Properties

Label 637.2.g.l.263.6
Level $637$
Weight $2$
Character 637.263
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(263,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.263"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,2,-4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 263.6
Root \(-0.181721 - 0.314749i\) of defining polynomial
Character \(\chi\) \(=\) 637.263
Dual form 637.2.g.l.373.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19402 - 2.06810i) q^{2} +2.75148 q^{3} +(-1.85136 - 3.20665i) q^{4} +(0.491140 + 0.850679i) q^{5} +(3.28532 - 5.69033i) q^{6} -4.06616 q^{8} +4.57063 q^{9} +2.34572 q^{10} -0.587802 q^{11} +(-5.09398 - 8.82303i) q^{12} +(-2.39227 + 2.69760i) q^{13} +(1.35136 + 2.34063i) q^{15} +(-1.15235 + 1.99593i) q^{16} +(-3.22710 - 5.58950i) q^{17} +(5.45742 - 9.45253i) q^{18} +3.82689 q^{19} +(1.81855 - 3.14983i) q^{20} +(-0.701847 + 1.21563i) q^{22} +(-4.13001 + 7.15338i) q^{23} -11.1880 q^{24} +(2.01756 - 3.49452i) q^{25} +(2.72249 + 8.16844i) q^{26} +4.32156 q^{27} +(1.98009 + 3.42962i) q^{29} +6.45420 q^{30} +(-1.49436 + 2.58831i) q^{31} +(-1.31430 - 2.27644i) q^{32} -1.61733 q^{33} -15.4129 q^{34} +(-8.46189 - 14.6564i) q^{36} +(-0.877941 + 1.52064i) q^{37} +(4.56938 - 7.91440i) q^{38} +(-6.58228 + 7.42239i) q^{39} +(-1.99705 - 3.45900i) q^{40} +(1.83584 + 3.17977i) q^{41} +(-3.19042 + 5.52598i) q^{43} +(1.08823 + 1.88488i) q^{44} +(2.24482 + 3.88814i) q^{45} +(9.86261 + 17.0825i) q^{46} +(-2.17030 - 3.75906i) q^{47} +(-3.17067 + 5.49176i) q^{48} +(-4.81802 - 8.34505i) q^{50} +(-8.87930 - 15.3794i) q^{51} +(13.0792 + 2.67695i) q^{52} +(-0.212770 + 0.368529i) q^{53} +(5.16002 - 8.93742i) q^{54} +(-0.288693 - 0.500031i) q^{55} +10.5296 q^{57} +9.45706 q^{58} +(3.00431 + 5.20362i) q^{59} +(5.00371 - 8.66669i) q^{60} -2.20674 q^{61} +(3.56859 + 6.18097i) q^{62} -10.8866 q^{64} +(-3.46973 - 0.710156i) q^{65} +(-1.93112 + 3.34479i) q^{66} +7.01303 q^{67} +(-11.9491 + 20.6964i) q^{68} +(-11.3636 + 19.6824i) q^{69} +(-1.80127 + 3.11988i) q^{71} -18.5849 q^{72} +(2.46714 - 4.27321i) q^{73} +(2.09656 + 3.63134i) q^{74} +(5.55128 - 9.61510i) q^{75} +(-7.08496 - 12.2715i) q^{76} +(7.49088 + 22.4753i) q^{78} +(-1.39270 - 2.41223i) q^{79} -2.26386 q^{80} -1.82122 q^{81} +8.76812 q^{82} +2.86819 q^{83} +(3.16992 - 5.49045i) q^{85} +(7.61885 + 13.1962i) q^{86} +(5.44818 + 9.43652i) q^{87} +2.39010 q^{88} +(-1.04656 + 1.81269i) q^{89} +10.7214 q^{90} +30.5845 q^{92} +(-4.11170 + 7.12167i) q^{93} -10.3655 q^{94} +(1.87954 + 3.25546i) q^{95} +(-3.61628 - 6.26357i) q^{96} +(3.84852 - 6.66584i) q^{97} -2.68663 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{3} - 4 q^{4} - q^{5} + 9 q^{6} - 6 q^{8} - 6 q^{9} + 8 q^{10} - 8 q^{11} - 5 q^{12} + 2 q^{13} - 2 q^{15} + 8 q^{16} - 5 q^{17} + 3 q^{18} - 2 q^{19} + q^{20} - 5 q^{22} - q^{23}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.19402 2.06810i 0.844299 1.46237i −0.0419302 0.999121i \(-0.513351\pi\)
0.886229 0.463248i \(-0.153316\pi\)
\(3\) 2.75148 1.58857 0.794283 0.607548i \(-0.207847\pi\)
0.794283 + 0.607548i \(0.207847\pi\)
\(4\) −1.85136 3.20665i −0.925680 1.60333i
\(5\) 0.491140 + 0.850679i 0.219644 + 0.380435i 0.954699 0.297572i \(-0.0961769\pi\)
−0.735055 + 0.678008i \(0.762844\pi\)
\(6\) 3.28532 5.69033i 1.34122 2.32307i
\(7\) 0 0
\(8\) −4.06616 −1.43761
\(9\) 4.57063 1.52354
\(10\) 2.34572 0.741782
\(11\) −0.587802 −0.177229 −0.0886146 0.996066i \(-0.528244\pi\)
−0.0886146 + 0.996066i \(0.528244\pi\)
\(12\) −5.09398 8.82303i −1.47051 2.54699i
\(13\) −2.39227 + 2.69760i −0.663496 + 0.748179i
\(14\) 0 0
\(15\) 1.35136 + 2.34063i 0.348920 + 0.604347i
\(16\) −1.15235 + 1.99593i −0.288088 + 0.498983i
\(17\) −3.22710 5.58950i −0.782687 1.35565i −0.930371 0.366619i \(-0.880515\pi\)
0.147685 0.989035i \(-0.452818\pi\)
\(18\) 5.45742 9.45253i 1.28633 2.22798i
\(19\) 3.82689 0.877950 0.438975 0.898499i \(-0.355342\pi\)
0.438975 + 0.898499i \(0.355342\pi\)
\(20\) 1.81855 3.14983i 0.406641 0.704323i
\(21\) 0 0
\(22\) −0.701847 + 1.21563i −0.149634 + 0.259174i
\(23\) −4.13001 + 7.15338i −0.861166 + 1.49158i 0.00963902 + 0.999954i \(0.496932\pi\)
−0.870805 + 0.491629i \(0.836402\pi\)
\(24\) −11.1880 −2.28373
\(25\) 2.01756 3.49452i 0.403513 0.698904i
\(26\) 2.72249 + 8.16844i 0.533925 + 1.60196i
\(27\) 4.32156 0.831685
\(28\) 0 0
\(29\) 1.98009 + 3.42962i 0.367694 + 0.636864i 0.989205 0.146541i \(-0.0468141\pi\)
−0.621511 + 0.783406i \(0.713481\pi\)
\(30\) 6.45420 1.17837
\(31\) −1.49436 + 2.58831i −0.268395 + 0.464874i −0.968448 0.249218i \(-0.919827\pi\)
0.700053 + 0.714091i \(0.253160\pi\)
\(32\) −1.31430 2.27644i −0.232338 0.402421i
\(33\) −1.61733 −0.281540
\(34\) −15.4129 −2.64329
\(35\) 0 0
\(36\) −8.46189 14.6564i −1.41031 2.44274i
\(37\) −0.877941 + 1.52064i −0.144333 + 0.249991i −0.929124 0.369769i \(-0.879437\pi\)
0.784791 + 0.619760i \(0.212770\pi\)
\(38\) 4.56938 7.91440i 0.741252 1.28389i
\(39\) −6.58228 + 7.42239i −1.05401 + 1.18853i
\(40\) −1.99705 3.45900i −0.315762 0.546916i
\(41\) 1.83584 + 3.17977i 0.286710 + 0.496597i 0.973023 0.230710i \(-0.0741049\pi\)
−0.686312 + 0.727307i \(0.740772\pi\)
\(42\) 0 0
\(43\) −3.19042 + 5.52598i −0.486535 + 0.842703i −0.999880 0.0154788i \(-0.995073\pi\)
0.513345 + 0.858182i \(0.328406\pi\)
\(44\) 1.08823 + 1.88488i 0.164058 + 0.284156i
\(45\) 2.24482 + 3.88814i 0.334638 + 0.579610i
\(46\) 9.86261 + 17.0825i 1.45416 + 2.51868i
\(47\) −2.17030 3.75906i −0.316570 0.548316i 0.663200 0.748442i \(-0.269198\pi\)
−0.979770 + 0.200127i \(0.935865\pi\)
