Properties

Label 637.2.h.a.165.1
Level $637$
Weight $2$
Character 637.165
Analytic conductor $5.086$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(165,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 165.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 637.165
Dual form 637.2.h.a.471.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-1.50000 - 2.59808i) q^{3} -1.00000 q^{4} +(1.50000 + 2.59808i) q^{5} +(-1.50000 - 2.59808i) q^{6} -3.00000 q^{8} +(-3.00000 + 5.19615i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-1.50000 - 2.59808i) q^{3} -1.00000 q^{4} +(1.50000 + 2.59808i) q^{5} +(-1.50000 - 2.59808i) q^{6} -3.00000 q^{8} +(-3.00000 + 5.19615i) q^{9} +(1.50000 + 2.59808i) q^{10} +(1.50000 + 2.59808i) q^{11} +(1.50000 + 2.59808i) q^{12} +(1.00000 + 3.46410i) q^{13} +(4.50000 - 7.79423i) q^{15} -1.00000 q^{16} +2.00000 q^{17} +(-3.00000 + 5.19615i) q^{18} +(-0.500000 + 0.866025i) q^{19} +(-1.50000 - 2.59808i) q^{20} +(1.50000 + 2.59808i) q^{22} +(4.50000 + 7.79423i) q^{24} +(-2.00000 + 3.46410i) q^{25} +(1.00000 + 3.46410i) q^{26} +9.00000 q^{27} +(-3.50000 + 6.06218i) q^{29} +(4.50000 - 7.79423i) q^{30} +(1.50000 - 2.59808i) q^{31} +5.00000 q^{32} +(4.50000 - 7.79423i) q^{33} +2.00000 q^{34} +(3.00000 - 5.19615i) q^{36} +2.00000 q^{37} +(-0.500000 + 0.866025i) q^{38} +(7.50000 - 7.79423i) q^{39} +(-4.50000 - 7.79423i) q^{40} +(1.50000 - 2.59808i) q^{41} +(3.50000 + 6.06218i) q^{43} +(-1.50000 - 2.59808i) q^{44} -18.0000 q^{45} +(0.500000 + 0.866025i) q^{47} +(1.50000 + 2.59808i) q^{48} +(-2.00000 + 3.46410i) q^{50} +(-3.00000 - 5.19615i) q^{51} +(-1.00000 - 3.46410i) q^{52} +(-1.50000 + 2.59808i) q^{53} +9.00000 q^{54} +(-4.50000 + 7.79423i) q^{55} +3.00000 q^{57} +(-3.50000 + 6.06218i) q^{58} +4.00000 q^{59} +(-4.50000 + 7.79423i) q^{60} +(-6.50000 + 11.2583i) q^{61} +(1.50000 - 2.59808i) q^{62} +7.00000 q^{64} +(-7.50000 + 7.79423i) q^{65} +(4.50000 - 7.79423i) q^{66} +(1.50000 + 2.59808i) q^{67} -2.00000 q^{68} +(-6.50000 - 11.2583i) q^{71} +(9.00000 - 15.5885i) q^{72} +(-6.50000 + 11.2583i) q^{73} +2.00000 q^{74} +12.0000 q^{75} +(0.500000 - 0.866025i) q^{76} +(7.50000 - 7.79423i) q^{78} +(1.50000 + 2.59808i) q^{79} +(-1.50000 - 2.59808i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(1.50000 - 2.59808i) q^{82} +(3.00000 + 5.19615i) q^{85} +(3.50000 + 6.06218i) q^{86} +21.0000 q^{87} +(-4.50000 - 7.79423i) q^{88} -6.00000 q^{89} -18.0000 q^{90} -9.00000 q^{93} +(0.500000 + 0.866025i) q^{94} -3.00000 q^{95} +(-7.50000 - 12.9904i) q^{96} +(-2.50000 - 4.33013i) q^{97} -18.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 3 q^{3} - 2 q^{4} + 3 q^{5} - 3 q^{6} - 6 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 3 q^{3} - 2 q^{4} + 3 q^{5} - 3 q^{6} - 6 q^{8} - 6 q^{9} + 3 q^{10} + 3 q^{11} + 3 q^{12} + 2 q^{13} + 9 q^{15} - 2 q^{16} + 4 q^{17} - 6 q^{18} - q^{19} - 3 q^{20} + 3 q^{22} + 9 q^{24} - 4 q^{25} + 2 q^{26} + 18 q^{27} - 7 q^{29} + 9 q^{30} + 3 q^{31} + 10 q^{32} + 9 q^{33} + 4 q^{34} + 6 q^{36} + 4 q^{37} - q^{38} + 15 q^{39} - 9 q^{40} + 3 q^{41} + 7 q^{43} - 3 q^{44} - 36 q^{45} + q^{47} + 3 q^{48} - 4 q^{50} - 6 q^{51} - 2 q^{52} - 3 q^{53} + 18 q^{54} - 9 q^{55} + 6 q^{57} - 7 q^{58} + 8 q^{59} - 9 q^{60} - 13 q^{61} + 3 q^{62} + 14 q^{64} - 15 q^{65} + 9 q^{66} + 3 q^{67} - 4 q^{68} - 13 q^{71} + 18 q^{72} - 13 q^{73} + 4 q^{74} + 24 q^{75} + q^{76} + 15 q^{78} + 3 q^{79} - 3 q^{80} - 9 q^{81} + 3 q^{82} + 6 q^{85} + 7 q^{86} + 42 q^{87} - 9 q^{88} - 12 q^{89} - 36 q^{90} - 18 q^{93} + q^{94} - 6 q^{95} - 15 q^{96} - 5 q^{97} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) −1.50000 2.59808i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) −1.50000 2.59808i −0.612372 1.06066i
\(7\) 0 0
\(8\) −3.00000 −1.06066
\(9\) −3.00000 + 5.19615i −1.00000 + 1.73205i
\(10\) 1.50000 + 2.59808i 0.474342 + 0.821584i
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 1.50000 + 2.59808i 0.433013 + 0.750000i
\(13\) 1.00000 + 3.46410i 0.277350 + 0.960769i
\(14\) 0 0
\(15\) 4.50000 7.79423i 1.16190 2.01246i
\(16\) −1.00000 −0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) −3.00000 + 5.19615i −0.707107 + 1.22474i
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i −0.917663 0.397360i \(-0.869927\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) −1.50000 2.59808i −0.335410 0.580948i
\(21\) 0 0
\(22\) 1.50000 + 2.59808i 0.319801 + 0.553912i
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 4.50000 + 7.79423i 0.918559 + 1.59099i
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 1.00000 + 3.46410i 0.196116 + 0.679366i
\(27\) 9.00000 1.73205
\(28\) 0 0
\(29\) −3.50000 + 6.06218i −0.649934 + 1.12572i 0.333205 + 0.942855i \(0.391870\pi\)
−0.983138 + 0.182864i \(0.941463\pi\)
\(30\) 4.50000 7.79423i 0.821584 1.42302i
\(31\) 1.50000 2.59808i 0.269408 0.466628i −0.699301 0.714827i \(-0.746505\pi\)
