.158306i \(-0.0506032\pi\)
−0.630792 + 0.775952i \(0.717270\pi\)
\(444\) 0.265171 + 0.459290i 0.0125845 + 0.0217969i
\(445\) −15.7566 27.2912i −0.746933 1.29373i
\(446\) 15.0228 26.0202i 0.711350 1.23209i
\(447\) 2.50313 0.118394
\(448\) 0 0
\(449\) 11.8918 + 20.5972i 0.561210 + 0.972044i 0.997391 + 0.0721852i \(0.0229973\pi\)
−0.436181 + 0.899859i \(0.643669\pi\)
\(450\) 38.3586 + 66.4390i 1.80824 + 3.13196i
\(451\) 3.45754 0.162809
\(452\) −17.8297 30.8819i −0.838636 1.45256i
\(453\) −3.47818 −0.163419
\(454\) −11.9159 −0.559242
\(455\) 0 0
\(456\) −4.08981 −0.191523
\(457\) 18.1313 0.848148 0.424074 0.905627i \(-0.360600\pi\)
0.424074 + 0.905627i \(0.360600\pi\)
\(458\) −3.44002 5.95828i −0.160741 0.278412i
\(459\) 7.44909 0.347694
\(460\) 35.9550 + 62.2759i 1.67641 + 2.90363i
\(461\) 3.03980 + 5.26508i 0.141577 + 0.245219i 0.928091 0.372354i \(-0.121449\pi\)
−0.786513 + 0.617573i \(0.788116\pi\)
\(462\) 0 0
\(463\) 5.19289 0.241334 0.120667 0.992693i \(-0.461497\pi\)
0.120667 + 0.992693i \(0.461497\pi\)
\(464\) −2.30534 + 3.99297i −0.107023 + 0.185369i
\(465\) −5.96990 10.3402i −0.276848 0.479514i
\(466\) 22.6121 + 39.1653i 1.04748 + 1.81430i
\(467\) 4.34984 + 7.53414i 0.201287 + 0.348638i 0.948943 0.315447i \(-0.102154\pi\)
−0.747657 + 0.664085i \(0.768821\pi\)
\(468\) 2.40711 + 28.3852i 0.111268 + 1.31211i
\(469\) 0 0
\(470\) 38.4555 66.6069i 1.77382 3.07235i
\(471\) 8.96320 0.413002
\(472\) −3.72556 −0.171483
\(473\) 0.884779 1.53248i 0.0406822 0.0704636i
\(474\) 8.55049 14.8099i 0.392737 0.680240i
\(475\) 23.1237 + 40.0513i 1.06099 + 1.83768i
\(476\) 0 0
\(477\) 3.58653 + 6.21205i 0.164216 + 0.284430i
\(478\) −2.86730 −0.131147
\(479\) −12.1094 20.9741i −0.553294 0.958332i −0.998034 0.0626730i \(-0.980037\pi\)
0.444741 0.895659i \(-0.353296\pi\)
\(480\) −8.07793 + 13.9914i −0.368705 + 0.638616i
\(481\) 0.975119 0.678916i 0.0444616 0.0309559i
\(482\) 4.73461 0.215655
\(483\) 0 0
\(484\) 15.6642 27.1312i 0.712009 1.23323i
\(485\) −14.4339 + 25.0003i −0.655410 + 1.13520i
\(486\) −14.3150 + 24.7944i −0.649343 + 1.12470i
\(487\) 1.77393 0.0803846 0.0401923 0.999192i \(-0.487203\pi\)
0.0401923 + 0.999192i \(0.487203\pi\)
\(488\) −0.627949 + 1.08764i −0.0284259 + 0.0492351i
\(489\) 12.9693 0.586493
\(490\) 0 0
\(491\) 3.34483 5.79342i 0.150950 0.261453i −0.780627 0.624997i \(-0.785100\pi\)
0.931577 + 0.363544i \(0.118433\pi\)
\(492\) −10.1252 −0.456479
\(493\) −4.28067 + 7.41434i −0.192792 + 0.333925i
\(494\) 2.44210 + 28.7978i 0.109875 + 1.29568i
\(495\) 3.12847 + 5.41867i 0.140614 + 0.243551i
\(496\) −3.29794 + 5.71220i −0.148082 + 0.256485i
\(497\) 0 0
\(498\) 3.49629 + 6.05575i 0.156673 + 0.271365i
\(499\) −12.3194 21.3378i −0.551491 0.955210i −0.998167 0.0605143i \(-0.980726\pi\)
0.446677 0.894695i \(-0.352607\pi\)
\(500\) −96.4972 −4.31548
\(501\) −9.79864 −0.437771
\(502\) 34.1560 + 59.1600i 1.52446 + 2.64044i
\(503\) −16.5726 28.7046i −0.738936 1.27987i −0.952975 0.303049i \(-0.901995\pi\)
0.214039 0.976825i \(-0.431338\pi\)
\(504\) 0 0
\(505\) 12.1518 21.0475i 0.540747 0.936601i
\(506\) 3.54955 + 6.14800i 0.157797 + 0.273312i
\(507\) −7.04215 + 1.20302i −0.312753 + 0.0534279i
\(508\) −2.87085 + 4.97246i −0.127373 + 0.220617i
\(509\) −27.6580 −1.22592 −0.612961 0.790114i \(-0.710022\pi\)
−0.612961 + 0.790114i \(0.710022\pi\)
\(510\) −6.12377 + 10.6067i −0.271165 + 0.469672i
\(511\) 0 0
\(512\) 14.2061 0.627828
\(513\) −5.65314 + 9.79152i −0.249592 + 0.432306i
\(514\) −3.27143 −0.144296
\(515\) 1.20645 2.08963i 0.0531626 0.0920802i