\(48\) −3.17067 + 5.49176i −0.457647 + 0.792668i
\(49\) 0 0
\(50\) −4.81802 8.34505i −0.681370 1.18017i
\(51\) −8.87930 15.3794i −1.24335 2.15355i
\(52\) 13.0792 + 2.67695i 1.81376 + 0.371226i
\(53\) −0.212770 + 0.368529i −0.0292263 + 0.0506214i −0.880269 0.474476i \(-0.842638\pi\)
0.851042 + 0.525097i \(0.175971\pi\)
\(54\) 5.16002 8.93742i 0.702190 1.21623i
\(55\) −0.288693 0.500031i −0.0389274 0.0674242i
\(56\) 0 0
\(57\) 10.5296 1.39468
\(58\) 9.45706 1.24177
\(59\) 3.00431 + 5.20362i 0.391128 + 0.677454i 0.992599 0.121441i \(-0.0387516\pi\)
−0.601470 + 0.798895i \(0.705418\pi\)
\(60\) 5.00371 8.66669i 0.645977 1.11886i
\(61\) −2.20674 −0.282544 −0.141272 0.989971i \(-0.545119\pi\)
−0.141272 + 0.989971i \(0.545119\pi\)
\(62\) 3.56859 + 6.18097i 0.453211 + 0.784985i
\(63\) 0 0
\(64\) −10.8866 −1.36083
\(65\) −3.46973 0.710156i −0.430367 0.0880841i
\(66\) −1.93112 + 3.34479i −0.237704 + 0.411716i
\(67\) 7.01303 0.856778 0.428389 0.903594i \(-0.359081\pi\)
0.428389 + 0.903594i \(0.359081\pi\)
\(68\) −11.9491 + 20.6964i −1.44904 + 2.50980i
\(69\) −11.3636 + 19.6824i −1.36802 + 2.36948i
\(70\) 0 0
\(71\) −1.80127 + 3.11988i −0.213771 + 0.370262i −0.952892 0.303311i \(-0.901908\pi\)
0.739121 + 0.673573i \(0.235241\pi\)
\(72\) −18.5849 −2.19026
\(73\) 2.46714 4.27321i 0.288756 0.500141i −0.684757 0.728772i \(-0.740092\pi\)
0.973513 + 0.228631i \(0.0734249\pi\)
\(74\) 2.09656 + 3.63134i 0.243720 + 0.422135i
\(75\) 5.55128 9.61510i 0.641007 1.11026i
\(76\) −7.08496 12.2715i −0.812701 1.40764i
\(77\) 0 0
\(78\) 7.49088 + 22.4753i 0.848175 + 2.54483i
\(79\) −1.39270 2.41223i −0.156691 0.271397i 0.776982 0.629522i \(-0.216749\pi\)
−0.933674 + 0.358125i \(0.883416\pi\)
\(80\) −2.26386 −0.253108
\(81\) −1.82122 −0.202357
\(82\) 8.76812 0.968277
\(83\) 2.86819 0.314825 0.157412 0.987533i \(-0.449685\pi\)
0.157412 + 0.987533i \(0.449685\pi\)
\(84\) 0 0
\(85\) 3.16992 5.49045i 0.343826 0.595523i
\(86\) 7.61885 + 13.1962i 0.821562 + 1.42299i
\(87\) 5.44818 + 9.43652i 0.584106 + 1.01170i
\(88\) 2.39010 0.254786
\(89\) −1.04656 + 1.81269i −0.110935 + 0.192145i −0.916147 0.400842i \(-0.868718\pi\)
0.805213 + 0.592986i \(0.202051\pi\)
\(90\) 10.7214 1.13014
\(91\) 0 0
\(92\) 30.5845 3.18866
\(93\) −4.11170 + 7.12167i −0.426363 + 0.738483i
\(94\) −10.3655 −1.06912
\(95\) 1.87954 + 3.25546i 0.192837 + 0.334003i
\(96\) −3.61628 6.26357i −0.369085 0.639273i
\(97\) 3.84852 6.66584i 0.390758 0.676813i −0.601791 0.798653i \(-0.705546\pi\)
0.992550 + 0.121840i \(0.0388795\pi\)
\(98\) 0 0
\(99\) −2.68663 −0.270016
\(100\) −14.9409 −1.49409
\(101\) 2.63732 0.262423 0.131212 0.991354i \(-0.458113\pi\)
0.131212 + 0.991354i \(0.458113\pi\)
\(102\) −42.4082 −4.19903
\(103\) −5.43095 9.40669i −0.535128 0.926868i −0.999157 0.0410486i \(-0.986930\pi\)
0.464029 0.885820i \(-0.346403\pi\)
\(104\) 9.72736 10.9689i 0.953846 1.07559i
\(105\) 0 0
\(106\) 0.508103 + 0.880061i 0.0493514 + 0.0854791i
\(107\) 7.99024 13.8395i 0.772446 1.33792i −0.163773 0.986498i \(-0.552366\pi\)
0.936219 0.351418i \(-0.114300\pi\)
\(108\) −8.00077 13.8577i −0.769874 1.33346i
\(109\) −4.61738 + 7.99754i −0.442265 + 0.766026i −0.997857 0.0654294i \(-0.979158\pi\)
0.555592 + 0.831455i \(0.312492\pi\)
\(110\) −1.37882 −0.131465
\(111\) −2.41564 + 4.18400i −0.229282 + 0.397128i
\(112\) 0 0
\(113\) −5.09012 + 8.81635i −0.478838 + 0.829372i −0.999706 0.0242655i \(-0.992275\pi\)
0.520867 + 0.853638i \(0.325609\pi\)
\(114\) 12.5726 21.7763i 1.17753 2.03954i
\(115\) −8.11364 −0.756601
\(116\) 7.33173 12.6989i 0.680734 1.17907i
\(117\) −10.9342 + 12.3297i −1.01087 + 1.13988i
\(118\) 14.3488 1.32092
\(119\) 0 0
\(120\) −5.49485 9.51736i −0.501609 0.868813i
\(121\) −10.6545 −0.968590
\(122\) −2.63489 + 4.56376i −0.238552 + 0.413184i
\(123\) 5.05128 + 8.74908i 0.455459 + 0.788878i
\(124\) 11.0664 0.993792
\(125\) 8.87502 0.793806
\(126\) 0 0
\(127\) −2.12513 3.68083i −0.188575 0.326621i 0.756201 0.654340i \(-0.227053\pi\)
−0.944775 + 0.327719i \(0.893720\pi\)
\(128\) −10.3702 + 17.9617i −0.916606 + 1.58761i
\(129\) −8.77838 + 15.2046i −0.772893 + 1.33869i
\(130\) −5.61160 + 6.32781i −0.492170 + 0.554986i
\(131\) −1.08478 1.87890i −0.0947779 0.164160i 0.814738 0.579829i \(-0.196881\pi\)
−0.909516 + 0.415669i \(0.863547\pi\)
\(132\) 2.99425 + 5.18620i 0.260616 + 0.451401i
\(133\) 0 0
\(134\) 8.37369 14.5037i 0.723376 1.25292i
\(135\) 2.12249 + 3.67626i 0.182675 + 0.316402i
\(136\) 13.1219 + 22.7278i 1.12519 + 1.94889i
\(137\) −4.18158 7.24271i −0.357257 0.618787i 0.630245 0.776396i \(-0.282955\pi\)
−0.987501 + 0.157610i \(0.949621\pi\)
\(138\) 27.1367 + 47.0022i 2.31003 + 4.00110i
\(139\) −0.288457 + 0.499622i −0.0244666 + 0.0423774i −0.877999 0.478662i \(-0.841122\pi\)
0.853533 + 0.521039i \(0.174455\pi\)
\(140\) 0 0
\(141\) −5.97152 10.3430i −0.502893 0.871036i
\(142\) 4.30149 + 7.45040i 0.360973 + 0.625224i
\(143\) 1.40618 1.58566i 0.117591 0.132599i
\(144\) −5.26698 + 9.12267i −0.438915 + 0.760223i
\(145\) −1.94500 + 3.36885i −0.161524 + 0.279767i
\(146\) −5.89161 10.2046i −0.487593 0.844537i
\(147\) 0 0
\(148\) 6.50154 0.534423
\(149\) 2.80662 0.229928 0.114964 0.993370i \(-0.463325\pi\)
0.114964 + 0.993370i \(0.463325\pi\)
\(150\) −13.2567 22.9612i −1.08240 1.87478i
\(151\) 11.5054 19.9280i 0.936300 1.62172i 0.164000 0.986460i \(-0.447560\pi\)
0.772300 0.635258i \(-0.219106\pi\)
\(152\) −15.5608 −1.26215
\(153\) −14.7499 25.5476i −1.19246 2.06540i
\(154\) 0 0
\(155\) −2.93576 −0.235806
\(156\) 35.9872 + 7.36556i 2.88128 + 0.589717i