0.968709 + 0.248199i \(0.0798387\pi\)
\(32\) 5.00000 0.883883
\(33\) 4.50000 7.79423i 0.783349 1.35680i
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 3.00000 5.19615i 0.500000 0.866025i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −0.500000 + 0.866025i −0.0811107 + 0.140488i
\(39\) 7.50000 7.79423i 1.20096 1.24808i
\(40\) −4.50000 7.79423i −0.711512 1.23238i
\(41\) 1.50000 2.59808i 0.234261 0.405751i −0.724797 0.688963i \(-0.758066\pi\)
0.959058 + 0.283211i \(0.0913998\pi\)
\(42\) 0 0
\(43\) 3.50000 + 6.06218i 0.533745 + 0.924473i 0.999223 + 0.0394140i \(0.0125491\pi\)
−0.465478 + 0.885059i \(0.654118\pi\)
\(44\) −1.50000 2.59808i −0.226134 0.391675i
\(45\) −18.0000 −2.68328
\(46\) 0 0
\(47\) 0.500000 + 0.866025i 0.0729325 + 0.126323i 0.900185 0.435507i \(-0.143431\pi\)
−0.827253 + 0.561830i \(0.810098\pi\)
\(48\) 1.50000 + 2.59808i 0.216506 + 0.375000i
\(49\) 0 0
\(50\) −2.00000 + 3.46410i −0.282843 + 0.489898i
\(51\) −3.00000 5.19615i −0.420084 0.727607i
\(52\) −1.00000 3.46410i −0.138675 0.480384i
\(53\) −1.50000 + 2.59808i −0.206041 + 0.356873i −0.950464 0.310835i \(-0.899391\pi\)
0.744423 + 0.667708i \(0.232725\pi\)
\(54\) 9.00000 1.22474
\(55\) −4.50000 + 7.79423i −0.606780 + 1.05097i
\(56\) 0 0
\(57\) 3.00000 0.397360
\(58\) −3.50000 + 6.06218i −0.459573 + 0.796003i
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) −4.50000 + 7.79423i −0.580948 + 1.00623i
\(61\) −6.50000 + 11.2583i −0.832240 + 1.44148i 0.0640184 + 0.997949i \(0.479608\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 1.50000 2.59808i 0.190500 0.329956i
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) −7.50000 + 7.79423i −0.930261 + 0.966755i
\(66\) 4.50000 7.79423i 0.553912 0.959403i
\(67\) 1.50000 + 2.59808i 0.183254 + 0.317406i 0.942987 0.332830i \(-0.108004\pi\)
−0.759733 + 0.650236i \(0.774670\pi\)
\(68\) −2.00000 −0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) −6.50000 11.2583i −0.771408 1.33612i −0.936791 0.349889i \(-0.886219\pi\)
0.165383 0.986229i \(-0.447114\pi\)
\(72\) 9.00000 15.5885i 1.06066 1.83712i
\(73\) −6.50000 + 11.2583i −0.760767 + 1.31769i 0.181688 + 0.983356i \(0.441844\pi\)
−0.942455 + 0.334332i \(0.891489\pi\)
\(74\) 2.00000 0.232495
\(75\) 12.0000 1.38564
\(76\) 0.500000 0.866025i 0.0573539 0.0993399i
\(77\) 0 0
\(78\) 7.50000 7.79423i 0.849208 0.882523i
\(79\) 1.50000 + 2.59808i 0.168763 + 0.292306i 0.937985 0.346675i \(-0.112689\pi\)
−0.769222 + 0.638982i \(0.779356\pi\)
\(80\) −1.50000 2.59808i −0.167705 0.290474i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 1.50000 2.59808i 0.165647 0.286910i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 3.00000 + 5.19615i 0.325396 + 0.563602i
\(86\) 3.50000 + 6.06218i 0.377415 + 0.653701i
\(87\) 21.0000 2.25144
\(88\) −4.50000 7.79423i −0.479702 0.830868i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) −18.0000 −1.89737
\(91\) 0 0
\(92\) 0 0
\(93\) −9.00000 −0.933257
\(94\) 0.500000 + 0.866025i 0.0515711 + 0.0893237i
\(95\) −3.00000 −0.307794
\(96\) −7.50000 12.9904i −0.765466 1.32583i
\(97\) −2.50000 4.33013i −0.253837 0.439658i 0.710742 0.703452i \(-0.248359\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) 0 0
\(99\) −18.0000 −1.80907
\(100\) 2.00000 3.46410i 0.200000 0.346410i
\(101\) −2.50000 4.33013i −0.248759 0.430864i 0.714423 0.699715i \(-0.246689\pi\)
−0.963182 + 0.268851i \(0.913356\pi\)
\(102\) −3.00000 5.19615i −0.297044 0.514496i
\(103\) 2.50000 + 4.33013i 0.246332 + 0.426660i 0.962505 0.271263i \(-0.0874412\pi\)
−0.716173 + 0.697923i \(0.754108\pi\)
\(104\) −3.00000 10.3923i −0.294174 1.01905i
\(105\) 0 0
\(106\) −1.50000 + 2.59808i −0.145693 + 0.252347i
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) −9.00000 −0.866025
\(109\) −3.50000 + 6.06218i −0.335239 + 0.580651i −0.983531 0.180741i \(-0.942150\pi\)
0.648292 + 0.761392i \(0.275484\pi\)
\(110\) −4.50000 + 7.79423i −0.429058 + 0.743151i
\(111\) −3.00000 5.19615i −0.284747 0.493197i
\(112\) 0 0
\(113\) −7.50000 12.9904i −0.705541 1.22203i −0.966496 0.256681i \(-0.917371\pi\)
0.260955 0.965351i \(-0.415962\pi\)
\(114\) 3.00000 0.280976
\(115\) 0 0
\(116\) 3.50000 6.06218i 0.324967 0.562859i
\(117\) −21.0000 5.19615i −1.94145 0.480384i
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) −13.5000 + 23.3827i −1.23238 + 2.13454i
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) −6.50000 + 11.2583i −0.588482 + 1.01928i
\(123\) −9.00000 −0.811503
\(124\) −1.50000 + 2.59808i −0.134704 + 0.233314i
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −5.50000 + 9.52628i −0.488046 + 0.845321i −0.999905 0.0137486i \(-0.995624\pi\)
0.511859 + 0.859069i \(0.328957\pi\)
\(128\) −3.00000 −0.265165
\(129\) 10.5000 18.1865i 0.924473 1.60123i
\(130\) −7.50000 + 7.79423i −0.657794 + 0.683599i
\(131\) 2.50000 + 4.33013i 0.218426 + 0.378325i 0.954327 0.298764i \(-0.0965744\pi\)