\(516\) −2.59102 + 4.48778i −0.114063 + 0.197563i
\(517\) 2.25579 3.90714i 0.0992096 0.171836i
\(518\) 0 0
\(519\) −4.16085 −0.182641
\(520\) −28.3873 13.3295i −1.24487 0.584538i
\(521\) −0.711083 + 1.23163i −0.0311531 + 0.0539587i −0.881182 0.472778i \(-0.843251\pi\)
0.850029 + 0.526737i \(0.176585\pi\)
\(522\) −10.7779 18.6679i −0.471736 0.817070i
\(523\) −3.36178 −0.147000 −0.0735002 0.997295i \(-0.523417\pi\)
−0.0735002 + 0.997295i \(0.523417\pi\)
\(524\) 9.51772 + 16.4852i 0.415784 + 0.720158i
\(525\) 0 0
\(526\) −7.41143 12.8370i −0.323154 0.559718i
\(527\) −6.12377 + 10.6067i −0.266756 + 0.462034i
\(528\) −0.193456 + 0.335076i −0.00841910 + 0.0145823i
\(529\) 10.8596 0.472156
\(530\) −24.9076 −1.08192
\(531\) −2.43835 + 4.22335i −0.105815 + 0.183278i
\(532\) 0 0
\(533\) 1.91681 + 22.6035i 0.0830260 + 0.979065i
\(534\) 4.55524 + 7.88990i 0.197124 + 0.341429i
\(535\) 8.59102 + 14.8801i 0.371422 + 0.643322i
\(536\) −10.6868 18.5100i −0.461598 0.799512i
\(537\) 6.26580 10.8527i 0.270389 0.468328i
\(538\) 16.8182 0.725083
\(539\) 0 0
\(540\) −19.3486 33.5127i −0.832630 1.44216i
\(541\) −3.88144 6.72286i −0.166876 0.289038i 0.770444 0.637508i \(-0.220035\pi\)
−0.937320 + 0.348470i \(0.886701\pi\)
\(542\) 45.6612 1.96131
\(543\) −3.82745 6.62934i −0.164252 0.284492i
\(544\) 16.5723 0.710530
\(545\) −64.6027 −2.76728
\(546\) 0 0
\(547\) −6.19247 −0.264771 −0.132385 0.991198i \(-0.542264\pi\)
−0.132385 + 0.991198i \(0.542264\pi\)
\(548\) −44.6808 −1.90867
\(549\) 0.821977 + 1.42371i 0.0350811 + 0.0607623i
\(550\) −15.6264 −0.666313
\(551\) −6.49723 11.2535i −0.276791 0.479416i
\(552\) −3.29553 5.70802i −0.140267 0.242949i
\(553\) 0 0
\(554\) 12.6661 0.538129
\(555\) −0.382124 + 0.661858i −0.0162202 + 0.0280943i
\(556\) 25.6180 + 44.3717i 1.08644 + 1.88178i
\(557\) −14.7729 25.5874i −0.625948 1.08417i −0.988357 0.152154i \(-0.951379\pi\)
0.362409 0.932019i \(-0.381954\pi\)
\(558\) −15.4185 26.7056i −0.652716 1.13054i
\(559\) 10.5090 + 4.93461i 0.444484 + 0.208712i
\(560\) 0 0
\(561\) −0.359219 + 0.622186i −0.0151662 + 0.0262687i
\(562\) −14.1484 −0.596816
\(563\) 6.46736 0.272567 0.136283 0.990670i \(-0.456484\pi\)
0.136283 + 0.990670i \(0.456484\pi\)
\(564\) −6.60593 + 11.4418i −0.278160 + 0.481787i
\(565\) 25.6933 44.5022i 1.08093 1.87222i
\(566\) −29.9916 51.9470i −1.26064 2.18350i
\(567\) 0 0
\(568\) 11.5401 + 19.9880i 0.484210 + 0.838676i
\(569\) 21.6956 0.909526 0.454763 0.890612i \(-0.349724\pi\)
0.454763 + 0.890612i \(0.349724\pi\)
\(570\) −9.29470 16.0989i −0.389312 0.674308i
\(571\) 8.32088 14.4122i 0.348218 0.603131i −0.637715 0.770272i \(-0.720120\pi\)
0.985933 + 0.167141i \(0.0534536\pi\)
\(572\) −5.25229 2.46626i −0.219609 0.103120i
\(573\) −6.96381 −0.290917
\(574\) 0 0
\(575\) −37.2656 + 64.5459i −1.55408 + 2.69175i
\(576\) −17.4064 + 30.1487i −0.725265 + 1.25620i
\(577\) 1.32120 2.28839i 0.0550024 0.0952669i −0.837213 0.546877i \(-0.815817\pi\)
0.892216 + 0.451610i \(0.149150\pi\)
\(578\) −25.1769 −1.04722
\(579\) 1.14167 1.97743i 0.0474462 0.0821793i
\(580\) 44.4752 1.84673
\(581\) 0 0
\(582\) 4.17286 7.22760i 0.172970 0.299594i
\(583\) −1.46107 −0.0605114
\(584\) −5.05617 + 8.75755i −0.209226 + 0.362390i
\(585\) −33.6899 + 23.4562i −1.39290 + 0.969795i
\(586\) 5.41096 + 9.37205i 0.223525 + 0.387156i
\(587\) −3.69407 + 6.39832i −0.152471 + 0.264087i −0.932135 0.362110i \(-0.882056\pi\)
0.779664 + 0.626198i \(0.215390\pi\)
\(588\) 0 0
\(589\) −9.29470 16.0989i −0.382981 0.663343i