\(157\) 11.2880 19.5513i 0.900879 1.56037i 0.0745227 0.997219i \(-0.476257\pi\)
0.826356 0.563148i \(-0.190410\pi\)
\(158\) −6.65165 −0.529177
\(159\) −0.585433 + 1.01400i −0.0464278 + 0.0804154i
\(160\) 1.29101 2.23610i 0.102064 0.176779i
\(161\) 0 0
\(162\) −2.17457 + 3.76646i −0.170850 + 0.295921i
\(163\) 8.17714 0.640483 0.320242 0.947336i \(-0.396236\pi\)
0.320242 + 0.947336i \(0.396236\pi\)
\(164\) 6.79761 11.7738i 0.530804 0.919380i
\(165\) −0.794333 1.37583i −0.0618388 0.107108i
\(166\) 3.42467 5.93170i 0.265806 0.460389i
\(167\) −1.16386 2.01586i −0.0900619 0.155992i 0.817475 0.575964i \(-0.195373\pi\)
−0.907537 + 0.419972i \(0.862040\pi\)
\(168\) 0 0
\(169\) −1.55408 12.9068i −0.119545 0.992829i
\(170\) −7.56988 13.1114i −0.580583 1.00560i
\(171\) 17.4913 1.33760
\(172\) 23.6265 1.80150
\(173\) 8.13372 0.618396 0.309198 0.950998i \(-0.399939\pi\)
0.309198 + 0.950998i \(0.399939\pi\)
\(174\) 26.0209 1.97264
\(175\) 0 0
\(176\) 0.677355 1.17321i 0.0510576 0.0884343i
\(177\) 8.26630 + 14.3177i 0.621333 + 1.07618i
\(178\) 2.49922 + 4.32877i 0.187324 + 0.324455i
\(179\) −20.9925 −1.56906 −0.784528 0.620093i \(-0.787095\pi\)
−0.784528 + 0.620093i \(0.787095\pi\)
\(180\) 8.31194 14.3967i 0.619536 1.07307i
\(181\) 1.60807 0.119527 0.0597635 0.998213i \(-0.480965\pi\)
0.0597635 + 0.998213i \(0.480965\pi\)
\(182\) 0 0
\(183\) −6.07180 −0.448841
\(184\) 16.7933 29.0868i 1.23802 2.14431i
\(185\) −1.72477 −0.126807
\(186\) 9.81889 + 17.0068i 0.719956 + 1.24700i
\(187\) 1.89690 + 3.28552i 0.138715 + 0.240261i
\(188\) −8.03601 + 13.9188i −0.586086 + 1.01513i
\(189\) 0 0
\(190\) 8.97683 0.651247
\(191\) −11.5622 −0.836614 −0.418307 0.908306i \(-0.637376\pi\)
−0.418307 + 0.908306i \(0.637376\pi\)
\(192\) −29.9543 −2.16176
\(193\) 23.5788 1.69724 0.848621 0.529001i \(-0.177433\pi\)
0.848621 + 0.529001i \(0.177433\pi\)
\(194\) −9.19041 15.9183i −0.659833 1.14286i
\(195\) −9.54689 1.95398i −0.683667 0.139927i
\(196\) 0 0
\(197\) 0.735472 + 1.27387i 0.0524002 + 0.0907598i 0.891036 0.453933i \(-0.149980\pi\)
−0.838636 + 0.544693i \(0.816646\pi\)
\(198\) −3.20788 + 5.55622i −0.227974 + 0.394863i
\(199\) 4.69700 + 8.13543i 0.332961 + 0.576706i 0.983091 0.183117i \(-0.0586189\pi\)
−0.650130 + 0.759823i \(0.725286\pi\)
\(200\) −8.20374 + 14.2093i −0.580092 + 1.00475i
\(201\) 19.2962 1.36105
\(202\) 3.14901 5.45425i 0.221564 0.383760i
\(203\) 0 0
\(204\) −32.8776 + 56.9456i −2.30189 + 3.98699i
\(205\) −1.80331 + 3.12343i −0.125949 + 0.218150i
\(206\) −25.9386 −1.80723
\(207\) −18.8767 + 32.6955i −1.31202 + 2.27249i
\(208\) −2.62749 7.88340i −0.182183 0.546615i
\(209\) −2.24946 −0.155598
\(210\) 0 0
\(211\) 4.47109 + 7.74416i 0.307803 + 0.533130i 0.977881 0.209160i \(-0.0670730\pi\)
−0.670079 + 0.742290i \(0.733740\pi\)
\(212\) 1.57566 0.108217
\(213\) −4.95615 + 8.58430i −0.339589 + 0.588186i
\(214\) −19.0810 33.0493i −1.30435 2.25920i
\(215\) −6.26778 −0.427459
\(216\) −17.5722 −1.19563
\(217\) 0 0
\(218\) 11.0265 + 19.0984i 0.746808 + 1.29351i
\(219\) 6.78827 11.7576i 0.458709 0.794507i
\(220\) −1.06895 + 1.85148i −0.0720686 + 0.124827i
\(221\) 22.7983 + 4.66618i 1.53358 + 0.313881i
\(222\) 5.76863 + 9.99156i 0.387165 + 0.670589i
\(223\) 10.9098 + 18.8963i 0.730574 + 1.26539i 0.956638 + 0.291279i \(0.0940809\pi\)
−0.226064 + 0.974112i \(0.572586\pi\)
\(224\) 0 0
\(225\) 9.22154 15.9722i 0.614769 1.06481i
\(226\) 12.1554 + 21.0538i 0.808565 + 1.40048i
\(227\) −9.27627 16.0670i −0.615687 1.06640i −0.990263 0.139206i \(-0.955545\pi\)
0.374576 0.927196i \(-0.377788\pi\)
\(228\) −19.4941 33.7648i −1.29103 2.23613i
\(229\) 9.67525 + 16.7580i 0.639359 + 1.10740i 0.985574 + 0.169247i \(0.0541334\pi\)
−0.346215 + 0.938155i \(0.612533\pi\)
\(230\) −9.68784 + 16.7798i −0.638797 + 1.10643i
\(231\) 0 0
\(232\) −8.05137 13.9454i −0.528599 0.915560i
\(233\) −8.08170 13.9979i −0.529450 0.917034i −0.999410 0.0343462i \(-0.989065\pi\)
0.469960 0.882688i \(-0.344268\pi\)
\(234\) 12.4435 + 37.3349i 0.813458 + 2.44066i
\(235\) 2.13184 3.69245i 0.139066 0.240869i
\(236\) 11.1241 19.2676i 0.724119 1.25421i
\(237\) −3.83199 6.63720i −0.248915 0.431133i
\(238\) 0 0
\(239\) 16.1037 1.04166 0.520831 0.853660i \(-0.325622\pi\)
0.520831 + 0.853660i \(0.325622\pi\)
\(240\) −6.22897 −0.402079
\(241\) −2.00300 3.46930i −0.129025 0.223477i 0.794274 0.607559i \(-0.207851\pi\)
−0.923299 + 0.384082i \(0.874518\pi\)
\(242\) −12.7217 + 22.0346i −0.817779 + 1.41643i
\(243\) −17.9757 −1.15314
\(244\) 4.08548 + 7.07625i 0.261546 + 0.453011i
\(245\) 0 0
\(246\) 24.1253 1.53817
\(247\) −9.15497 + 10.3234i −0.582517 + 0.656864i
\(248\) 6.07631 10.5245i 0.385846 0.668305i
\(249\) 7.89176 0.500120
\(250\) 10.5969 18.3544i 0.670209 1.16084i
\(251\) 1.62344 2.81188i 0.102471 0.177484i −0.810231 0.586110i \(-0.800659\pi\)
0.912702 + 0.408626i \(0.133992\pi\)
\(252\) 0 0
\(253\) 2.42763 4.20477i 0.152624 0.264352i
\(254\) −10.1498 −0.636853
\(255\) 8.72195 15.1069i 0.546190 0.946029i
\(256\) 13.8778 + 24.0371i 0.867365 + 1.50232i
\(257\) −13.4462 + 23.2895i −0.838751 + 1.45276i 0.0521891 + 0.998637i \(0.483380\pi\)
−0.890940 + 0.454122i \(0.849953\pi\)
\(258\) 20.9631 + 36.3092i 1.30511 + 2.26051i
\(259\) 0 0
\(260\) 4.14650 + 12.4410i 0.257155 + 0.771556i
\(261\) 9.05027 + 15.6755i 0.560198 + 0.970291i
\(262\) −5.18100 −0.320084
\(263\) −3.80706 −0.234753 −0.117377 0.993087i \(-0.537448\pi\)
−0.117377 + 0.993087i \(0.537448\pi\)
\(264\) 6.57631 0.404744
\(265\) −0.418000 −0.0256775
\(266\) 0 0
\(267\) −2.87958 + 4.98757i −0.176227 + 0.305235i