−0.735901 + 0.677089i \(0.763241\pi\)
\(132\) −4.50000 + 7.79423i −0.391675 + 0.678401i
\(133\) 0 0
\(134\) 1.50000 + 2.59808i 0.129580 + 0.224440i
\(135\) 13.5000 + 23.3827i 1.16190 + 2.01246i
\(136\) −6.00000 −0.514496
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) −7.50000 12.9904i −0.636142 1.10183i −0.986272 0.165129i \(-0.947196\pi\)
0.350130 0.936701i \(-0.386137\pi\)
\(140\) 0 0
\(141\) 1.50000 2.59808i 0.126323 0.218797i
\(142\) −6.50000 11.2583i −0.545468 0.944778i
\(143\) −7.50000 + 7.79423i −0.627182 + 0.651786i
\(144\) 3.00000 5.19615i 0.250000 0.433013i
\(145\) −21.0000 −1.74396
\(146\) −6.50000 + 11.2583i −0.537944 + 0.931746i
\(147\) 0 0
\(148\) −2.00000 −0.164399
\(149\) −7.50000 + 12.9904i −0.614424 + 1.06421i 0.376061 + 0.926595i \(0.377278\pi\)
−0.990485 + 0.137619i \(0.956055\pi\)
\(150\) 12.0000 0.979796
\(151\) 10.5000 18.1865i 0.854478 1.48000i −0.0226507 0.999743i \(-0.507211\pi\)
0.877129 0.480256i \(-0.159456\pi\)
\(152\) 1.50000 2.59808i 0.121666 0.210732i
\(153\) −6.00000 + 10.3923i −0.485071 + 0.840168i
\(154\) 0 0
\(155\) 9.00000 0.722897
\(156\) −7.50000 + 7.79423i −0.600481 + 0.624038i
\(157\) 9.50000 16.4545i 0.758183 1.31321i −0.185594 0.982627i \(-0.559421\pi\)
0.943777 0.330584i \(-0.107246\pi\)
\(158\) 1.50000 + 2.59808i 0.119334 + 0.206692i
\(159\) 9.00000 0.713746
\(160\) 7.50000 + 12.9904i 0.592927 + 1.02698i
\(161\) 0 0
\(162\) −4.50000 7.79423i −0.353553 0.612372i
\(163\) 0.500000 0.866025i 0.0391630 0.0678323i −0.845780 0.533533i \(-0.820864\pi\)
0.884943 + 0.465700i \(0.154198\pi\)
\(164\) −1.50000 + 2.59808i −0.117130 + 0.202876i
\(165\) 27.0000 2.10195
\(166\) 0 0
\(167\) −6.50000 + 11.2583i −0.502985 + 0.871196i 0.497009 + 0.867745i \(0.334432\pi\)
−0.999994 + 0.00345033i \(0.998902\pi\)
\(168\) 0 0
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 3.00000 + 5.19615i 0.230089 + 0.398527i
\(171\) −3.00000 5.19615i −0.229416 0.397360i
\(172\) −3.50000 6.06218i −0.266872 0.462237i
\(173\) 9.50000 16.4545i 0.722272 1.25101i −0.237816 0.971310i \(-0.576431\pi\)
0.960087 0.279701i \(-0.0902353\pi\)
\(174\) 21.0000 1.59201
\(175\) 0 0
\(176\) −1.50000 2.59808i −0.113067 0.195837i
\(177\) −6.00000 10.3923i −0.450988 0.781133i
\(178\) −6.00000 −0.449719
\(179\) −8.50000 14.7224i −0.635320 1.10041i −0.986447 0.164079i \(-0.947535\pi\)
0.351127 0.936328i \(-0.385798\pi\)
\(180\) 18.0000 1.34164
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 39.0000 2.88296
\(184\) 0 0
\(185\) 3.00000 + 5.19615i 0.220564 + 0.382029i
\(186\) −9.00000 −0.659912
\(187\) 3.00000 + 5.19615i 0.219382 + 0.379980i
\(188\) −0.500000 0.866025i −0.0364662 0.0631614i
\(189\) 0 0
\(190\) −3.00000 −0.217643
\(191\) 8.50000 14.7224i 0.615038 1.06528i −0.375339 0.926887i \(-0.622474\pi\)
0.990378 0.138390i \(-0.0441928\pi\)
\(192\) −10.5000 18.1865i −0.757772 1.31250i
\(193\) −3.50000 6.06218i −0.251936 0.436365i 0.712123 0.702055i \(-0.247734\pi\)
−0.964059 + 0.265689i \(0.914400\pi\)
\(194\) −2.50000 4.33013i −0.179490 0.310885i
\(195\) 31.5000 + 7.79423i 2.25576 + 0.558156i
\(196\) 0 0
\(197\) 0.500000 0.866025i 0.0356235 0.0617018i −0.847664 0.530534i \(-0.821992\pi\)
0.883287 + 0.468832i \(0.155325\pi\)
\(198\) −18.0000 −1.27920
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 6.00000 10.3923i 0.424264 0.734847i
\(201\) 4.50000 7.79423i 0.317406 0.549762i
\(202\) −2.50000 4.33013i −0.175899 0.304667i
\(203\) 0 0
\(204\) 3.00000 + 5.19615i 0.210042 + 0.363803i
\(205\) 9.00000 0.628587
\(206\) 2.50000 + 4.33013i 0.174183 + 0.301694i
\(207\) 0 0
\(208\) −1.00000 3.46410i −0.0693375 0.240192i
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) −3.50000 + 6.06218i −0.240950 + 0.417338i −0.960985 0.276600i \(-0.910792\pi\)
0.720035 + 0.693938i \(0.244126\pi\)
\(212\) 1.50000 2.59808i 0.103020 0.178437i
\(213\) −19.5000 + 33.7750i −1.33612 + 2.31422i
\(214\) 8.00000 0.546869
\(215\) −10.5000 + 18.1865i −0.716094 + 1.24031i
\(216\) −27.0000 −1.83712
\(217\) 0 0
\(218\) −3.50000 + 6.06218i −0.237050 + 0.410582i
\(219\) 39.0000 2.63538
\(220\) 4.50000 7.79423i 0.303390 0.525487i
\(221\) 2.00000 + 6.92820i 0.134535 + 0.466041i
\(222\) −3.00000 5.19615i −0.201347 0.348743i
\(223\) −4.50000 + 7.79423i −0.301342 + 0.521940i −0.976440 0.215788i \(-0.930768\pi\)
0.675098 + 0.737728i \(0.264101\pi\)
\(224\) 0 0
\(225\) −12.0000 20.7846i −0.800000 1.38564i
\(226\) −7.50000 12.9904i −0.498893 0.864107i
\(227\) 4.00000 0.265489 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(228\) −3.00000 −0.198680
\(229\) −6.50000 11.2583i −0.429532 0.743971i 0.567300 0.823511i \(-0.307988\pi\)
−0.996832 + 0.0795401i \(0.974655\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 10.5000 18.1865i 0.689359 1.19400i
\(233\) 10.5000 + 18.1865i 0.687878 + 1.19144i 0.972523 + 0.232806i \(0.0747909\pi\)
