Properties

Label 637.2.h
Level $637$
Weight $2$
Character orbit 637.h
Rep. character $\chi_{637}(165,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $86$
Newform subspaces $13$
Sturm bound $130$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 13 \)
Sturm bound: \(130\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(637, [\chi])\).

Total New Old
Modular forms 146 102 44
Cusp forms 114 86 28
Eisenstein series 32 16 16

Trace form

\( 86 q + 2 q^{2} - 4 q^{3} + 82 q^{4} + 2 q^{5} + 6 q^{6} - 12 q^{8} - 33 q^{9} - q^{10} - 11 q^{11} - 2 q^{12} + 4 q^{13} - 19 q^{15} + 82 q^{16} + 14 q^{17} - 5 q^{18} - 2 q^{20} - 4 q^{22} - 6 q^{23}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(637, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
637.2.h.a 637.h 91.h $2$ $5.086$ \(\Q(\sqrt{-3}) \) None 91.2.g.a \(2\) \(-3\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}-3\zeta_{6}q^{3}-q^{4}+3\zeta_{6}q^{5}-3\zeta_{6}q^{6}+\cdots\)
637.2.h.b 637.h 91.h $4$ $5.086$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 637.2.f.e \(-4\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{3})q^{2}+(-\beta _{1}-\beta _{3})q^{3}+(1+\cdots)q^{4}+\cdots\)
637.2.h.c 637.h 91.h $4$ $5.086$ \(\Q(\sqrt{2}, \sqrt{-3})\) None 637.2.f.e \(-4\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{3})q^{2}+(\beta _{1}+\beta _{3})q^{3}+(1-2\beta _{3})q^{4}+\cdots\)
637.2.h.d 637.h 91.h $4$ $5.086$ \(\Q(\zeta_{12})\) None 91.2.f.b \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_{3} q^{2}+(\beta_{3}-\beta_{2}+\beta_1-1)q^{3}+\cdots\)
637.2.h.e 637.h 91.h $4$ $5.086$ \(\Q(\zeta_{12})\) None 91.2.f.b \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta_{3} q^{2}+(-\beta_{3}+\beta_{2}-\beta_1+1)q^{3}+\cdots\)
637.2.h.f 637.h 91.h $4$ $5.086$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 91.2.f.a \(6\) \(-3\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{2})q^{2}+(\beta _{1}+\beta _{2}+\beta _{3})q^{3}-3\beta _{2}q^{4}+\cdots\)
637.2.h.g 637.h 91.h $4$ $5.086$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 91.2.f.a \(6\) \(3\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{2})q^{2}+(-\beta _{1}-\beta _{2}-\beta _{3})q^{3}+\cdots\)
637.2.h.h 637.h 91.h $8$ $5.086$ 8.0.\(\cdots\).1 None 91.2.f.c \(-2\) \(-1\) \(7\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{2}-\beta _{5}q^{3}+(1-\beta _{2}-\beta _{3})q^{4}+\cdots\)
637.2.h.i 637.h 91.h $8$ $5.086$ 8.0.\(\cdots\).1 None 91.2.f.c \(-2\) \(1\) \(-7\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{2}+\beta _{5}q^{3}+(1-\beta _{2}-\beta _{3})q^{4}+\cdots\)
637.2.h.j 637.h 91.h $8$ $5.086$ 8.0.\(\cdots\).6 None 637.2.f.h \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{5}+\beta _{6})q^{2}+(-\beta _{3}+\beta _{7})q^{3}+\cdots\)
637.2.h.k 637.h 91.h $8$ $5.086$ 8.0.\(\cdots\).7 None 637.2.f.g \(8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+\beta _{5}q^{3}-q^{4}+\beta _{1}q^{5}+\beta _{5}q^{6}+\cdots\)
637.2.h.l 637.h 91.h $12$ $5.086$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 91.2.g.b \(-4\) \(-1\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{3}+\beta _{5}-\beta _{11})q^{2}-\beta _{11}q^{3}+(1+\cdots)q^{4}+\cdots\)
637.2.h.m 637.h 91.h $16$ $5.086$ 16.0.\(\cdots\).2 None 637.2.f.l \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{4})q^{2}+(-\beta _{1}+\beta _{5})q^{3}+(1+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(637, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(637, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)