\(590\) −8.46687 14.6651i −0.348576 0.603751i
\(591\) −3.76453 −0.154852
\(592\) 0.422191 0.0173519
\(593\) −23.4515 40.6192i −0.963037 1.66803i −0.714799 0.699330i \(-0.753482\pi\)
−0.248238 0.968699i \(-0.579851\pi\)
\(594\) −1.91013 3.30844i −0.0783735 0.135747i
\(595\) 0 0
\(596\) −6.66931 + 11.5516i −0.273186 + 0.473171i
\(597\) 0.223554 + 0.387207i 0.00914945 + 0.0158473i
\(598\) −38.2244 + 26.6133i −1.56311 + 1.08830i
\(599\) −0.811449 + 1.40547i −0.0331549 + 0.0574260i −0.882127 0.471012i \(-0.843889\pi\)
0.848972 + 0.528438i \(0.177222\pi\)
\(600\) 14.5081 0.592291
\(601\) 23.5174 40.7333i 0.959293 1.66154i 0.235070 0.971978i \(-0.424468\pi\)
0.724223 0.689566i \(-0.242199\pi\)
\(602\) 0 0
\(603\) −27.9777 −1.13934
\(604\) 9.26721 16.0513i 0.377077 0.653117i
\(605\) 45.1456 1.83543
\(606\) −3.51309 + 6.08485i −0.142709 + 0.247180i
\(607\) 14.1935 24.5838i 0.576095 0.997825i −0.419827 0.907604i \(-0.637909\pi\)
0.995922 0.0902211i \(-0.0287574\pi\)
\(608\) −12.5767 + 21.7836i −0.510054 + 0.883440i
\(609\) 0 0
\(610\) −5.70843 −0.231127
\(611\) 26.7933 + 12.5810i 1.08394 + 0.508974i
\(612\) −9.39766 + 16.2772i −0.379878 + 0.657968i
\(613\) 23.7782 + 41.1851i 0.960393 + 1.66345i 0.721514 + 0.692399i \(0.243446\pi\)
0.238878 + 0.971050i \(0.423220\pi\)
\(614\) 35.9108 1.44924
\(615\) −7.29543 12.6360i −0.294180 0.509535i
\(616\) 0 0
\(617\) 8.24338 + 14.2780i 0.331866 + 0.574809i 0.982878 0.184259i \(-0.0589885\pi\)
−0.651012 + 0.759068i \(0.725655\pi\)
\(618\) −0.348786 + 0.604115i −0.0140302 + 0.0243011i
\(619\) 15.9706 27.6619i 0.641912 1.11182i −0.343094 0.939301i \(-0.611475\pi\)
0.985006 0.172523i \(-0.0551918\pi\)
\(620\) 63.6245 2.55522
\(621\) −18.2209 −0.731181
\(622\) 1.45196 2.51486i 0.0582182 0.100837i
\(623\) 0 0
\(624\) −2.29779 1.07895i −0.0919851 0.0431925i
\(625\) −37.5072 64.9644i −1.50029 2.59858i
\(626\) −14.6496 25.3738i −0.585515 1.01414i
\(627\) −0.545225 0.944357i −0.0217742 0.0377140i
\(628\) −23.8814 + 41.3639i −0.952973 + 1.65060i
\(629\) 0.783945 0.0312579
\(630\) 0 0
\(631\) −6.59577 11.4242i −0.262573 0.454790i 0.704352 0.709851i \(-0.251238\pi\)
−0.966925 + 0.255061i \(0.917905\pi\)
\(632\) 14.4456 + 25.0204i 0.574613 + 0.995259i
\(633\) −7.67910 −0.305217
\(634\) 8.96386 + 15.5259i 0.356000 + 0.616610i
\(635\) −8.27405 −0.328346
\(636\) 4.27865 0.169660
\(637\) 0 0
\(638\) 4.39068 0.173829
\(639\) 30.2115 1.19515
\(640\) −31.0432 53.7684i −1.22709 2.12538i
\(641\) −47.1627 −1.86282 −0.931408 0.363978i \(-0.881418\pi\)
−0.931408 + 0.363978i \(0.881418\pi\)
\(642\) −2.48367 4.30184i −0.0980227 0.169780i
\(643\) 1.40679 + 2.43664i 0.0554785 + 0.0960916i 0.892431 0.451184i \(-0.148998\pi\)
−0.836952 + 0.547276i \(0.815665\pi\)
\(644\) 0 0
\(645\) −7.46755 −0.294035
\(646\) −9.53426 + 16.5138i −0.375121 + 0.649728i
\(647\) −12.9891 22.4979i −0.510656 0.884482i −0.999924 0.0123485i \(-0.996069\pi\)
0.489268 0.872134i \(-0.337264\pi\)
\(648\) −6.56795 11.3760i −0.258014 0.446893i
\(649\) −0.496665 0.860249i −0.0194958 0.0337677i
\(650\) −8.66304 102.157i −0.339792 4.00692i
\(651\) 0 0
\(652\) −34.5553 + 59.8515i −1.35329 + 2.34397i
\(653\) −26.8426 −1.05043 −0.525216 0.850969i \(-0.676015\pi\)
−0.525216 + 0.850969i \(0.676015\pi\)
\(654\) 18.6767 0.730317
\(655\) −13.7155 + 23.7559i −0.535908 + 0.928219i
\(656\) −4.03019 + 6.98050i −0.157353 + 0.272543i
\(657\) 6.61846 + 11.4635i 0.258211 + 0.447234i
\(658\) 0 0
\(659\) −7.78666 13.4869i −0.303325 0.525375i 0.673562 0.739131i \(-0.264764\pi\)