\(268\) −12.9836 22.4883i −0.793102 1.37369i
\(269\) −11.9190 20.6444i −0.726716 1.25871i −0.958264 0.285886i \(-0.907712\pi\)
0.231548 0.972824i \(-0.425621\pi\)
\(270\) 10.1372 0.616929
\(271\) 4.95068 8.57482i 0.300732 0.520883i −0.675570 0.737296i \(-0.736102\pi\)
0.976302 + 0.216413i \(0.0694357\pi\)
\(272\) 14.8750 0.901931
\(273\) 0 0
\(274\) −19.9715 −1.20653
\(275\) −1.18593 + 2.05409i −0.0715142 + 0.123866i
\(276\) 84.1526 5.06539
\(277\) −5.89289 10.2068i −0.354069 0.613266i 0.632889 0.774243i \(-0.281869\pi\)
−0.986958 + 0.160977i \(0.948536\pi\)
\(278\) 0.688846 + 1.19312i 0.0413142 + 0.0715584i
\(279\) −6.83017 + 11.8302i −0.408912 + 0.708256i
\(280\) 0 0
\(281\) 12.9976 0.775372 0.387686 0.921791i \(-0.373274\pi\)
0.387686 + 0.921791i \(0.373274\pi\)
\(282\) −28.5204 −1.69837
\(283\) 16.8050 0.998952 0.499476 0.866328i \(-0.333526\pi\)
0.499476 + 0.866328i \(0.333526\pi\)
\(284\) 13.3392 0.791534
\(285\) 5.17151 + 8.95733i 0.306334 + 0.530586i
\(286\) −1.60029 4.80143i −0.0946270 0.283914i
\(287\) 0 0
\(288\) −6.00719 10.4048i −0.353977 0.613107i
\(289\) −12.3283 + 21.3533i −0.725197 + 1.25608i
\(290\) 4.64474 + 8.04493i 0.272749 + 0.472414i
\(291\) 10.5891 18.3409i 0.620746 1.07516i
\(292\) −18.2702 −1.06918
\(293\) −7.04782 + 12.2072i −0.411738 + 0.713151i −0.995080 0.0990757i \(-0.968411\pi\)
0.583342 + 0.812227i \(0.301745\pi\)
\(294\) 0 0
\(295\) −2.95108 + 5.11141i −0.171818 + 0.297598i
\(296\) 3.56985 6.18316i 0.207493 0.359389i
\(297\) −2.54022 −0.147399
\(298\) 3.35116 5.80438i 0.194128 0.336239i
\(299\) −9.41686 28.2539i −0.544591 1.63397i
\(300\) −41.1097 −2.37347
\(301\) 0 0
\(302\) −27.4754 47.5888i −1.58103 2.73843i
\(303\) 7.25654 0.416877
\(304\) −4.40993 + 7.63822i −0.252927 + 0.438082i
\(305\) −1.08382 1.87723i −0.0620593 0.107490i
\(306\) −70.4466 −4.02716
\(307\) −15.8786 −0.906240 −0.453120 0.891450i \(-0.649689\pi\)
−0.453120 + 0.891450i \(0.649689\pi\)
\(308\) 0 0
\(309\) −14.9431 25.8823i −0.850086 1.47239i
\(310\) −3.50535 + 6.07145i −0.199091 + 0.344835i
\(311\) −14.3017 + 24.7713i −0.810975 + 1.40465i 0.101208 + 0.994865i \(0.467729\pi\)
−0.912183 + 0.409784i \(0.865604\pi\)
\(312\) 26.7646 30.1806i 1.51525 1.70864i
\(313\) −9.28962 16.0901i −0.525080 0.909465i −0.999573 0.0292063i \(-0.990702\pi\)
0.474493 0.880259i \(-0.342631\pi\)
\(314\) −26.9561 46.6893i −1.52122 2.63483i
\(315\) 0 0
\(316\) −5.15679 + 8.93182i −0.290092 + 0.502454i
\(317\) −15.3223 26.5389i −0.860584 1.49057i −0.871366 0.490633i \(-0.836766\pi\)
0.0107826 0.999942i \(-0.496568\pi\)
\(318\) 1.39804 + 2.42147i 0.0783979 + 0.135789i
\(319\) −1.16390 2.01594i −0.0651660 0.112871i
\(320\) −5.34685 9.26102i −0.298898 0.517707i
\(321\) 21.9850 38.0791i 1.22708 2.12537i
\(322\) 0 0
\(323\) −12.3498 21.3904i −0.687160 1.19020i
\(324\) 3.37173 + 5.84001i 0.187318 + 0.324445i
\(325\) 4.60026 + 13.8024i 0.255177 + 0.765620i
\(326\) 9.76366 16.9112i 0.540759 0.936622i
\(327\) −12.7046 + 22.0051i −0.702568 + 1.21688i
\(328\) −7.46483 12.9295i −0.412177 0.713911i
\(329\) 0 0
\(330\) −3.79379 −0.208842
\(331\) 27.2277 1.49657 0.748284 0.663378i \(-0.230878\pi\)
0.748284 + 0.663378i \(0.230878\pi\)
\(332\) −5.31005 9.19728i −0.291427 0.504766i
\(333\) −4.01275 + 6.95028i −0.219897 + 0.380873i
\(334\) −5.55867 −0.304157
\(335\) 3.44438 + 5.96584i 0.188187 + 0.325949i
\(336\) 0 0
\(337\) −12.3160 −0.670898 −0.335449 0.942058i \(-0.608888\pi\)
−0.335449 + 0.942058i \(0.608888\pi\)
\(338\) −28.5481 12.1969i −1.55281 0.663426i
\(339\) −14.0054 + 24.2580i −0.760666 + 1.31751i
\(340\) −23.4746 −1.27309
\(341\) 0.878389 1.52141i 0.0475674 0.0823892i
\(342\) 20.8850 36.1738i 1.12933 1.95606i
\(343\) 0 0
\(344\) 12.9728 22.4695i 0.699445 1.21148i
\(345\) −22.3245 −1.20191
\(346\) 9.71182 16.8214i 0.522111 0.904322i
\(347\) −3.07253 5.32177i −0.164942 0.285688i 0.771693 0.635996i \(-0.219410\pi\)
−0.936635 + 0.350308i \(0.886077\pi\)
\(348\) 20.1731 34.9408i 1.08139 1.87302i
\(349\) 6.51563 + 11.2854i 0.348774 + 0.604094i 0.986032 0.166557i \(-0.0532649\pi\)
−0.637258 + 0.770650i \(0.719932\pi\)
\(350\) 0 0
\(351\) −10.3383 + 11.6578i −0.551820 + 0.622249i
\(352\) 0.772550 + 1.33810i 0.0411771 + 0.0713208i
\(353\) −31.6665 −1.68544 −0.842718 0.538356i \(-0.819046\pi\)
−0.842718 + 0.538356i \(0.819046\pi\)
\(354\) 39.4805 2.09836
\(355\) −3.53870 −0.187814
\(356\) 7.75021 0.410761
\(357\) 0 0
\(358\) −25.0655 + 43.4147i −1.32475 + 2.29454i
\(359\) −9.96610 17.2618i −0.525991 0.911043i −0.999542 0.0302764i \(-0.990361\pi\)
0.473551 0.880767i \(-0.342972\pi\)
\(360\) −9.12780 15.8098i −0.481077 0.833251i
\(361\) −4.35488 −0.229204
\(362\) 1.92007 3.32566i 0.100917 0.174793i
\(363\) −29.3156 −1.53867
\(364\) 0 0
\(365\) 4.84684 0.253695
\(366\) −7.24984 + 12.5571i −0.378955 + 0.656370i
\(367\) −19.7190 −1.02932 −0.514662 0.857393i \(-0.672082\pi\)
−0.514662 + 0.857393i \(0.672082\pi\)
\(368\) −9.51844 16.4864i −0.496183 0.859414i
\(369\) 8.39096 + 14.5336i 0.436816 + 0.756588i
\(370\) −2.05940 + 3.56699i −0.107063 + 0.185439i
\(371\) 0 0
\(372\) 30.4490 1.57870
\(373\) 17.5469 0.908544 0.454272 0.890863i \(-0.349899\pi\)
0.454272 + 0.890863i \(0.349899\pi\)
\(374\) 9.05972 0.468467
\(375\) 24.4194 1.26101
\(376\) 8.82478 + 15.2850i 0.455103 + 0.788262i
\(377\) −13.9887 2.86308i −0.720452 0.147456i
\(378\) 0 0
\(379\) 5.85068 + 10.1337i 0.300529 + 0.520532i 0.976256 0.216620i \(-0.0695034\pi\)
−0.675727 + 0.737152i \(0.736170\pi\)
\(380\) 6.95942 12.0541i 0.357010 0.618360i