−0.284645 + 0.958633i \(0.591876\pi\)
\(234\) −21.0000 5.19615i −1.37281 0.339683i
\(235\) −1.50000 + 2.59808i −0.0978492 + 0.169480i
\(236\) −4.00000 −0.260378
\(237\) 4.50000 7.79423i 0.292306 0.506290i
\(238\) 0 0
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) −4.50000 + 7.79423i −0.290474 + 0.503115i
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) 1.00000 1.73205i 0.0642824 0.111340i
\(243\) 0 0
\(244\) 6.50000 11.2583i 0.416120 0.720741i
\(245\) 0 0
\(246\) −9.00000 −0.573819
\(247\) −3.50000 0.866025i −0.222700 0.0551039i
\(248\) −4.50000 + 7.79423i −0.285750 + 0.494934i
\(249\) 0 0
\(250\) 3.00000 0.189737
\(251\) −11.5000 19.9186i −0.725874 1.25725i −0.958613 0.284711i \(-0.908102\pi\)
0.232740 0.972539i \(-0.425231\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −5.50000 + 9.52628i −0.345101 + 0.597732i
\(255\) 9.00000 15.5885i 0.563602 0.976187i
\(256\) −17.0000 −1.06250
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 10.5000 18.1865i 0.653701 1.13224i
\(259\) 0 0
\(260\) 7.50000 7.79423i 0.465130 0.483378i
\(261\) −21.0000 36.3731i −1.29987 2.25144i
\(262\) 2.50000 + 4.33013i 0.154451 + 0.267516i
\(263\) 13.5000 + 23.3827i 0.832446 + 1.44184i 0.896093 + 0.443866i \(0.146393\pi\)
−0.0636476 + 0.997972i \(0.520273\pi\)
\(264\) −13.5000 + 23.3827i −0.830868 + 1.43910i
\(265\) −9.00000 −0.552866
\(266\) 0 0
\(267\) 9.00000 + 15.5885i 0.550791 + 0.953998i
\(268\) −1.50000 2.59808i −0.0916271 0.158703i
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 13.5000 + 23.3827i 0.821584 + 1.42302i
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) −2.00000 −0.121268
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) −12.0000 −0.723627
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) −7.50000 12.9904i −0.449820 0.779111i
\(279\) 9.00000 + 15.5885i 0.538816 + 0.933257i
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 1.50000 2.59808i 0.0893237 0.154713i
\(283\) 0.500000 + 0.866025i 0.0297219 + 0.0514799i 0.880504 0.474039i \(-0.157204\pi\)
−0.850782 + 0.525519i \(0.823871\pi\)
\(284\) 6.50000 + 11.2583i 0.385704 + 0.668059i
\(285\) 4.50000 + 7.79423i 0.266557 + 0.461690i
\(286\) −7.50000 + 7.79423i −0.443484 + 0.460882i
\(287\) 0 0
\(288\) −15.0000 + 25.9808i −0.883883 + 1.53093i
\(289\) −13.0000 −0.764706
\(290\) −21.0000 −1.23316
\(291\) −7.50000 + 12.9904i −0.439658 + 0.761510i
\(292\) 6.50000 11.2583i 0.380384 0.658844i
\(293\) 5.50000 + 9.52628i 0.321313 + 0.556531i 0.980759 0.195221i \(-0.0625424\pi\)
−0.659446 + 0.751752i \(0.729209\pi\)
\(294\) 0 0
\(295\) 6.00000 + 10.3923i 0.349334 + 0.605063i
\(296\) −6.00000 −0.348743
\(297\) 13.5000 + 23.3827i 0.783349 + 1.35680i
\(298\) −7.50000 + 12.9904i −0.434463 + 0.752513i
\(299\) 0 0
\(300\) −12.0000 −0.692820
\(301\) 0 0
\(302\) 10.5000 18.1865i 0.604207 1.04652i
\(303\) −7.50000 + 12.9904i −0.430864 + 0.746278i
\(304\) 0.500000 0.866025i 0.0286770 0.0496700i
\(305\) −39.0000 −2.23313
\(306\) −6.00000 + 10.3923i −0.342997 + 0.594089i
\(307\) −12.0000 −0.684876 −0.342438 0.939540i \(-0.611253\pi\)
−0.342438 + 0.939540i \(0.611253\pi\)
\(308\) 0 0
\(309\) 7.50000 12.9904i 0.426660 0.738997i
\(310\) 9.00000 0.511166
\(311\) −4.50000 + 7.79423i −0.255172 + 0.441970i −0.964942 0.262463i \(-0.915465\pi\)
0.709771 + 0.704433i \(0.248799\pi\)
\(312\) −22.5000 + 23.3827i −1.27381 + 1.32378i
\(313\) 9.50000 + 16.4545i 0.536972 + 0.930062i 0.999065 + 0.0432311i \(0.0137652\pi\)
−0.462093 + 0.886831i \(0.652902\pi\)
\(314\) 9.50000 16.4545i 0.536116 0.928580i
\(315\) 0 0
\(316\) −1.50000 2.59808i −0.0843816 0.146153i
\(317\) 4.50000 + 7.79423i 0.252745 + 0.437767i 0.964281 0.264883i \(-0.0853332\pi\)
−0.711535 + 0.702650i \(0.752000\pi\)
\(318\) 9.00000 0.504695
\(319\) −21.0000 −1.17577
\(320\) 10.5000 + 18.1865i 0.586968 + 1.01666i
\(321\) −12.0000 20.7846i −0.669775 1.16008i
\(322\) 0 0
\(323\) −1.00000 + 1.73205i −0.0556415 + 0.0963739i
\(324\) 4.50000 + 7.79423i 0.250000 + 0.433013i
\(325\) −14.0000 3.46410i −0.776580 0.192154i
\(326\) 0.500000 0.866025i 0.0276924 0.0479647i
\(327\) 21.0000 1.16130
\(328\) −4.50000 + 7.79423i −0.248471 + 0.430364i
\(329\) 0 0
\(330\) 27.0000 1.48630
\(331\) 14.5000 25.1147i 0.796992 1.38043i −0.124574 0.992210i \(-0.539757\pi\)
0.921567 0.388221i \(-0.126910\pi\)
\(332\) 0 0
\(333\) −6.00000 + 10.3923i −0.328798 + 0.569495i
\(334\) −6.50000 + 11.2583i −0.355664 + 0.616028i
\(335\) −4.50000 + 7.79423i −0.245861 + 0.425844i
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) −11.0000 + 6.92820i −0.598321 + 0.376845i
\(339\) −22.5000 + 38.9711i −1.22203 + 2.11662i
\(340\) −3.00000 5.19615i −0.162698 0.281801i
\(341\) 9.00000 0.487377
\(342\) −3.00000 5.19615i −0.162221 0.280976i
\(343\) 0 0
\(344\) −10.5000 18.1865i −0.566122 0.980552i
\(345\) 0 0
\(346\) 9.50000 16.4545i 0.510723 0.884598i