−0.976887 + 0.213756i \(0.931430\pi\)
\(660\) 3.73220 0.145276
\(661\) −16.6902 28.9083i −0.649174 1.12440i −0.983320 0.181881i \(-0.941781\pi\)
0.334146 0.942521i \(-0.391552\pi\)
\(662\) 16.5891 28.7332i 0.644755 1.11675i
\(663\) −4.26665 2.00344i −0.165703 0.0778073i
\(664\) −11.8136 −0.458455
\(665\) 0 0
\(666\) −0.986911 + 1.70938i −0.0382420 + 0.0662371i
\(667\) 10.4708 18.1359i 0.405431 0.702227i
\(668\) 26.1074 45.2193i 1.01013 1.74959i
\(669\) −7.43762 −0.287555
\(670\) 48.5745 84.1335i 1.87660 3.25036i
\(671\) −0.334855 −0.0129269
\(672\) 0 0
\(673\) −0.427076 + 0.739717i −0.0164626 + 0.0285140i −0.874139 0.485675i \(-0.838574\pi\)
0.857677 + 0.514189i \(0.171907\pi\)
\(674\) −38.1164 −1.46819
\(675\) 20.0538 34.7342i 0.771872 1.33692i
\(676\) 13.2113 35.7038i 0.508125 1.37322i
\(677\) 12.2725 + 21.2565i 0.471669 + 0.816955i 0.999475 0.0324100i \(-0.0103182\pi\)
−0.527805 + 0.849365i \(0.676985\pi\)
\(678\) −7.42797 + 12.8656i −0.285269 + 0.494101i
\(679\) 0 0
\(680\) −10.3458 17.9194i −0.396742 0.687177i
\(681\) 1.47486 + 2.55454i 0.0565168 + 0.0978900i
\(682\) 6.28114 0.240517
\(683\) −43.0372 −1.64677 −0.823387 0.567480i \(-0.807918\pi\)
−0.823387 + 0.567480i \(0.807918\pi\)
\(684\) −14.2638 24.7057i −0.545391 0.944645i
\(685\) −32.1935 55.7608i −1.23005 2.13051i
\(686\) 0 0
\(687\) −0.851558 + 1.47494i −0.0324889 + 0.0562725i
\(688\) 2.06264 + 3.57260i 0.0786374 + 0.136204i
\(689\) −0.809995 9.55167i −0.0308583 0.363890i
\(690\) 14.9791 25.9446i 0.570246 0.987695i
\(691\) −25.8195 −0.982220 −0.491110 0.871097i \(-0.663409\pi\)
−0.491110 + 0.871097i \(0.663409\pi\)
\(692\) 11.0861 19.2017i 0.421431 0.729939i
\(693\) 0 0
\(694\) −8.74338 −0.331894
\(695\) −36.9167 + 63.9416i −1.40033 + 2.42544i
\(696\) −4.07646 −0.154518
\(697\) −7.48346 + 12.9617i −0.283456 + 0.490961i
\(698\) −19.0673 + 33.0255i −0.721707 + 1.25003i
\(699\) 5.59750 9.69515i 0.211717 0.366704i
\(700\) 0 0
\(701\) 16.3178 0.616313 0.308156 0.951336i \(-0.400288\pi\)
0.308156 + 0.951336i \(0.400288\pi\)
\(702\) 20.5698 14.3215i 0.776356 0.540530i
\(703\) −0.594938 + 1.03046i −0.0224385 + 0.0388647i
\(704\) −3.54548 6.14096i −0.133625 0.231446i
\(705\) −19.0389 −0.717047
\(706\) 20.1981 + 34.9841i 0.760166 + 1.31665i
\(707\) 0 0
\(708\) 1.45445 + 2.51918i 0.0546616 + 0.0946767i
\(709\) 11.1897 19.3811i 0.420238 0.727874i −0.575725 0.817644i \(-0.695280\pi\)
0.995963 + 0.0897702i \(0.0286133\pi\)
\(710\) −52.4529 + 90.8511i −1.96852 + 3.40958i
\(711\) 37.8181 1.41829
\(712\) −15.3916 −0.576825
\(713\) 14.9791 25.9446i 0.560973 0.971634i
\(714\) 0 0
\(715\) −0.706545 8.33177i −0.0264233 0.311590i
\(716\) 33.3891 + 57.8315i 1.24781 + 2.16127i
\(717\) 0.354893 + 0.614692i 0.0132537 + 0.0229561i
\(718\) −18.1071 31.3624i −0.675750 1.17043i
\(719\) 11.3723 19.6973i 0.424113 0.734586i −0.572224 0.820098i \(-0.693919\pi\)
0.996337 + 0.0855115i \(0.0272524\pi\)
\(720\) −14.5865 −0.543606
\(721\) 0 0
\(722\) 6.61892 + 11.4643i 0.246331 + 0.426657i
\(723\) −0.586013 1.01500i −0.0217941 0.0377484i
\(724\) 40.7913 1.51599
\(725\) 23.0481 + 39.9205i 0.855986 + 1.48261i
\(726\) −13.0516 −0.484392
\(727\) 18.7274 0.694561 0.347280 0.937761i \(-0.387105\pi\)
0.347280 + 0.937761i \(0.387105\pi\)
\(728\) 0 0
\(729\) −12.0322 −0.445638
\(730\) −45.9636 −1.70119
\(731\) 3.83001 + 6.63377i 0.141658 + 0.245359i
\(732\) 0.980601 0.0362441
\(733\) 0.846341 + 1.46591i 0.0312603 + 0.0541445i 0.881232 0.472683i \(-0.156715\pi\)
−0.849972 + 0.526828i \(0.823381\pi\)