\(381\) −5.84725 10.1277i −0.299563 0.518859i
\(382\) −13.8055 + 23.9119i −0.706352 + 1.22344i
\(383\) 21.5288 1.10007 0.550036 0.835141i \(-0.314614\pi\)
0.550036 + 0.835141i \(0.314614\pi\)
\(384\) −28.5334 + 49.4213i −1.45609 + 2.52202i
\(385\) 0 0
\(386\) 28.1536 48.7634i 1.43298 2.48199i
\(387\) −14.5823 + 25.2572i −0.741258 + 1.28390i
\(388\) −28.5000 −1.44687
\(389\) −13.2455 + 22.9419i −0.671574 + 1.16320i 0.305884 + 0.952069i \(0.401048\pi\)
−0.977458 + 0.211131i \(0.932285\pi\)
\(390\) −15.4402 + 17.4108i −0.781845 + 0.881632i
\(391\) 53.3118 2.69609
\(392\) 0 0
\(393\) −2.98476 5.16975i −0.150561 0.260779i
\(394\) 3.51267 0.176966
\(395\) 1.36802 2.36949i 0.0688327 0.119222i
\(396\) 4.97392 + 8.61508i 0.249949 + 0.432924i
\(397\) 33.7989 1.69632 0.848160 0.529740i \(-0.177711\pi\)
0.848160 + 0.529740i \(0.177711\pi\)
\(398\) 22.4332 1.12447
\(399\) 0 0
\(400\) 4.64989 + 8.05384i 0.232494 + 0.402692i
\(401\) −10.8059 + 18.7164i −0.539623 + 0.934655i 0.459301 + 0.888281i \(0.348100\pi\)
−0.998924 + 0.0463741i \(0.985233\pi\)
\(402\) 23.0400 39.9065i 1.14913 1.99035i
\(403\) −3.40730 10.2231i −0.169730 0.509250i
\(404\) −4.88264 8.45697i −0.242920 0.420750i
\(405\) −0.894473 1.54927i −0.0444467 0.0769839i
\(406\) 0 0
\(407\) 0.516056 0.893835i 0.0255799 0.0443058i
\(408\) 36.1047 + 62.5351i 1.78745 + 3.09595i
\(409\) 3.87109 + 6.70492i 0.191413 + 0.331537i 0.945719 0.324986i \(-0.105360\pi\)
−0.754306 + 0.656523i \(0.772026\pi\)
\(410\) 4.30637 + 7.45886i 0.212677 + 0.368367i
\(411\) −11.5055 19.9282i −0.567526 0.982984i
\(412\) −20.1093 + 34.8303i −0.990714 + 1.71597i
\(413\) 0 0
\(414\) 45.0783 + 78.0780i 2.21548 + 3.83732i
\(415\) 1.40868 + 2.43991i 0.0691495 + 0.119770i
\(416\) 9.28509 + 1.90040i 0.455239 + 0.0931746i
\(417\) −0.793683 + 1.37470i −0.0388668 + 0.0673193i
\(418\) −2.68589 + 4.65211i −0.131371 + 0.227542i
\(419\) −4.05097 7.01649i −0.197903 0.342778i 0.749945 0.661500i \(-0.230080\pi\)
−0.947848 + 0.318722i \(0.896746\pi\)
\(420\) 0 0
\(421\) −32.1124 −1.56506 −0.782530 0.622612i \(-0.786071\pi\)
−0.782530 + 0.622612i \(0.786071\pi\)
\(422\) 21.3543 1.03951
\(423\) −9.91963 17.1813i −0.482309 0.835384i
\(424\) 0.865159 1.49850i 0.0420158 0.0727735i
\(425\) −26.0435 −1.26330
\(426\) 11.8355 + 20.4996i 0.573430 + 0.993210i
\(427\) 0 0
\(428\) −59.1713 −2.86015
\(429\) 3.86908 4.36290i 0.186801 0.210643i
\(430\) −7.48384 + 12.9624i −0.360903 + 0.625102i
\(431\) −29.5281 −1.42232 −0.711159 0.703031i \(-0.751829\pi\)
−0.711159 + 0.703031i \(0.751829\pi\)
\(432\) −4.97996 + 8.62554i −0.239598 + 0.414997i
\(433\) 11.0455 19.1314i 0.530813 0.919395i −0.468540 0.883442i \(-0.655220\pi\)
0.999353 0.0359531i \(-0.0114467\pi\)
\(434\) 0 0
\(435\) −5.35164 + 9.26931i −0.256591 + 0.444429i
\(436\) 34.1938 1.63758
\(437\) −15.8051 + 27.3752i −0.756060 + 1.30953i
\(438\) −16.2106 28.0777i −0.774575 1.34160i
\(439\) −3.17790 + 5.50428i −0.151673 + 0.262705i −0.931843 0.362863i \(-0.881799\pi\)
0.780170 + 0.625568i \(0.215133\pi\)
\(440\) 1.17387 + 2.03321i 0.0559622 + 0.0969294i
\(441\) 0 0
\(442\) 36.8718 41.5777i 1.75381 1.97765i
\(443\) 6.78135 + 11.7456i 0.322192 + 0.558052i 0.980940 0.194311i \(-0.0622472\pi\)
−0.658748 + 0.752363i \(0.728914\pi\)
\(444\) 17.8889 0.848967
\(445\) −2.05602 −0.0974648
\(446\) 52.1060 2.46729
\(447\) 7.72237 0.365255
\(448\) 0 0
\(449\) −10.9559 + 18.9762i −0.517041 + 0.895541i 0.482763 + 0.875751i \(0.339633\pi\)
−0.999804 + 0.0197900i \(0.993700\pi\)
\(450\) −22.0214 38.1421i −1.03810 1.79804i
\(451\) −1.07911 1.86908i −0.0508134 0.0880115i
\(452\) 37.6946 1.77300
\(453\) 31.6570 54.8315i 1.48737 2.57621i
\(454\) −44.3041 −2.07930
\(455\) 0 0
\(456\) −42.8151 −2.00500
\(457\) −7.60732 + 13.1763i −0.355855 + 0.616359i −0.987264 0.159091i \(-0.949144\pi\)
0.631409 + 0.775450i \(0.282477\pi\)
\(458\) 46.2097 2.15924
\(459\) −13.9461 24.1554i −0.650949 1.12748i
\(460\) 15.0213 + 26.0176i 0.700371 + 1.21308i
\(461\) −8.10813 + 14.0437i −0.377633 + 0.654080i −0.990717 0.135937i \(-0.956595\pi\)
0.613084 + 0.790018i \(0.289929\pi\)
\(462\) 0 0
\(463\) −1.44769 −0.0672799 −0.0336400 0.999434i \(-0.510710\pi\)
−0.0336400 + 0.999434i \(0.510710\pi\)
\(464\) −9.12705 −0.423713
\(465\) −8.07768 −0.374593
\(466\) −38.5988 −1.78805
\(467\) 7.00337 + 12.1302i 0.324078 + 0.561319i 0.981325 0.192356i \(-0.0616128\pi\)
−0.657248 + 0.753675i \(0.728279\pi\)
\(468\) 59.7803 + 12.2353i 2.76334 + 0.565579i
\(469\) 0 0
\(470\) −5.09091 8.81772i −0.234826 0.406731i
\(471\) 31.0586 53.7951i 1.43111 2.47875i
\(472\) −12.2160 21.1588i −0.562288 0.973912i
\(473\) 1.87534 3.24818i 0.0862282 0.149352i
\(474\) −18.3019 −0.840633
\(475\) 7.72100 13.3732i 0.354264 0.613603i
\(476\) 0 0
\(477\) −0.972495 + 1.68441i −0.0445275 + 0.0771239i
\(478\) 19.2281 33.3041i 0.879474 1.52329i
\(479\) 30.0243 1.37185 0.685923 0.727674i \(-0.259399\pi\)
0.685923 + 0.727674i \(0.259399\pi\)
\(480\) 3.55219 6.15258i 0.162135 0.280826i
\(481\) −2.00180 6.00611i −0.0912742 0.273855i
\(482\) −9.56649 −0.435742
\(483\) 0 0
\(484\) 19.7253 + 34.1652i 0.896605 + 1.55296i
\(485\) 7.56065 0.343312
\(486\) −21.4633 + 37.1756i −0.973597 + 1.68632i
\(487\) 14.2452 + 24.6733i 0.645510 + 1.11806i 0.984184 + 0.177152i \(0.0566884\pi\)
−0.338674 + 0.940904i \(0.609978\pi\)
\(488\) 8.97297 0.406187
\(489\) 22.4992 1.01745
\(490\) 0 0
\(491\) 14.2339 + 24.6538i 0.642365 + 1.11261i 0.984903 + 0.173105i \(0.0553799\pi\)
−0.342539 + 0.939504i \(0.611287\pi\)
\(492\) 18.7035 32.3954i 0.843218 1.46050i