\(347\) −8.00000 −0.429463 −0.214731 0.976673i \(-0.568888\pi\)
−0.214731 + 0.976673i \(0.568888\pi\)
\(348\) −21.0000 −1.12572
\(349\) 11.5000 19.9186i 0.615581 1.06622i −0.374701 0.927146i \(-0.622255\pi\)
0.990282 0.139072i \(-0.0444119\pi\)
\(350\) 0 0
\(351\) 9.00000 + 31.1769i 0.480384 + 1.66410i
\(352\) 7.50000 + 12.9904i 0.399751 + 0.692390i
\(353\) −12.5000 21.6506i −0.665308 1.15235i −0.979202 0.202889i \(-0.934967\pi\)
0.313894 0.949458i \(-0.398366\pi\)
\(354\) −6.00000 10.3923i −0.318896 0.552345i
\(355\) 19.5000 33.7750i 1.03495 1.79259i
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) −8.50000 14.7224i −0.449239 0.778105i
\(359\) −8.50000 14.7224i −0.448613 0.777020i 0.549683 0.835373i \(-0.314748\pi\)
−0.998296 + 0.0583530i \(0.981415\pi\)
\(360\) 54.0000 2.84605
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 22.0000 1.15629
\(363\) −6.00000 −0.314918
\(364\) 0 0
\(365\) −39.0000 −2.04135
\(366\) 39.0000 2.03856
\(367\) −15.5000 26.8468i −0.809093 1.40139i −0.913493 0.406855i \(-0.866625\pi\)
0.104399 0.994535i \(-0.466708\pi\)
\(368\) 0 0
\(369\) 9.00000 + 15.5885i 0.468521 + 0.811503i
\(370\) 3.00000 + 5.19615i 0.155963 + 0.270135i
\(371\) 0 0
\(372\) 9.00000 0.466628
\(373\) 4.50000 7.79423i 0.233001 0.403570i −0.725689 0.688023i \(-0.758479\pi\)
0.958690 + 0.284453i \(0.0918121\pi\)
\(374\) 3.00000 + 5.19615i 0.155126 + 0.268687i
\(375\) −4.50000 7.79423i −0.232379 0.402492i
\(376\) −1.50000 2.59808i −0.0773566 0.133986i
\(377\) −24.5000 6.06218i −1.26181 0.312218i
\(378\) 0 0
\(379\) 16.5000 28.5788i 0.847548 1.46800i −0.0358418 0.999357i \(-0.511411\pi\)
0.883390 0.468639i \(-0.155255\pi\)
\(380\) 3.00000 0.153897
\(381\) 33.0000 1.69064
\(382\) 8.50000 14.7224i 0.434898 0.753265i
\(383\) −10.5000 + 18.1865i −0.536525 + 0.929288i 0.462563 + 0.886586i \(0.346930\pi\)
−0.999088 + 0.0427020i \(0.986403\pi\)
\(384\) 4.50000 + 7.79423i 0.229640 + 0.397748i
\(385\) 0 0
\(386\) −3.50000 6.06218i −0.178145 0.308557i
\(387\) −42.0000 −2.13498
\(388\) 2.50000 + 4.33013i 0.126918 + 0.219829i
\(389\) 16.5000 28.5788i 0.836583 1.44900i −0.0561516 0.998422i \(-0.517883\pi\)
0.892735 0.450582i \(-0.148784\pi\)
\(390\) 31.5000 + 7.79423i 1.59506 + 0.394676i
\(391\) 0 0
\(392\) 0 0
\(393\) 7.50000 12.9904i 0.378325 0.655278i
\(394\) 0.500000 0.866025i 0.0251896 0.0436297i
\(395\) −4.50000 + 7.79423i −0.226420 + 0.392170i
\(396\) 18.0000 0.904534
\(397\) −0.500000 + 0.866025i −0.0250943 + 0.0434646i −0.878300 0.478110i \(-0.841322\pi\)
0.853206 + 0.521575i \(0.174655\pi\)
\(398\) 20.0000 1.00251
\(399\) 0 0
\(400\) 2.00000 3.46410i 0.100000 0.173205i
\(401\) −2.00000 −0.0998752 −0.0499376 0.998752i \(-0.515902\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 4.50000 7.79423i 0.224440 0.388741i
\(403\) 10.5000 + 2.59808i 0.523042 + 0.129419i
\(404\) 2.50000 + 4.33013i 0.124380 + 0.215432i
\(405\) 13.5000 23.3827i 0.670820 1.16190i
\(406\) 0 0
\(407\) 3.00000 + 5.19615i 0.148704 + 0.257564i
\(408\) 9.00000 + 15.5885i 0.445566 + 0.771744i
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 9.00000 0.444478
\(411\) −15.0000 25.9808i −0.739895 1.28154i
\(412\) −2.50000 4.33013i −0.123166 0.213330i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 5.00000 + 17.3205i 0.245145 + 0.849208i
\(417\) −22.5000 + 38.9711i −1.10183 + 1.90843i
\(418\) −3.00000 −0.146735
\(419\) −12.5000 + 21.6506i −0.610665 + 1.05770i 0.380464 + 0.924796i \(0.375764\pi\)
−0.991129 + 0.132907i \(0.957569\pi\)
\(420\) 0 0
\(421\) 18.0000 0.877266 0.438633 0.898666i \(-0.355463\pi\)
0.438633 + 0.898666i \(0.355463\pi\)
\(422\) −3.50000 + 6.06218i −0.170377 + 0.295102i
\(423\) −6.00000 −0.291730
\(424\) 4.50000 7.79423i 0.218539 0.378521i
\(425\) −4.00000 + 6.92820i −0.194029 + 0.336067i
\(426\) −19.5000 + 33.7750i −0.944778 + 1.63640i
\(427\) 0 0
\(428\) −8.00000 −0.386695
\(429\) 31.5000 + 7.79423i 1.52083 + 0.376309i
\(430\) −10.5000 + 18.1865i −0.506355 + 0.877033i
\(431\) −4.50000 7.79423i −0.216757 0.375435i 0.737057 0.675830i \(-0.236215\pi\)
−0.953815 + 0.300395i \(0.902881\pi\)
\(432\) −9.00000 −0.433013
\(433\) 13.5000 + 23.3827i 0.648769 + 1.12370i 0.983417 + 0.181357i \(0.0580490\pi\)
−0.334649 + 0.942343i \(0.608618\pi\)
\(434\) 0 0
\(435\) 31.5000 + 54.5596i 1.51031 + 2.61593i
\(436\) 3.50000 6.06218i 0.167620 0.290326i
\(437\) 0 0
\(438\) 39.0000 1.86349
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 13.5000 23.3827i 0.643587 1.11473i
\(441\) 0 0
\(442\) 2.00000 + 6.92820i 0.0951303 + 0.329541i
\(443\) 5.50000 + 9.52628i 0.261313 + 0.452607i 0.966591 0.256323i \(-0.0825112\pi\)
−0.705278 + 0.708931i \(0.749178\pi\)
\(444\) 3.00000 + 5.19615i 0.142374 + 0.246598i
\(445\) −9.00000 15.5885i −0.426641 0.738964i
\(446\) −4.50000 + 7.79423i −0.213081 + 0.369067i
\(447\) 45.0000 2.12843
\(448\) 0 0