\(734\) 40.1781 + 69.5904i 1.48300 + 2.56863i
\(735\) 0 0
\(736\) −40.5368 −1.49421
\(737\) 2.84937 4.93525i 0.104958 0.181792i
\(738\) −18.8419 32.6351i −0.693580 1.20132i
\(739\) −23.4581 40.6305i −0.862919 1.49462i −0.869099 0.494638i \(-0.835301\pi\)
0.00618065 0.999981i \(-0.498033\pi\)
\(740\) −2.03625 3.52689i −0.0748541 0.129651i
\(741\) 5.87141 4.08791i 0.215692 0.150173i
\(742\) 0 0
\(743\) −6.44831 + 11.1688i −0.236566 + 0.409744i −0.959727 0.280936i \(-0.909355\pi\)
0.723161 + 0.690680i \(0.242688\pi\)
\(744\) −5.83163 −0.213798
\(745\) −19.2216 −0.704223
\(746\) −10.8756 + 18.8372i −0.398186 + 0.689678i
\(747\) −7.73189 + 13.3920i −0.282895 + 0.489989i
\(748\) −1.91420 3.31549i −0.0699900 0.121226i
\(749\) 0 0
\(750\) 20.1007 + 34.8155i 0.733974 + 1.27128i
\(751\) −45.6333 −1.66518 −0.832591 0.553888i \(-0.813144\pi\)
−0.832591 + 0.553888i \(0.813144\pi\)
\(752\) 5.25881 + 9.10852i 0.191769 + 0.332154i
\(753\) 8.45515 14.6447i 0.308123 0.533684i
\(754\) 2.43412 + 28.7038i 0.0886454 + 1.04533i
\(755\) 26.7089 0.972038
\(756\) 0 0
\(757\) 19.0782 33.0445i 0.693410 1.20102i −0.277303 0.960782i \(-0.589441\pi\)
0.970714 0.240239i \(-0.0772260\pi\)
\(758\) −14.5028 + 25.1195i −0.526764 + 0.912382i
\(759\) 0.878673 1.52191i 0.0318938 0.0552417i
\(760\) 31.4057 1.13920
\(761\) −21.3672 + 37.0092i −0.774562 + 1.34158i 0.160478 + 0.987039i \(0.448696\pi\)
−0.935040 + 0.354542i \(0.884637\pi\)
\(762\) 2.39203 0.0866543
\(763\) 0 0
\(764\) 18.5543 32.1370i 0.671271 1.16267i
\(765\) −27.0849 −0.979257
\(766\) −30.8502 + 53.4342i −1.11466 + 1.93066i
\(767\) 5.34848 3.72382i 0.193122 0.134459i
\(768\) 1.88364 + 3.26257i 0.0679702 + 0.117728i
\(769\) −10.8088 + 18.7215i −0.389777 + 0.675113i −0.992419 0.122898i \(-0.960781\pi\)
0.602643 + 0.798011i \(0.294114\pi\)
\(770\) 0 0
\(771\) 0.404912 + 0.701329i 0.0145826 + 0.0252577i
\(772\) 6.08371 + 10.5373i 0.218958 + 0.379246i
\(773\) 10.0011 0.359716 0.179858 0.983693i \(-0.442436\pi\)
0.179858 + 0.983693i \(0.442436\pi\)
\(774\) −19.2865 −0.693237
\(775\) 32.9718 + 57.1089i 1.18438 + 2.05141i
\(776\) 7.04980 + 12.2106i 0.253073 + 0.438335i
\(777\) 0 0
\(778\) −15.2122 + 26.3484i −0.545385 + 0.944634i
\(779\) −11.3584 19.6734i −0.406958 0.704872i
\(780\) 2.06907 + 24.3990i 0.0740847 + 0.873625i
\(781\) −3.07688 + 5.32931i −0.110099 + 0.190698i
\(782\) −30.7304 −1.09892
\(783\) −5.63467 + 9.75954i −0.201367 + 0.348778i
\(784\) 0 0
\(785\) −68.8285 −2.45659
\(786\) 3.96515 6.86785i 0.141432 0.244968i
\(787\) 41.7878 1.48957 0.744787 0.667302i \(-0.232551\pi\)
0.744787 + 0.667302i \(0.232551\pi\)
\(788\) 10.0302 17.3728i 0.357310 0.618880i
\(789\) −1.83466 + 3.17772i −0.0653156 + 0.113130i
\(790\) −65.6593 + 113.725i −2.33605 + 4.04616i
\(791\) 0 0
\(792\) 3.05601 0.108591
\(793\) −0.185638 2.18909i −0.00659221 0.0777370i
\(794\) −8.78229 + 15.2114i −0.311672 + 0.539831i
\(795\) 3.08287 + 5.33968i 0.109338 + 0.189379i
\(796\) −2.38254 −0.0844468
\(797\) 11.3856 + 19.7204i 0.403297 + 0.698531i 0.994122 0.108269i \(-0.0345308\pi\)
−0.590825 + 0.806800i \(0.701197\pi\)
\(798\) 0 0
\(799\) 9.76481 + 16.9131i 0.345454 + 0.598344i
\(800\) 44.6145 77.2745i 1.57736 2.73207i
\(801\) −10.0737 + 17.4482i −0.355937 + 0.616501i
\(802\) −36.7283 −1.29692
\(803\) −2.69621 −0.0951473
\(804\) −8.34419 + 14.4526i −0.294277 + 0.509703i
\(805\) 0 0
\(806\) 3.48216 + 41.0626i 0.122654 + 1.44637i
\(807\) −2.08163 3.60548i −0.0732767 0.126919i
\(808\) −5.93516 10.2800i −0.208798 0.361649i