\(493\) 12.7799 22.1354i 0.575578 0.996930i
\(494\) 10.4187 + 31.2598i 0.468759 + 1.40644i
\(495\) −1.31951 2.28546i −0.0593076 0.102724i
\(496\) −3.44406 5.96528i −0.154643 0.267849i
\(497\) 0 0
\(498\) 9.42290 16.3209i 0.422250 0.731359i
\(499\) 13.1164 + 22.7183i 0.587172 + 1.01701i 0.994601 + 0.103775i \(0.0330921\pi\)
−0.407429 + 0.913237i \(0.633575\pi\)
\(500\) −16.4309 28.4591i −0.734811 1.27273i
\(501\) −3.20233 5.54659i −0.143069 0.247803i
\(502\) −3.87684 6.71488i −0.173032 0.299700i
\(503\) 4.26588 7.38872i 0.190206 0.329447i −0.755112 0.655595i \(-0.772418\pi\)
0.945318 + 0.326149i \(0.105751\pi\)
\(504\) 0 0
\(505\) 1.29529 + 2.24352i 0.0576398 + 0.0998351i
\(506\) −5.79726 10.0412i −0.257720 0.446384i
\(507\) −4.27602 35.5127i −0.189905 1.57717i
\(508\) −7.86876 + 13.6291i −0.349120 + 0.604693i
\(509\) −6.51298 + 11.2808i −0.288683 + 0.500014i −0.973496 0.228706i \(-0.926551\pi\)
0.684813 + 0.728719i \(0.259884\pi\)
\(510\) −20.8283 36.0758i −0.922295 1.59746i
\(511\) 0 0
\(512\) 24.8008 1.09605
\(513\) 16.5382 0.730177
\(514\) 32.1100 + 55.6162i 1.41631 + 2.45312i
\(515\) 5.33472 9.24000i 0.235076 0.407163i
\(516\) 65.0078 2.86181
\(517\) 1.27571 + 2.20959i 0.0561055 + 0.0971775i
\(518\) 0 0
\(519\) 22.3798 0.982363
\(520\) 14.1085 + 2.88761i 0.618698 + 0.126630i
\(521\) 2.23285 3.86741i 0.0978230 0.169434i −0.812960 0.582319i \(-0.802145\pi\)
0.910783 + 0.412885i \(0.135479\pi\)
\(522\) 43.2248 1.89190
\(523\) −1.45406 + 2.51850i −0.0635815 + 0.110126i −0.896064 0.443925i \(-0.853586\pi\)
0.832482 + 0.554051i \(0.186919\pi\)
\(524\) −4.01665 + 6.95704i −0.175468 + 0.303920i
\(525\) 0 0
\(526\) −4.54570 + 7.87339i −0.198202 + 0.343296i
\(527\) 19.2898 0.840277
\(528\) 1.86373 3.22807i 0.0811084 0.140484i
\(529\) −22.6139 39.1684i −0.983213 1.70297i
\(530\) −0.499100 + 0.864466i −0.0216795 + 0.0375500i
\(531\) 13.7316 + 23.7838i 0.595901 + 1.03213i
\(532\) 0 0
\(533\) −12.9696 2.65451i −0.561775 0.114980i
\(534\) 6.87654 + 11.9105i 0.297577 + 0.515418i
\(535\) 15.6973 0.678654
\(536\) −28.5161 −1.23171
\(537\) −57.7605 −2.49255
\(538\) −56.9262 −2.45426
\(539\) 0 0
\(540\) 7.85899 13.6122i 0.338197 0.585775i
\(541\) 9.23193 + 15.9902i 0.396912 + 0.687471i 0.993343 0.115193i \(-0.0367486\pi\)
−0.596431 + 0.802664i \(0.703415\pi\)
\(542\) −11.8224 20.4770i −0.507815 0.879562i
\(543\) 4.42458 0.189877
\(544\) −8.48277 + 14.6926i −0.363696 + 0.629940i
\(545\) −9.07112 −0.388564
\(546\) 0 0
\(547\) 34.9817 1.49571 0.747856 0.663861i \(-0.231083\pi\)
0.747856 + 0.663861i \(0.231083\pi\)
\(548\) −15.4832 + 26.8177i −0.661411 + 1.14560i
\(549\) −10.0862 −0.430469
\(550\) 2.83204 + 4.90524i 0.120759 + 0.209160i
\(551\) 7.57760 + 13.1248i 0.322817 + 0.559135i
\(552\) 46.2063 80.0317i 1.96667 3.40638i
\(553\) 0 0
\(554\) −28.1449 −1.19576
\(555\) −4.74566 −0.201442
\(556\) 2.13615 0.0905930
\(557\) 0.0531413 0.00225167 0.00112583 0.999999i \(-0.499642\pi\)
0.00112583 + 0.999999i \(0.499642\pi\)
\(558\) 16.3107 + 28.2510i 0.690487 + 1.19596i
\(559\) −7.27451 21.8261i −0.307679 0.923146i
\(560\) 0 0
\(561\) 5.21927 + 9.04004i 0.220358 + 0.381671i
\(562\) 15.5194 26.8804i 0.654646 1.13388i
\(563\) 3.99253 + 6.91527i 0.168265 + 0.291444i 0.937810 0.347149i \(-0.112850\pi\)
−0.769545 + 0.638593i \(0.779517\pi\)
\(564\) −22.1109 + 38.2972i −0.931037 + 1.61260i
\(565\) −9.99985 −0.420697
\(566\) 20.0655 34.7544i 0.843414 1.46084i
\(567\) 0 0
\(568\) 7.32424 12.6860i 0.307318 0.532291i
\(569\) 13.3621 23.1438i 0.560167 0.970237i −0.437315 0.899308i \(-0.644070\pi\)
0.997481 0.0709285i \(-0.0225962\pi\)
\(570\) 24.6995 1.03455
\(571\) −6.74647 + 11.6852i −0.282331 + 0.489012i −0.971958 0.235153i \(-0.924441\pi\)
0.689627 + 0.724164i \(0.257774\pi\)
\(572\) −7.68799 1.57352i −0.321451 0.0657920i
\(573\) −31.8132 −1.32902
\(574\) 0 0
\(575\) 16.6651 + 28.8648i 0.694982 + 1.20374i
\(576\) −49.7587 −2.07328
\(577\) 6.00662 10.4038i 0.250059 0.433115i −0.713483 0.700673i \(-0.752883\pi\)
0.963542 + 0.267558i \(0.0862167\pi\)
\(578\) 29.4406 + 50.9925i 1.22457 + 2.12101i
\(579\) 64.8767 2.69618
\(580\) 14.4036 0.598078
\(581\) 0 0
\(582\) −25.2872 43.7988i −1.04819 1.81552i
\(583\) 0.125067 0.216622i 0.00517974 0.00897158i
\(584\) −10.0318 + 17.3756i −0.415118 + 0.719005i
\(585\) −15.8589 3.24586i −0.655683 0.134200i
\(586\) 16.8305 + 29.1512i 0.695260 + 1.20422i
\(587\) 5.21177 + 9.02705i 0.215113 + 0.372586i 0.953307 0.302002i \(-0.0976548\pi\)
−0.738195 + 0.674588i \(0.764321\pi\)
\(588\) 0 0
\(589\) −5.71876 + 9.90518i −0.235637 + 0.408136i
\(590\) 7.04728 + 12.2062i 0.290132 + 0.502523i
\(591\) 2.02364 + 3.50504i 0.0832412 + 0.144178i
\(592\) −2.02339 3.50462i −0.0831610 0.144039i
\(593\) −11.1751 19.3558i −0.458905 0.794847i 0.539998 0.841666i \(-0.318425\pi\)
−0.998903 + 0.0468194i \(0.985091\pi\)
\(594\) −3.03307 + 5.25344i −0.124449 + 0.215551i
\(595\) 0 0
\(596\) −5.19607 8.99986i −0.212839 0.368649i
\(597\) 12.9237 + 22.3845i 0.528931 + 0.916135i
\(598\) −69.6759 14.2607i −2.84926 0.583163i
\(599\) −0.579463 + 1.00366i −0.0236762 + 0.0410084i −0.877621 0.479356i \(-0.840870\pi\)
0.853945 + 0.520364i \(0.174204\pi\)
\(600\) −22.5724 + 39.0966i −0.921515 + 1.59611i
\(601\) 21.0907 + 36.5301i 0.860306 + 1.49009i 0.871633 + 0.490158i \(0.163061\pi\)
−0.0113271 + 0.999936i \(0.503606\pi\)
\(602\) 0 0
\(603\) 32.0540 1.30534
\(604\) −85.2029 −3.46686
\(605\) −5.23284 9.06355i −0.212745 0.368486i
\(606\) 8.66444 15.0072i 0.351969 0.609628i
\(607\) 18.1569 0.736965 0.368482 0.929635i \(-0.379877\pi\)