\(449\) −7.50000 12.9904i −0.353947 0.613054i 0.632990 0.774160i \(-0.281827\pi\)
−0.986937 + 0.161106i \(0.948494\pi\)
\(450\) −12.0000 20.7846i −0.565685 0.979796i
\(451\) 9.00000 0.423793
\(452\) 7.50000 + 12.9904i 0.352770 + 0.611016i
\(453\) −63.0000 −2.96000
\(454\) 4.00000 0.187729
\(455\) 0 0
\(456\) −9.00000 −0.421464
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) −6.50000 11.2583i −0.303725 0.526067i
\(459\) 18.0000 0.840168
\(460\) 0 0
\(461\) 17.5000 + 30.3109i 0.815056 + 1.41172i 0.909288 + 0.416169i \(0.136627\pi\)
−0.0942312 + 0.995550i \(0.530039\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 3.50000 6.06218i 0.162483 0.281430i
\(465\) −13.5000 23.3827i −0.626048 1.08435i
\(466\) 10.5000 + 18.1865i 0.486403 + 0.842475i
\(467\) −3.50000 6.06218i −0.161961 0.280524i 0.773611 0.633661i \(-0.218448\pi\)
−0.935572 + 0.353137i \(0.885115\pi\)
\(468\) 21.0000 + 5.19615i 0.970725 + 0.240192i
\(469\) 0 0
\(470\) −1.50000 + 2.59808i −0.0691898 + 0.119840i
\(471\) −57.0000 −2.62642
\(472\) −12.0000 −0.552345
\(473\) −10.5000 + 18.1865i −0.482791 + 0.836218i
\(474\) 4.50000 7.79423i 0.206692 0.358001i
\(475\) −2.00000 3.46410i −0.0917663 0.158944i
\(476\) 0 0
\(477\) −9.00000 15.5885i −0.412082 0.713746i
\(478\) −4.00000 −0.182956
\(479\) −17.5000 30.3109i −0.799595 1.38494i −0.919880 0.392200i \(-0.871714\pi\)
0.120284 0.992739i \(-0.461619\pi\)
\(480\) 22.5000 38.9711i 1.02698 1.77878i
\(481\) 2.00000 + 6.92820i 0.0911922 + 0.315899i
\(482\) 26.0000 1.18427
\(483\) 0 0
\(484\) −1.00000 + 1.73205i −0.0454545 + 0.0787296i
\(485\) 7.50000 12.9904i 0.340557 0.589863i
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 19.5000 33.7750i 0.882724 1.52892i
\(489\) −3.00000 −0.135665
\(490\) 0 0
\(491\) −7.50000 + 12.9904i −0.338470 + 0.586248i −0.984145 0.177365i \(-0.943243\pi\)
0.645675 + 0.763612i \(0.276576\pi\)
\(492\) 9.00000 0.405751
\(493\) −7.00000 + 12.1244i −0.315264 + 0.546054i
\(494\) −3.50000 0.866025i −0.157472 0.0389643i
\(495\) −27.0000 46.7654i −1.21356 2.10195i
\(496\) −1.50000 + 2.59808i −0.0673520 + 0.116657i
\(497\) 0 0
\(498\) 0 0
\(499\) 15.5000 + 26.8468i 0.693875 + 1.20183i 0.970558 + 0.240866i \(0.0774314\pi\)
−0.276683 + 0.960961i \(0.589235\pi\)
\(500\) −3.00000 −0.134164
\(501\) 39.0000 1.74239
\(502\) −11.5000 19.9186i −0.513270 0.889010i
\(503\) −15.5000 26.8468i −0.691111 1.19704i −0.971474 0.237145i \(-0.923788\pi\)
0.280363 0.959894i \(-0.409545\pi\)
\(504\) 0 0
\(505\) 7.50000 12.9904i 0.333746 0.578064i
\(506\) 0 0
\(507\) 34.5000 + 18.1865i 1.53220 + 0.807692i
\(508\) 5.50000 9.52628i 0.244023 0.422660i
\(509\) 34.0000 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(510\) 9.00000 15.5885i 0.398527 0.690268i
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) −4.50000 + 7.79423i −0.198680 + 0.344124i
\(514\) 2.00000 0.0882162
\(515\) −7.50000 + 12.9904i −0.330489 + 0.572425i
\(516\) −10.5000 + 18.1865i −0.462237 + 0.800617i
\(517\) −1.50000 + 2.59808i −0.0659699 + 0.114263i
\(518\) 0 0
\(519\) −57.0000 −2.50202
\(520\) 22.5000 23.3827i 0.986690 1.02540i
\(521\) −8.50000 + 14.7224i −0.372392 + 0.645001i −0.989933 0.141537i \(-0.954796\pi\)
0.617541 + 0.786539i \(0.288129\pi\)
\(522\) −21.0000 36.3731i −0.919145 1.59201i
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) −2.50000 4.33013i −0.109213 0.189162i
\(525\) 0 0
\(526\) 13.5000 + 23.3827i 0.588628 + 1.01953i
\(527\) 3.00000 5.19615i 0.130682 0.226348i
\(528\) −4.50000 + 7.79423i −0.195837 + 0.339200i
\(529\) −23.0000 −1.00000
\(530\) −9.00000 −0.390935
\(531\) −12.0000 + 20.7846i −0.520756 + 0.901975i
\(532\) 0 0
\(533\) 10.5000 + 2.59808i 0.454805 + 0.112535i
\(534\) 9.00000 + 15.5885i 0.389468 + 0.674579i
\(535\) 12.0000 + 20.7846i 0.518805 + 0.898597i
\(536\) −4.50000 7.79423i −0.194370 0.336659i
\(537\) −25.5000 + 44.1673i −1.10041 + 1.90596i
\(538\) −18.0000 −0.776035
\(539\) 0 0
\(540\) −13.5000 23.3827i −0.580948 1.00623i
\(541\) 18.5000 + 32.0429i 0.795377 + 1.37763i 0.922599 + 0.385759i \(0.126061\pi\)
−0.127222 + 0.991874i \(0.540606\pi\)
\(542\) 16.0000 0.687259
\(543\) −33.0000 57.1577i −1.41617 2.45287i
\(544\) 10.0000 0.428746
\(545\) −21.0000 −0.899541
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) −10.0000 −0.427179
\(549\) −39.0000 67.5500i −1.66448 2.88296i
\(550\) −12.0000 −0.511682
\(551\) −3.50000 6.06218i −0.149105 0.258257i
\(552\) 0 0
\(553\) 0 0
\(554\) 22.0000 0.934690
\(555\) 9.00000 15.5885i 0.382029 0.661693i
\(556\) 7.50000 + 12.9904i 0.318071 + 0.550915i
\(557\) −1.50000 2.59808i −0.0635570 0.110084i 0.832496 0.554031i \(-0.186911\pi\)
−0.896053 + 0.443947i \(0.853578\pi\)
\(558\) 9.00000 + 15.5885i 0.381000 + 0.659912i
\(559\) −17.5000 + 18.1865i −0.740171 + 0.769208i
\(560\) 0 0
\(561\) 9.00000 15.5885i 0.379980 0.658145i
\(562\) −18.0000 −0.759284
\(563\) −4.00000 −0.168580 −0.0842900 0.996441i \(-0.526862\pi\)