\(809\) 18.7851 + 32.5367i 0.660449 + 1.14393i 0.980498 + 0.196530i \(0.0629672\pi\)
−0.320049 + 0.947401i \(0.603699\pi\)
\(810\) 29.8533 51.7074i 1.04894 1.81681i
\(811\) 11.5936 0.407106 0.203553 0.979064i \(-0.434751\pi\)
0.203553 + 0.979064i \(0.434751\pi\)
\(812\) 0 0
\(813\) −5.65159 9.78884i −0.198210 0.343309i
\(814\) −0.201023 0.348182i −0.00704584 0.0122038i
\(815\) −99.5915 −3.48854
\(816\) −0.837429 1.45047i −0.0293159 0.0507766i
\(817\) −11.6264 −0.406757
\(818\) 57.2359 2.00121
\(819\) 0 0
\(820\) 77.7514 2.71520
\(821\) 31.0243 1.08276 0.541378 0.840780i \(-0.317903\pi\)
0.541378 + 0.840780i \(0.317903\pi\)
\(822\) 9.30717 + 16.1205i 0.324625 + 0.562267i
\(823\) 29.0775 1.01358 0.506789 0.862070i \(-0.330832\pi\)
0.506789 + 0.862070i \(0.330832\pi\)
\(824\) −0.589253 1.02062i −0.0205276 0.0355549i
\(825\) 1.93412 + 3.34999i 0.0673374 + 0.116632i
\(826\) 0 0
\(827\) 14.8920 0.517846 0.258923 0.965898i \(-0.416632\pi\)
0.258923 + 0.965898i \(0.416632\pi\)
\(828\) 22.9873 39.8151i 0.798863 1.38367i
\(829\) 2.18594 + 3.78617i 0.0759210 + 0.131499i 0.901486 0.432807i \(-0.142477\pi\)
−0.825565 + 0.564306i \(0.809144\pi\)
\(830\) −26.8481 46.5022i −0.931909 1.61411i
\(831\) −1.56771 2.71535i −0.0543832 0.0941944i
\(832\) 38.1806 26.5828i 1.32367 0.921593i
\(833\) 0 0
\(834\) 10.6726 18.4856i 0.369563 0.640103i
\(835\) 75.2439 2.60392
\(836\) 5.81076 0.200969
\(837\) −8.06076 + 13.9616i −0.278621 + 0.482585i
\(838\) −26.2928 + 45.5405i −0.908270 + 1.57317i
\(839\) −11.4109 19.7643i −0.393948 0.682338i 0.599018 0.800735i \(-0.295558\pi\)
−0.992966 + 0.118397i \(0.962224\pi\)
\(840\) 0 0
\(841\) 8.02399 + 13.8980i 0.276689 + 0.479240i
\(842\) −46.2308 −1.59322
\(843\) 1.75119 + 3.03314i 0.0603140 + 0.104467i
\(844\) 20.4601 35.4379i 0.704265 1.21982i
\(845\) 54.0767 9.23799i 1.86030 0.317797i
\(846\) −49.1718 −1.69056
\(847\) 0 0
\(848\) 1.70306 2.94979i 0.0584833 0.101296i
\(849\) −7.42427 + 12.8592i −0.254800 + 0.441327i
\(850\) 33.8216 58.5808i 1.16007 2.00931i
\(851\) −1.91758 −0.0657338
\(852\) 9.01043 15.6065i 0.308692 0.534671i
\(853\) 23.3549 0.799656 0.399828 0.916590i \(-0.369070\pi\)
0.399828 + 0.916590i \(0.369070\pi\)
\(854\) 0 0
\(855\) 20.5548 35.6020i 0.702960 1.21756i
\(856\) 8.39203 0.286834
\(857\) 21.7653 37.6986i 0.743488 1.28776i −0.207410 0.978254i \(-0.566503\pi\)
0.950898 0.309505i \(-0.100163\pi\)
\(858\) 0.204263 + 2.40872i 0.00697342 + 0.0822324i
\(859\) −10.2557 17.7633i −0.349919 0.606078i 0.636316 0.771429i \(-0.280458\pi\)
−0.986235 + 0.165351i \(0.947124\pi\)
\(860\) 19.8965 34.4617i 0.678464 1.17513i
\(861\) 0 0
\(862\) −22.1451 38.3564i −0.754263 1.30642i
\(863\) 25.3339 + 43.8796i 0.862376 + 1.49368i 0.869629 + 0.493706i \(0.164358\pi\)
−0.00725258 + 0.999974i \(0.502309\pi\)
\(864\) 21.8142 0.742133
\(865\) 31.9512 1.08637
\(866\) −0.0185167 0.0320719i −0.000629224 0.00108985i
\(867\) 3.11621 + 5.39743i 0.105832 + 0.183306i
\(868\) 0 0
\(869\) −3.85156 + 6.67109i −0.130655 + 0.226301i
\(870\) −9.26434 16.0463i −0.314091 0.544021i
\(871\) 33.8436 + 15.8916i 1.14675 + 0.538465i
\(872\) −15.7766 + 27.3259i −0.534263 + 0.925371i
\(873\) 18.4562 0.624647
\(874\) 23.3214 40.3939i 0.788858 1.36634i
\(875\) 0 0
\(876\) 7.89568 0.266770
\(877\) 23.5180 40.7344i 0.794148 1.37550i −0.129231 0.991615i \(-0.541251\pi\)
0.923379 0.383890i \(-0.125416\pi\)
\(878\) 29.9613 1.01114
\(879\) 1.33945 2.32000i 0.0451787 0.0782517i
\(880\) 1.48555 2.57305i 0.0500780 0.0867376i
\(881\) 8.05674 13.9547i 0.271439 0.470145i −0.697792 0.716301i \(-0.745834\pi\)