0.368482 + 0.929635i \(0.379877\pi\)
\(608\) −5.02970 8.71169i −0.203981 0.353306i
\(609\) 0 0
\(610\) −5.17640 −0.209586
\(611\) 15.3324 + 3.13811i 0.620282 + 0.126954i
\(612\) −54.6147 + 94.5955i −2.20767 + 3.82380i
\(613\) −0.902645 −0.0364575 −0.0182288 0.999834i \(-0.505803\pi\)
−0.0182288 + 0.999834i \(0.505803\pi\)
\(614\) −18.9594 + 32.8386i −0.765137 + 1.32526i
\(615\) −4.96177 + 8.59404i −0.200078 + 0.346545i
\(616\) 0 0
\(617\) 13.0218 22.5544i 0.524238 0.908008i −0.475363 0.879790i \(-0.657683\pi\)
0.999602 0.0282180i \(-0.00898327\pi\)
\(618\) −71.3696 −2.87091
\(619\) 13.4171 23.2390i 0.539277 0.934056i −0.459666 0.888092i \(-0.652031\pi\)
0.998943 0.0459638i \(-0.0146359\pi\)
\(620\) 5.43515 + 9.41396i 0.218281 + 0.378074i
\(621\) −17.8481 + 30.9138i −0.716218 + 1.24053i
\(622\) 34.1530 + 59.1547i 1.36941 + 2.37189i
\(623\) 0 0
\(624\) −7.22948 21.6910i −0.289411 0.868335i
\(625\) −5.72894 9.92281i −0.229158 0.396912i
\(626\) −44.3679 −1.77330
\(627\) −6.18933 −0.247178
\(628\) −83.5925 −3.33570
\(629\) 11.3328 0.451869
\(630\) 0 0
\(631\) 16.8061 29.1089i 0.669039 1.15881i −0.309135 0.951018i \(-0.600039\pi\)
0.978173 0.207791i \(-0.0666273\pi\)
\(632\) 5.66296 + 9.80853i 0.225260 + 0.390162i
\(633\) 12.3021 + 21.3079i 0.488965 + 0.846913i
\(634\) −73.1802 −2.90636
\(635\) 2.08747 3.61561i 0.0828388 0.143481i
\(636\) 4.33539 0.171909
\(637\) 0 0
\(638\) −5.55889 −0.220078
\(639\) −8.23293 + 14.2598i −0.325690 + 0.564111i
\(640\) −20.3729 −0.805310
\(641\) −10.5921 18.3460i −0.418361 0.724622i 0.577414 0.816452i \(-0.304062\pi\)
−0.995775 + 0.0918294i \(0.970729\pi\)
\(642\) −52.5010 90.9343i −2.07205 3.58889i
\(643\) 0.330770 0.572910i 0.0130443 0.0225933i −0.859430 0.511254i \(-0.829181\pi\)
0.872474 + 0.488661i \(0.162514\pi\)
\(644\) 0 0
\(645\) −17.2457 −0.679047
\(646\) −58.9834 −2.32067
\(647\) 40.0323 1.57383 0.786916 0.617060i \(-0.211676\pi\)
0.786916 + 0.617060i \(0.211676\pi\)
\(648\) 7.40537 0.290910
\(649\) −1.76594 3.05870i −0.0693193 0.120065i
\(650\) 34.0376 + 6.96654i 1.33506 + 0.273250i
\(651\) 0 0
\(652\) −15.1388 26.2212i −0.592883 1.02690i
\(653\) −6.35602 + 11.0089i −0.248730 + 0.430813i −0.963174 0.268880i \(-0.913347\pi\)
0.714444 + 0.699693i \(0.246680\pi\)
\(654\) 30.3391 + 52.5489i 1.18635 + 2.05482i
\(655\) 1.06556 1.84560i 0.0416349 0.0721138i
\(656\) −8.46215 −0.330391
\(657\) 11.2764 19.5313i 0.439933 0.761987i
\(658\) 0 0
\(659\) 7.09522 12.2893i 0.276391 0.478723i −0.694094 0.719884i \(-0.744195\pi\)
0.970485 + 0.241161i \(0.0775283\pi\)
\(660\) −2.94119 + 5.09430i −0.114486 + 0.198295i
\(661\) −50.1780 −1.95170 −0.975848 0.218449i \(-0.929900\pi\)
−0.975848 + 0.218449i \(0.929900\pi\)
\(662\) 32.5104 56.3096i 1.26355 2.18853i
\(663\) 62.7291 + 12.8389i 2.43620 + 0.498621i
\(664\) −11.6625 −0.452594
\(665\) 0 0
\(666\) 9.58259 + 16.5975i 0.371318 + 0.643141i
\(667\) −32.7112 −1.26658
\(668\) −4.30944 + 7.46417i −0.166737 + 0.288797i
\(669\) 30.0181 + 51.9928i 1.16057 + 2.01016i
\(670\) 16.4506 0.635542
\(671\) 1.29713 0.0500751
\(672\) 0 0
\(673\) 0.937137 + 1.62317i 0.0361240 + 0.0625685i 0.883522 0.468389i \(-0.155166\pi\)
−0.847398 + 0.530958i \(0.821832\pi\)
\(674\) −14.7056 + 25.4708i −0.566438 + 0.981100i
\(675\) 8.71902 15.1018i 0.335595 0.581268i
\(676\) −38.5104 + 28.8785i −1.48117 + 1.11071i
\(677\) −1.00439 1.73966i −0.0386020 0.0668607i 0.846079 0.533058i \(-0.178957\pi\)
−0.884681 + 0.466197i \(0.845624\pi\)
\(678\) 33.4453 + 57.9290i 1.28446 + 2.22475i
\(679\) 0 0
\(680\) −12.8894 + 22.3251i −0.494286 + 0.856128i
\(681\) −25.5234 44.2079i −0.978061 1.69405i
\(682\) −2.09762 3.63319i −0.0803222 0.139122i
\(683\) 7.05061 + 12.2120i 0.269784 + 0.467280i 0.968806 0.247820i \(-0.0797143\pi\)
−0.699022 + 0.715100i \(0.746381\pi\)
\(684\) −32.3828 56.0886i −1.23819 2.14460i
\(685\) 4.10748 7.11437i 0.156939 0.271826i
\(686\) 0 0
\(687\) 26.6212 + 46.1094i 1.01566 + 1.75918i
\(688\) −7.35298 12.7357i −0.280330 0.485546i
\(689\) −0.485139 1.45559i −0.0184823 0.0554536i
\(690\) −26.6559 + 46.1693i −1.01477 + 1.75764i
\(691\) −17.8460 + 30.9102i −0.678895 + 1.17588i 0.296419 + 0.955058i \(0.404207\pi\)
−0.975314 + 0.220822i \(0.929126\pi\)
\(692\) −15.0585 26.0820i −0.572437 0.991489i
\(693\) 0 0
\(694\) −14.6746 −0.557041
\(695\) −0.566691 −0.0214958
\(696\) −22.1532 38.3704i −0.839714 1.45443i
\(697\) 11.8489 20.5229i 0.448809 0.777360i
\(698\) 31.1191 1.17788
\(699\) −22.2366 38.5150i −0.841066 1.45677i
\(700\) 0 0
\(701\) −6.15865 −0.232609 −0.116305 0.993214i \(-0.537105\pi\)
−0.116305 + 0.993214i \(0.537105\pi\)
\(702\) 11.7654 + 35.3004i 0.444057 + 1.33233i
\(703\) −3.35979 + 5.81932i −0.126717 + 0.219480i
\(704\) 6.39918 0.241178
\(705\) 5.86571 10.1597i 0.220915 0.382637i
\(706\) −37.8103 + 65.4894i −1.42301 + 2.46473i
\(707\) 0 0
\(708\) 30.6078 53.0143i 1.15031 1.99240i
\(709\) 34.0371 1.27829 0.639144 0.769087i \(-0.279289\pi\)
0.639144 + 0.769087i \(0.279289\pi\)
\(710\) −4.22527 + 7.31838i −0.158571 + 0.274654i
\(711\) −6.36553 11.0254i −0.238726 0.413486i
\(712\) 4.25547 7.37069i 0.159480 0.276228i
\(713\) −12.3434 21.3794i −0.462265 0.800667i
\(714\) 0 0
\(715\) 2.03952 + 0.417432i 0.0762736 + 0.0156111i
\(716\) 38.8648 + 67.3158i 1.45244 + 2.51571i
\(717\) 44.3090 1.65475
\(718\) −47.5989 −1.77637
\(719\) 22.9648 0.856444 0.428222 0.903674i \(-0.359140\pi\)
0.428222 + 0.903674i \(0.359140\pi\)
\(720\) −10.3473 −0.385621
\(721\) 0 0
\(722\) −5.19981 + 9.00633i −0.193517 + 0.335181i