−0.0842900 + 0.996441i \(0.526862\pi\)
\(564\) −1.50000 + 2.59808i −0.0631614 + 0.109399i
\(565\) 22.5000 38.9711i 0.946582 1.63953i
\(566\) 0.500000 + 0.866025i 0.0210166 + 0.0364018i
\(567\) 0 0
\(568\) 19.5000 + 33.7750i 0.818202 + 1.41717i
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 4.50000 + 7.79423i 0.188484 + 0.326464i
\(571\) −21.5000 + 37.2391i −0.899747 + 1.55841i −0.0719297 + 0.997410i \(0.522916\pi\)
−0.827817 + 0.560998i \(0.810418\pi\)
\(572\) 7.50000 7.79423i 0.313591 0.325893i
\(573\) −51.0000 −2.13056
\(574\) 0 0
\(575\) 0 0
\(576\) −21.0000 + 36.3731i −0.875000 + 1.51554i
\(577\) −0.500000 + 0.866025i −0.0208153 + 0.0360531i −0.876245 0.481865i \(-0.839960\pi\)
0.855430 + 0.517918i \(0.173293\pi\)
\(578\) −13.0000 −0.540729
\(579\) −10.5000 + 18.1865i −0.436365 + 0.755807i
\(580\) 21.0000 0.871978
\(581\) 0 0
\(582\) −7.50000 + 12.9904i −0.310885 + 0.538469i
\(583\) −9.00000 −0.372742
\(584\) 19.5000 33.7750i 0.806916 1.39762i
\(585\) −18.0000 62.3538i −0.744208 2.57801i
\(586\) 5.50000 + 9.52628i 0.227203 + 0.393527i
\(587\) −16.5000 + 28.5788i −0.681028 + 1.17957i 0.293640 + 0.955916i \(0.405133\pi\)
−0.974668 + 0.223659i \(0.928200\pi\)
\(588\) 0 0
\(589\) 1.50000 + 2.59808i 0.0618064 + 0.107052i
\(590\) 6.00000 + 10.3923i 0.247016 + 0.427844i
\(591\) −3.00000 −0.123404
\(592\) −2.00000 −0.0821995
\(593\) 13.5000 + 23.3827i 0.554379 + 0.960212i 0.997952 + 0.0639736i \(0.0203773\pi\)
−0.443573 + 0.896238i \(0.646289\pi\)
\(594\) 13.5000 + 23.3827i 0.553912 + 0.959403i
\(595\) 0 0
\(596\) 7.50000 12.9904i 0.307212 0.532107i
\(597\) −30.0000 51.9615i −1.22782 2.12664i
\(598\) 0 0
\(599\) 12.5000 21.6506i 0.510736 0.884621i −0.489186 0.872179i \(-0.662706\pi\)
0.999923 0.0124417i \(-0.00396043\pi\)
\(600\) −36.0000 −1.46969
\(601\) 17.5000 30.3109i 0.713840 1.23641i −0.249565 0.968358i \(-0.580288\pi\)
0.963405 0.268049i \(-0.0863789\pi\)
\(602\) 0 0
\(603\) −18.0000 −0.733017
\(604\) −10.5000 + 18.1865i −0.427239 + 0.740000i
\(605\) 6.00000 0.243935
\(606\) −7.50000 + 12.9904i −0.304667 + 0.527698i
\(607\) 5.50000 9.52628i 0.223238 0.386660i −0.732551 0.680712i \(-0.761671\pi\)
0.955789 + 0.294052i \(0.0950039\pi\)
\(608\) −2.50000 + 4.33013i −0.101388 + 0.175610i
\(609\) 0 0
\(610\) −39.0000 −1.57906
\(611\) −2.50000 + 2.59808i −0.101139 + 0.105107i
\(612\) 6.00000 10.3923i 0.242536 0.420084i
\(613\) 12.5000 + 21.6506i 0.504870 + 0.874461i 0.999984 + 0.00563283i \(0.00179300\pi\)
−0.495114 + 0.868828i \(0.664874\pi\)
\(614\) −12.0000 −0.484281
\(615\) −13.5000 23.3827i −0.544373 0.942881i
\(616\) 0 0
\(617\) 16.5000 + 28.5788i 0.664265 + 1.15054i 0.979484 + 0.201522i \(0.0645887\pi\)
−0.315219 + 0.949019i \(0.602078\pi\)
\(618\) 7.50000 12.9904i 0.301694 0.522550i
\(619\) 5.50000 9.52628i 0.221064 0.382893i −0.734068 0.679076i \(-0.762380\pi\)
0.955131 + 0.296183i \(0.0957138\pi\)
\(620\) −9.00000 −0.361449
\(621\) 0 0
\(622\) −4.50000 + 7.79423i −0.180434 + 0.312520i
\(623\) 0 0
\(624\) −7.50000 + 7.79423i −0.300240 + 0.312019i
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 9.50000 + 16.4545i 0.379696 + 0.657653i
\(627\) 4.50000 + 7.79423i 0.179713 + 0.311272i
\(628\) −9.50000 + 16.4545i −0.379091 + 0.656605i
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −12.5000 21.6506i −0.497617 0.861898i 0.502379 0.864647i \(-0.332458\pi\)
−0.999996 + 0.00274930i \(0.999125\pi\)
\(632\) −4.50000 7.79423i −0.179000 0.310038i
\(633\) 21.0000 0.834675
\(634\) 4.50000 + 7.79423i 0.178718 + 0.309548i
\(635\) −33.0000 −1.30957
\(636\) −9.00000 −0.356873
\(637\) 0 0
\(638\) −21.0000 −0.831398
\(639\) 78.0000 3.08563
\(640\) −4.50000 7.79423i −0.177878 0.308094i
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) −12.0000 20.7846i −0.473602 0.820303i
\(643\) −9.50000 16.4545i −0.374643 0.648901i 0.615630 0.788035i \(-0.288902\pi\)
−0.990274 + 0.139134i \(0.955568\pi\)
\(644\) 0 0
\(645\) 63.0000 2.48062
\(646\) −1.00000 + 1.73205i −0.0393445 + 0.0681466i
\(647\) 4.50000 + 7.79423i 0.176913 + 0.306423i 0.940822 0.338902i \(-0.110055\pi\)
−0.763908 + 0.645325i \(0.776722\pi\)
\(648\) 13.5000 + 23.3827i 0.530330 + 0.918559i
\(649\) 6.00000 + 10.3923i 0.235521 + 0.407934i
\(650\) −14.0000 3.46410i −0.549125 0.135873i
\(651\) 0 0
\(652\) −0.500000 + 0.866025i −0.0195815 + 0.0339162i
\(653\) 18.0000 0.704394 0.352197 0.935926i \(-0.385435\pi\)
0.352197 + 0.935926i \(0.385435\pi\)
\(654\) 21.0000 0.821165
\(655\) −7.50000 + 12.9904i −0.293049 + 0.507576i
\(656\) −1.50000 + 2.59808i −0.0585652 + 0.101438i
\(657\) −39.0000 67.5500i −1.52153 2.63538i
\(658\) 0 0
\(659\) −14.5000 25.1147i −0.564840 0.978331i −0.997065 0.0765653i \(-0.975605\pi\)
0.432225 0.901766i \(-0.357729\pi\)
\(660\) −27.0000 −1.05097
\(661\) −4.50000 7.79423i −0.175030 0.303160i 0.765142 0.643862i \(-0.222669\pi\)
−0.940172 + 0.340701i \(0.889335\pi\)