0.969230 + 0.246155i \(0.0791673\pi\)
\(882\) 0 0
\(883\) 42.0733 1.41588 0.707940 0.706273i \(-0.249625\pi\)
0.707940 + 0.706273i \(0.249625\pi\)
\(884\) 20.6136 14.3520i 0.693310 0.482710i
\(885\) −2.09593 + 3.63026i −0.0704539 + 0.122030i
\(886\) 16.6623 + 28.8600i 0.559782 + 0.969570i
\(887\) −41.7628 −1.40226 −0.701128 0.713035i \(-0.747320\pi\)
−0.701128 + 0.713035i \(0.747320\pi\)
\(888\) 0.186636 + 0.323264i 0.00626311 + 0.0108480i
\(889\) 0 0
\(890\) −34.9797 60.5866i −1.17252 2.03087i
\(891\) 1.75119 3.03314i 0.0586669 0.101614i
\(892\) 19.8167 34.3236i 0.663513 1.14924i
\(893\) −29.6422 −0.991938
\(894\) 5.55697 0.185853
\(895\) −48.1151 + 83.3379i −1.60831 + 2.78568i
\(896\) 0 0
\(897\) 10.4365 + 4.90055i 0.348464 + 0.163625i
\(898\) 26.3999 + 45.7260i 0.880977 + 1.52590i
\(899\) −9.26434 16.0463i −0.308983 0.535174i
\(900\) 50.5992 + 87.6404i 1.68664 + 2.92135i
\(901\) 3.16233 5.47731i 0.105352 0.182476i
\(902\) 7.67577 0.255575
\(903\) 0 0
\(904\) −12.5491 21.7357i −0.417377 0.722919i
\(905\) 29.3910 + 50.9068i 0.976991 + 1.69220i
\(906\) −7.72158 −0.256532
\(907\) 7.71125 + 13.3563i 0.256048 + 0.443488i 0.965180 0.261588i \(-0.0842463\pi\)
−0.709132 + 0.705076i \(0.750913\pi\)
\(908\) −15.7184 −0.521634
\(909\) −15.5381 −0.515366
\(910\) 0 0
\(911\) 37.5462 1.24396 0.621981 0.783033i \(-0.286328\pi\)
0.621981 + 0.783033i \(0.286328\pi\)
\(912\) 2.54211 0.0841776
\(913\) −1.57490 2.72781i −0.0521216 0.0902773i
\(914\) 40.2517 1.33141
\(915\) 0.706545 + 1.22377i 0.0233577 + 0.0404567i
\(916\) −4.53776 7.85963i −0.149932 0.259689i
\(917\) 0 0
\(918\) 16.5370 0.545804
\(919\) 4.73732 8.20528i 0.156270 0.270667i −0.777251 0.629191i \(-0.783386\pi\)
0.933521 + 0.358524i \(0.116720\pi\)
\(920\) 25.3064 + 43.8319i 0.834326 + 1.44510i
\(921\) −4.44476 7.69856i −0.146460 0.253676i
\(922\) 6.74837 + 11.6885i 0.222246 + 0.384941i
\(923\) −36.5458 17.1604i −1.20292 0.564842i
\(924\) 0 0
\(925\) 2.11047 3.65545i 0.0693919 0.120190i
\(926\) 11.5283 0.378842
\(927\) −1.54265 −0.0506672
\(928\) −12.5357 + 21.7124i −0.411503 + 0.712745i
\(929\) −17.9220 + 31.0418i −0.588001 + 1.01845i 0.406493 + 0.913654i \(0.366751\pi\)
−0.994494 + 0.104793i \(0.966582\pi\)
\(930\) −13.2532 22.9553i −0.434591 0.752733i
\(931\) 0 0
\(932\) 29.8278 + 51.6633i 0.977043 + 1.69229i
\(933\) −0.718848 −0.0235340
\(934\) 9.65668 + 16.7259i 0.315976 + 0.547287i
\(935\) 2.75845 4.77777i 0.0902108 0.156250i
\(936\) 1.69420 + 19.9785i 0.0553768 + 0.653017i
\(937\) −31.3709 −1.02484 −0.512422 0.858734i \(-0.671252\pi\)
−0.512422 + 0.858734i \(0.671252\pi\)
\(938\) 0 0
\(939\) −3.62643 + 6.28116i −0.118344 + 0.204978i
\(940\) 50.7270 87.8618i 1.65453 2.86574i
\(941\) −22.3922 + 38.7844i −0.729964 + 1.26433i 0.226934 + 0.973910i \(0.427130\pi\)
−0.956898 + 0.290425i \(0.906203\pi\)
\(942\) 19.8984 0.648324
\(943\) 18.3050 31.7052i 0.596093 1.03246i
\(944\) 2.31570 0.0753695
\(945\) 0 0
\(946\) 1.96422 3.40212i 0.0638622 0.110613i
\(947\) −35.0674 −1.13954 −0.569768 0.821805i \(-0.692967\pi\)
−0.569768 + 0.821805i \(0.692967\pi\)
\(948\) 11.2790 19.5359i 0.366326 0.634495i
\(949\) −1.49474 17.6263i −0.0485212 0.572175i
\(950\) 51.3347 + 88.9143i 1.66552 + 2.88476i
\(951\) 2.21896 3.84334i 0.0719546 0.124629i
\(952\) 0 0
\(953\) −29.4852 51.0699i −0.955120 1.65432i −0.734093 0.679048i \(-0.762393\pi\)
−0.221027 0.975268i \(-0.570941\pi\)
\(954\) 7.96212 + 13.7908i 0.257783 + 0.446494i
\(955\) 53.4752 1.73042
\(956\) −3.78229 −0.122328
