Properties

Label 637.2.h.c
Level $637$
Weight $2$
Character orbit 637.h
Analytic conductor $5.086$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(165,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.165"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - 1) q^{2} + (\beta_{3} + \beta_1) q^{3} + ( - 2 \beta_{3} + 1) q^{4} + ( - 2 \beta_{3} - \beta_{2} - 2 \beta_1) q^{5} + ( - \beta_{3} - 2 \beta_{2} - \beta_1) q^{6} + (\beta_{3} - 3) q^{8}+ \cdots + (\beta_{3} - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} + 2 q^{5} + 4 q^{6} - 12 q^{8} + 2 q^{9} - 10 q^{10} - 4 q^{11} - 8 q^{12} + 14 q^{13} + 8 q^{15} + 12 q^{16} + 12 q^{17} - 2 q^{18} + 12 q^{19} + 18 q^{20} + 8 q^{22} + 4 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(\beta_{2}\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
165.1
0.707107 1.22474i
−0.707107 + 1.22474i
0.707107 + 1.22474i
−0.707107 1.22474i
−2.41421 −0.707107 1.22474i 3.82843 1.91421 + 3.31552i 1.70711 + 2.95680i 0 −4.41421 0.500000 0.866025i −4.62132 8.00436i
165.2 0.414214 0.707107 + 1.22474i −1.82843 −0.914214 1.58346i 0.292893 + 0.507306i 0 −1.58579 0.500000 0.866025i −0.378680 0.655892i
471.1 −2.41421 −0.707107 + 1.22474i 3.82843 1.91421 3.31552i 1.70711 2.95680i 0 −4.41421 0.500000 + 0.866025i −4.62132 + 8.00436i
471.2 0.414214 0.707107 1.22474i −1.82843 −0.914214 + 1.58346i 0.292893 0.507306i 0 −1.58579 0.500000 + 0.866025i −0.378680 + 0.655892i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.h.c 4
7.b odd 2 1 637.2.h.b 4
7.c even 3 1 637.2.f.e 4
7.c even 3 1 637.2.g.g 4
7.d odd 6 1 637.2.f.f yes 4
7.d odd 6 1 637.2.g.f 4
13.c even 3 1 637.2.g.g 4
91.g even 3 1 637.2.f.e 4
91.h even 3 1 inner 637.2.h.c 4
91.h even 3 1 8281.2.a.o 2
91.k even 6 1 8281.2.a.y 2
91.l odd 6 1 8281.2.a.x 2
91.m odd 6 1 637.2.f.f yes 4
91.n odd 6 1 637.2.g.f 4
91.v odd 6 1 637.2.h.b 4
91.v odd 6 1 8281.2.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
637.2.f.e 4 7.c even 3 1
637.2.f.e 4 91.g even 3 1
637.2.f.f yes 4 7.d odd 6 1
637.2.f.f yes 4 91.m odd 6 1
637.2.g.f 4 7.d odd 6 1
637.2.g.f 4 91.n odd 6 1
637.2.g.g 4 7.c even 3 1
637.2.g.g 4 13.c even 3 1
637.2.h.b 4 7.b odd 2 1
637.2.h.b 4 91.v odd 6 1
637.2.h.c 4 1.a even 1 1 trivial
637.2.h.c 4 91.h even 3 1 inner
8281.2.a.o 2 91.h even 3 1
8281.2.a.p 2 91.v odd 6 1
8281.2.a.x 2 91.l odd 6 1
8281.2.a.y 2 91.k even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(637, [\chi])\):

\( T_{2}^{2} + 2T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{4} + 2T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{5}^{4} - 2T_{5}^{3} + 11T_{5}^{2} + 14T_{5} + 49 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2 T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{4} - 2 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 4 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$13$ \( (T^{2} - 7 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 6 T + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 6 T + 36)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 14 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$31$ \( T^{4} - 8 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T - 71)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 6 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{4} + 4 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$47$ \( T^{4} - 4 T^{3} + \cdots + 784 \) Copy content Toggle raw display
$53$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 12 T + 18)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 14 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$67$ \( T^{4} + 18T^{2} + 324 \) Copy content Toggle raw display
$71$ \( T^{4} - 12 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$73$ \( T^{4} + 10 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$79$ \( T^{4} + 12 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$83$ \( (T^{2} - 12 T - 14)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 8 T - 112)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 16 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
show more
show less