\(662\) 14.5000 25.1147i 0.563559 0.976112i
\(663\) 15.0000 15.5885i 0.582552 0.605406i
\(664\) 0 0
\(665\) 0 0
\(666\) −6.00000 + 10.3923i −0.232495 + 0.402694i
\(667\) 0 0
\(668\) 6.50000 11.2583i 0.251493 0.435598i
\(669\) 27.0000 1.04388
\(670\) −4.50000 + 7.79423i −0.173850 + 0.301117i
\(671\) −39.0000 −1.50558
\(672\) 0 0
\(673\) 20.5000 35.5070i 0.790217 1.36870i −0.135615 0.990762i \(-0.543301\pi\)
0.925832 0.377934i \(-0.123365\pi\)
\(674\) 14.0000 0.539260
\(675\) −18.0000 + 31.1769i −0.692820 + 1.20000i
\(676\) 11.0000 6.92820i 0.423077 0.266469i
\(677\) 3.50000 + 6.06218i 0.134516 + 0.232988i 0.925412 0.378962i \(-0.123719\pi\)
−0.790897 + 0.611950i \(0.790385\pi\)
\(678\) −22.5000 + 38.9711i −0.864107 + 1.49668i
\(679\) 0 0
\(680\) −9.00000 15.5885i −0.345134 0.597790i
\(681\) −6.00000 10.3923i −0.229920 0.398234i
\(682\) 9.00000 0.344628
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 3.00000 + 5.19615i 0.114708 + 0.198680i
\(685\) 15.0000 + 25.9808i 0.573121 + 0.992674i
\(686\) 0 0
\(687\) −19.5000 + 33.7750i −0.743971 + 1.28860i
\(688\) −3.50000 6.06218i −0.133436 0.231118i
\(689\) −10.5000 2.59808i −0.400018 0.0989788i
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) −9.50000 + 16.4545i −0.361136 + 0.625506i
\(693\) 0 0
\(694\) −8.00000 −0.303676
\(695\) 22.5000 38.9711i 0.853474 1.47826i
\(696\) −63.0000 −2.38801
\(697\) 3.00000 5.19615i 0.113633 0.196818i
\(698\) 11.5000 19.9186i 0.435281 0.753930i
\(699\) 31.5000 54.5596i 1.19144 2.06363i
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 9.00000 + 31.1769i 0.339683 + 1.17670i
\(703\) −1.00000 + 1.73205i −0.0377157 + 0.0653255i
\(704\) 10.5000 + 18.1865i 0.395734 + 0.685431i
\(705\) 9.00000 0.338960
\(706\) −12.5000 21.6506i −0.470444 0.814832i
\(707\) 0 0
\(708\) 6.00000 + 10.3923i 0.225494 + 0.390567i
\(709\) −5.50000 + 9.52628i −0.206557 + 0.357767i −0.950628 0.310334i \(-0.899559\pi\)
0.744071 + 0.668101i \(0.232892\pi\)
\(710\) 19.5000 33.7750i 0.731822 1.26755i
\(711\) −18.0000 −0.675053
\(712\) 18.0000 0.674579
\(713\) 0 0
\(714\) 0 0
\(715\) −31.5000 7.79423i −1.17803 0.291488i
\(716\) 8.50000 + 14.7224i 0.317660 + 0.550203i
\(717\) 6.00000 + 10.3923i 0.224074 + 0.388108i
\(718\) −8.50000 14.7224i −0.317217 0.549436i
\(719\) −4.50000 + 7.79423i −0.167822 + 0.290676i −0.937654 0.347571i \(-0.887007\pi\)
0.769832 + 0.638247i \(0.220340\pi\)
\(720\) 18.0000 0.670820
\(721\) 0 0
\(722\) 9.00000 + 15.5885i 0.334945 + 0.580142i
\(723\) −39.0000 67.5500i −1.45043 2.51221i
\(724\) −22.0000 −0.817624
\(725\) −14.0000 24.2487i −0.519947 0.900575i
\(726\) −6.00000 −0.222681
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) −39.0000 −1.44345
\(731\) 7.00000 + 12.1244i 0.258904 + 0.448435i
\(732\) −39.0000 −1.44148
\(733\) −4.50000 7.79423i −0.166211 0.287886i 0.770873 0.636988i \(-0.219820\pi\)
−0.937085 + 0.349102i \(0.886487\pi\)
\(734\) −15.5000 26.8468i −0.572115 0.990933i
\(735\) 0 0
\(736\) 0 0
\(737\) −4.50000 + 7.79423i −0.165760 + 0.287104i
\(738\) 9.00000 + 15.5885i 0.331295 + 0.573819i
\(739\) −0.500000 0.866025i −0.0183928 0.0318573i 0.856683 0.515844i \(-0.172522\pi\)
−0.875075 + 0.483987i \(0.839188\pi\)
\(740\) −3.00000 5.19615i −0.110282 0.191014i
\(741\) 3.00000 + 10.3923i 0.110208 + 0.381771i
\(742\) 0 0
\(743\) −25.5000 + 44.1673i −0.935504 + 1.62034i −0.161772 + 0.986828i \(0.551721\pi\)
−0.773732 + 0.633513i \(0.781612\pi\)
\(744\) 27.0000 0.989868
\(745\) −45.0000 −1.64867
\(746\) 4.50000 7.79423i 0.164757 0.285367i
\(747\) 0 0
\(748\) −3.00000 5.19615i −0.109691 0.189990i
\(749\) 0 0
\(750\) −4.50000 7.79423i −0.164317 0.284605i
\(751\) 28.0000 1.02173 0.510867 0.859660i \(-0.329324\pi\)
0.510867 + 0.859660i \(0.329324\pi\)
\(752\) −0.500000 0.866025i −0.0182331 0.0315807i
\(753\) −34.5000 + 59.7558i −1.25725 + 2.17762i
\(754\) −24.5000 6.06218i −0.892237 0.220771i
\(755\) 63.0000 2.29280
\(756\) 0 0
\(757\) −1.50000 + 2.59808i −0.0545184 + 0.0944287i −0.891997 0.452042i \(-0.850696\pi\)
0.837478 + 0.546471i \(0.184029\pi\)
\(758\) 16.5000 28.5788i 0.599307 1.03803i
\(759\) 0 0
\(760\) 9.00000 0.326464
\(761\) −4.50000 + 7.79423i −0.163125 + 0.282541i −0.935988 0.352032i \(-0.885491\pi\)
0.772863 + 0.634573i \(0.218824\pi\)
\(762\) 33.0000 1.19546
\(763\) 0 0
\(764\) −8.50000 + 14.7224i −0.307519 + 0.532639i
\(765\) −36.0000 −1.30158
\(766\) −10.5000 + 18.1865i −0.379380 + 0.657106i
\(767\) 4.00000 + 13.8564i 0.144432 + 0.500326i
\(768\) 25.5000 + 44.1673i 0.920152 + 1.59375i
\(769\) 9.50000 16.4545i 0.342579 0.593364i −0.642332 0.766426i \(-0.722033\pi\)
0.984911 + 0.173063i \(0.0553663\pi\)
\(770\) 0 0
\(771\) −3.00000 5.19615i −0.108042 0.187135i
\(772\) 3.50000 + 6.06218i 0.125968 + 0.218183i
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) −42.0000 −1.50966
\(775\) 6.00000 + 10.3923i 0.215526 + 0.373303i