Properties

Label 637.2.h
Level $637$
Weight $2$
Character orbit 637.h
Rep. character $\chi_{637}(165,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $86$
Newform subspaces $13$
Sturm bound $130$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 13 \)
Sturm bound: \(130\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(637, [\chi])\).

Total New Old
Modular forms 146 102 44
Cusp forms 114 86 28
Eisenstein series 32 16 16

Trace form

\( 86q + 2q^{2} - 4q^{3} + 82q^{4} + 2q^{5} + 6q^{6} - 12q^{8} - 33q^{9} + O(q^{10}) \) \( 86q + 2q^{2} - 4q^{3} + 82q^{4} + 2q^{5} + 6q^{6} - 12q^{8} - 33q^{9} - q^{10} - 11q^{11} - 2q^{12} + 4q^{13} - 19q^{15} + 82q^{16} + 14q^{17} - 5q^{18} - 2q^{20} - 4q^{22} - 6q^{23} + 20q^{24} - 31q^{25} + 18q^{26} + 26q^{27} - 2q^{29} + 36q^{30} - 13q^{31} - 42q^{32} - 7q^{33} - 28q^{34} - 3q^{36} - 2q^{37} + 16q^{38} - 19q^{39} - 4q^{40} + 11q^{41} - 14q^{43} - 58q^{44} - 50q^{45} - 24q^{46} + 2q^{47} - 18q^{48} - 24q^{50} + 16q^{51} - 43q^{52} - 17q^{53} - 18q^{54} - 18q^{55} - 68q^{57} - q^{58} + 34q^{59} + 33q^{60} - 8q^{61} - 2q^{62} - 16q^{64} + 58q^{65} - 9q^{66} + 44q^{67} + 54q^{68} - 23q^{69} + q^{71} - 47q^{72} + 17q^{73} - 46q^{74} + 18q^{75} + 10q^{76} + 5q^{78} + 22q^{79} + 4q^{80} + 41q^{81} + 2q^{82} + 54q^{83} + 39q^{85} + 8q^{86} + 74q^{87} + 9q^{88} - 4q^{89} - 20q^{90} - 114q^{92} - 32q^{93} - 44q^{94} + 58q^{95} - 34q^{96} + 30q^{97} + 36q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(637, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
637.2.h.a \(2\) \(5.086\) \(\Q(\sqrt{-3}) \) None \(2\) \(-3\) \(3\) \(0\) \(q+q^{2}-3\zeta_{6}q^{3}-q^{4}+3\zeta_{6}q^{5}-3\zeta_{6}q^{6}+\cdots\)
637.2.h.b \(4\) \(5.086\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(-4\) \(0\) \(-2\) \(0\) \(q+(-1+\beta _{3})q^{2}+(-\beta _{1}-\beta _{3})q^{3}+(1+\cdots)q^{4}+\cdots\)
637.2.h.c \(4\) \(5.086\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(-4\) \(0\) \(2\) \(0\) \(q+(-1+\beta _{3})q^{2}+(\beta _{1}+\beta _{3})q^{3}+(1-2\beta _{3})q^{4}+\cdots\)
637.2.h.d \(4\) \(5.086\) \(\Q(\zeta_{12})\) None \(0\) \(-2\) \(0\) \(0\) \(q-\zeta_{12}^{3}q^{2}+(-1+\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{3}+\cdots\)
637.2.h.e \(4\) \(5.086\) \(\Q(\zeta_{12})\) None \(0\) \(2\) \(0\) \(0\) \(q-\zeta_{12}^{3}q^{2}+(1-\zeta_{12}+\zeta_{12}^{2}-\zeta_{12}^{3})q^{3}+\cdots\)
637.2.h.f \(4\) \(5.086\) \(\Q(\sqrt{-3}, \sqrt{5})\) None \(6\) \(-3\) \(3\) \(0\) \(q+(1-\beta _{2})q^{2}+(\beta _{1}+\beta _{2}+\beta _{3})q^{3}-3\beta _{2}q^{4}+\cdots\)
637.2.h.g \(4\) \(5.086\) \(\Q(\sqrt{-3}, \sqrt{5})\) None \(6\) \(3\) \(-3\) \(0\) \(q+(1-\beta _{2})q^{2}+(-\beta _{1}-\beta _{2}-\beta _{3})q^{3}+\cdots\)
637.2.h.h \(8\) \(5.086\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-2\) \(-1\) \(7\) \(0\) \(q+\beta _{3}q^{2}-\beta _{5}q^{3}+(1-\beta _{2}-\beta _{3})q^{4}+\cdots\)
637.2.h.i \(8\) \(5.086\) \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(-2\) \(1\) \(-7\) \(0\) \(q+\beta _{3}q^{2}+\beta _{5}q^{3}+(1-\beta _{2}-\beta _{3})q^{4}+\cdots\)
637.2.h.j \(8\) \(5.086\) 8.0.\(\cdots\).6 None \(4\) \(0\) \(0\) \(0\) \(q+(1-\beta _{5}+\beta _{6})q^{2}+(-\beta _{3}+\beta _{7})q^{3}+\cdots\)
637.2.h.k \(8\) \(5.086\) 8.0.\(\cdots\).7 None \(8\) \(0\) \(0\) \(0\) \(q+q^{2}+\beta _{5}q^{3}-q^{4}+\beta _{1}q^{5}+\beta _{5}q^{6}+\cdots\)
637.2.h.l \(12\) \(5.086\) \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(-4\) \(-1\) \(-1\) \(0\) \(q+(\beta _{3}+\beta _{5}-\beta _{11})q^{2}-\beta _{11}q^{3}+(1+\cdots)q^{4}+\cdots\)
637.2.h.m \(16\) \(5.086\) \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None \(-8\) \(0\) \(0\) \(0\) \(q+(-1-\beta _{4})q^{2}+(-\beta _{1}+\beta _{5})q^{3}+(1+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(637, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(637, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)