\(957\) −0.543444 0.941273i −0.0175671 0.0304270i
\(958\) −26.8830 46.5627i −0.868550 1.50437i
\(959\) 0 0
\(960\) −14.9620 + 25.9149i −0.482895 + 0.836399i
\(961\) 2.24677 + 3.89152i 0.0724765 + 0.125533i
\(962\) 2.16477 1.50720i 0.0697950 0.0485941i
\(963\) 5.49253 9.51334i 0.176994 0.306563i
\(964\) 6.24547 0.201153
\(965\) −8.76690 + 15.1847i −0.282217 + 0.488813i
\(966\) 0 0
\(967\) 30.3671 0.976540 0.488270 0.872693i \(-0.337628\pi\)
0.488270 + 0.872693i \(0.337628\pi\)
\(968\) 11.0250 19.0958i 0.354357 0.613764i
\(969\) 4.72031 0.151638
\(970\) −32.0434 + 55.5008i −1.02885 + 1.78202i
\(971\) 24.7588 42.8834i 0.794546 1.37619i −0.128581 0.991699i \(-0.541042\pi\)
0.923127 0.384495i \(-0.125625\pi\)
\(972\) −18.8831 + 32.7065i −0.605676 + 1.04906i
\(973\) 0 0
\(974\) 3.93815 0.126186
\(975\) −20.8281 + 14.5014i −0.667034 + 0.464416i
\(976\) 0.390315 0.676045i 0.0124937 0.0216397i
\(977\) 5.43356 + 9.41120i 0.173835 + 0.301091i 0.939757 0.341842i \(-0.111051\pi\)
−0.765923 + 0.642933i \(0.777717\pi\)
\(978\) 28.7920 0.920666
\(979\) −2.05190 3.55400i −0.0655790 0.113586i
\(980\) 0 0
\(981\) 20.6514 + 35.7692i 0.659347 + 1.14202i
\(982\) 7.42555 12.8614i 0.236959 0.410425i
\(983\) −1.17417 + 2.03371i −0.0374501 + 0.0648654i −0.884143 0.467217i \(-0.845257\pi\)
0.846693 + 0.532082i \(0.178590\pi\)
\(984\) −7.12645 −0.227183
\(985\) 28.9079 0.921082
\(986\) −9.50312 + 16.4599i −0.302641 + 0.524190i
\(987\) 0 0
\(988\) 3.22139 + 37.9875i 0.102486 + 1.20854i
\(989\) −9.36845 16.2266i −0.297899 0.515977i
\(990\) 6.94523 + 12.0295i 0.220734 + 0.382322i
\(991\) −12.2408 21.2016i −0.388841 0.673492i 0.603453 0.797398i \(-0.293791\pi\)
−0.992294 + 0.123907i \(0.960458\pi\)
\(992\) −17.9331 + 31.0610i −0.569375 + 0.986187i
\(993\) −8.21311 −0.260635
\(994\) 0 0
\(995\) −1.71667 2.97336i −0.0544222 0.0942620i
\(996\) 4.61199 + 7.98821i 0.146137 + 0.253116i
\(997\) −6.62341 −0.209766 −0.104883 0.994485i \(-0.533447\pi\)
−0.104883 + 0.994485i \(0.533447\pi\)
\(998\) −27.3491 47.3700i −0.865720 1.49947i
\(999\) 1.03191 0.0326482
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.h.h.165.4 8
7.2 even 3 637.2.g.k.373.1 8
7.3 odd 6 637.2.f.i.295.1 8
7.4 even 3 91.2.f.c.22.1 8
7.5 odd 6 637.2.g.j.373.1 8
7.6 odd 2 637.2.h.i.165.4 8
13.3 even 3 637.2.g.k.263.1 8
21.11 odd 6 819.2.o.h.568.4 8
28.11 odd 6 1456.2.s.q.113.2 8
91.3 odd 6 637.2.f.i.393.1 8
91.4 even 6 1183.2.a.l.1.1 4
91.16 even 3 inner 637.2.h.h.471.4 8
91.17 odd 6 8281.2.a.bt.1.1 4
91.32 odd 12 1183.2.c.g.337.2 8
91.46 odd 12 1183.2.c.g.337.7 8
91.55 odd 6 637.2.g.j.263.1 8
91.68 odd 6 637.2.h.i.471.4 8
91.74 even 3 1183.2.a.k.1.4 4
91.81 even 3 91.2.f.c.29.1 yes 8
91.87 odd 6 8281.2.a.bp.1.4 4
273.263 odd 6 819.2.o.h.757.4 8
364.263 odd 6 1456.2.s.q.1121.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.f.c.22.1 8 7.4 even 3
91.2.f.c.29.1 yes 8 91.81 even 3
637.2.f.i.295.1 8 7.3 odd 6
637.2.f.i.393.1 8 91.3 odd 6
637.2.g.j.263.1 8 91.55 odd 6
637.2.g.j.373.1 8 7.5 odd 6
637.2.g.k.263.1 8 13.3 even 3
637.2.g.k.373.1 8 7.2 even 3
637.2.h.h.165.4 8 1.1 even 1 trivial
637.2.h.h.471.4 8 91.16 even 3 inner
637.2.h.i.165.4 8 7.6 odd 2
637.2.h.i.471.4 8 91.68 odd 6
819.2.o.h.568.4 8 21.11 odd 6
819.2.o.h.757.4 8 273.263 odd 6
1183.2.a.k.1.4 4 91.74 even 3
1183.2.a.l.1.1 4 91.4 even 6
1183.2.c.g.337.2 8 91.32 odd 12
1183.2.c.g.337.7 8 91.46 odd 12
1456.2.s.q.113.2 8 28.11 odd 6
1456.2.s.q.1121.2 8 364.263 odd 6
8281.2.a.bp.1.4 4 91.87 odd 6
8281.2.a.bt.1.1 4 91.17 odd 6