\(723\) −5.51122 9.54571i −0.204964 0.355009i
\(724\) −2.97712 5.15653i −0.110644 0.191641i
\(725\) 15.9798 0.593476
\(726\) −35.0034 + 60.6276i −1.29910 + 2.25010i
\(727\) −1.06558 −0.0395203 −0.0197601 0.999805i \(-0.506290\pi\)
−0.0197601 + 0.999805i \(0.506290\pi\)
\(728\) 0 0
\(729\) −43.9962 −1.62949
\(730\) 5.78721 10.0237i 0.214194 0.370996i
\(731\) 41.1833 1.52322
\(732\) 11.2411 + 19.4702i 0.415483 + 0.719637i
\(733\) −13.1689 22.8092i −0.486404 0.842476i 0.513474 0.858105i \(-0.328358\pi\)
−0.999878 + 0.0156289i \(0.995025\pi\)
\(734\) −23.5448 + 40.7809i −0.869056 + 1.50525i
\(735\) 0 0
\(736\) 21.7123 0.800326
\(737\) −4.12228 −0.151846
\(738\) 40.0759 1.47521
\(739\) 34.2149 1.25862 0.629308 0.777156i \(-0.283338\pi\)
0.629308 + 0.777156i \(0.283338\pi\)
\(740\) 3.19317 + 5.53073i 0.117383 + 0.203314i
\(741\) −25.1897 + 28.4047i −0.925366 + 1.04347i
\(742\) 0 0
\(743\) −11.2391 19.4667i −0.412322 0.714163i 0.582821 0.812600i \(-0.301949\pi\)
−0.995143 + 0.0984379i \(0.968615\pi\)
\(744\) 16.7188 28.9579i 0.612942 1.06165i
\(745\) 1.37845 + 2.38754i 0.0505023 + 0.0874726i
\(746\) 20.9513 36.2888i 0.767083 1.32863i
\(747\) 13.1094 0.479649
\(748\) 7.02368 12.1654i 0.256811 0.444810i
\(749\) 0 0
\(750\) 29.1573 50.5018i 1.06467 1.84407i
\(751\) 21.2712 36.8428i 0.776197 1.34441i −0.157923 0.987451i \(-0.550480\pi\)
0.934119 0.356961i \(-0.116187\pi\)
\(752\) 10.0038 0.364801
\(753\) 4.46686 7.73683i 0.162781 0.281946i
\(754\) −22.6239 + 25.5114i −0.823912 + 0.929069i
\(755\) 22.6031 0.822612
\(756\) 0 0
\(757\) 5.61902 + 9.73243i 0.204227 + 0.353731i 0.949886 0.312596i \(-0.101199\pi\)
−0.745659 + 0.666327i \(0.767865\pi\)
\(758\) 27.9433 1.01495
\(759\) 6.67956 11.5693i 0.242453 0.419941i
\(760\) −7.64252 13.2372i −0.277223 0.480165i
\(761\) −12.8084 −0.464306 −0.232153 0.972679i \(-0.574577\pi\)
−0.232153 + 0.972679i \(0.574577\pi\)
\(762\) −27.9269 −1.01168
\(763\) 0 0
\(764\) 21.4059 + 37.0760i 0.774437 + 1.34136i
\(765\) 14.4885 25.0948i 0.523833 0.907306i
\(766\) 25.7058 44.5238i 0.928789 1.60871i
\(767\) −21.2244 4.34404i −0.766369 0.156854i
\(768\) 38.1846 + 66.1377i 1.37787 + 2.38654i
\(769\) −25.6759 44.4719i −0.925895 1.60370i −0.790115 0.612958i \(-0.789979\pi\)
−0.135780 0.990739i \(-0.543354\pi\)
\(770\) 0 0
\(771\) −36.9969 + 64.0805i −1.33241 + 2.30780i
\(772\) −43.6529 75.6091i −1.57110 2.72123i
\(773\) 10.0023 + 17.3245i 0.359759 + 0.623120i 0.987920 0.154963i \(-0.0495257\pi\)
−0.628162 + 0.778083i \(0.716192\pi\)
\(774\) 34.8230 + 60.3151i 1.25169 + 2.16798i
\(775\) 6.02993 + 10.4441i 0.216602 + 0.375165i
\(776\) −15.6487 + 27.1044i −0.561756 + 0.972990i
\(777\) 0 0
\(778\) 31.6308 + 54.7861i 1.13402 + 1.96418i
\(779\) 7.02558 + 12.1687i 0.251717 + 0.435987i
\(780\) 11.4090 + 34.2311i 0.408508 + 1.22567i
\(781\) 1.05879 1.83388i 0.0378864 0.0656212i
\(782\) 63.6552 110.254i 2.27631 3.94268i
\(783\) 8.55708 + 14.8213i 0.305805 + 0.529670i
\(784\) 0 0
\(785\) 22.1759 0.791492
\(786\) −14.2554 −0.508474
\(787\) 14.6596 + 25.3911i 0.522558 + 0.905096i 0.999656 + 0.0262462i \(0.00835537\pi\)
−0.477098 + 0.878850i \(0.658311\pi\)
\(788\) 2.72325 4.71680i 0.0970117 0.168029i
\(789\) −10.4750 −0.372921
\(790\) −3.26689 5.65842i −0.116231 0.201318i
\(791\) 0 0
\(792\) 10.9243 0.388177
\(793\) 5.27912 5.95291i 0.187467 0.211394i
\(794\) 40.3566 69.8996i 1.43220 2.48064i
\(795\) −1.15012 −0.0407905
\(796\) 17.3917 30.1232i 0.616431 1.06769i
\(797\) 1.55050 2.68554i 0.0549215 0.0951269i −0.837258 0.546809i \(-0.815842\pi\)
0.892179 + 0.451682i \(0.149176\pi\)
\(798\) 0 0
\(799\) −14.0075 + 24.2618i −0.495551 + 0.858319i
\(800\) −10.6068 −0.375005
\(801\) −4.78343 + 8.28514i −0.169014 + 0.292741i
\(802\) 25.8050 + 44.6956i 0.911206 + 1.57826i
\(803\) −1.45019 + 2.51180i −0.0511761 + 0.0886395i
\(804\) −35.7242 61.8762i −1.25990 2.18220i
\(805\) 0 0
\(806\) −25.2108 5.15995i −0.888013 0.181751i
\(807\) −32.7950 56.8025i −1.15444 1.99954i
\(808\) −10.7238 −0.377261
\(809\) 7.99003 0.280914 0.140457 0.990087i \(-0.455143\pi\)
0.140457 + 0.990087i \(0.455143\pi\)
\(810\) −4.27207 −0.150105
\(811\) 48.2554 1.69448 0.847239 0.531213i \(-0.178263\pi\)
0.847239 + 0.531213i \(0.178263\pi\)
\(812\) 0 0
\(813\) 13.6217 23.5934i 0.477733 0.827458i
\(814\) −1.23236 2.13451i −0.0431942 0.0748146i
\(815\) 4.01612 + 6.95612i 0.140679 + 0.243662i
\(816\) 40.9283 1.43278
\(817\) −12.2094 + 21.1473i −0.427153 + 0.739851i
\(818\) 18.4886 0.646439
\(819\) 0 0
\(820\) 13.3543 0.466353
\(821\) 13.7760 23.8607i 0.480785 0.832743i −0.518972 0.854791i \(-0.673685\pi\)
0.999757 + 0.0220477i \(0.00701856\pi\)
\(822\) −54.9513 −1.91665
\(823\) −10.2137 17.6907i −0.356028 0.616659i 0.631265 0.775567i \(-0.282536\pi\)
−0.987293 + 0.158908i \(0.949203\pi\)
\(824\) 22.0831 + 38.2491i 0.769303 + 1.33247i
\(825\) −3.26306 + 5.65178i −0.113605 + 0.196770i
\(826\) 0 0
\(827\) −27.7142 −0.963719 −0.481859 0.876249i \(-0.660038\pi\)
−0.481859 + 0.876249i \(0.660038\pi\)
\(828\) 139.791 4.85806
\(829\) −9.25664 −0.321496 −0.160748 0.986995i \(-0.551391\pi\)
−0.160748 + 0.986995i \(0.551391\pi\)
\(830\) 6.72797 0.233531
\(831\) −16.2142 28.0837i −0.562463 0.974214i
\(832\) 26.0437 29.3677i 0.902904 1.01814i
\(833\) 0 0
\(834\) 1.89535 + 3.28283i 0.0656304 + 0.113675i
\(835\) 1.14323 1.98014i 0.0395632 0.0685255i
\(836\) 4.16456 + 7.21323i 0.144034 + 0.249475i
\(837\) −6.45797 + 11.1855i −0.223220 + 0.386628i
\(838\) −19.3477 −0.668357
\(839\) −15.1870 + 26.3046i −0.524312 + 0.908135i 0.475287 + 0.879831i \(0.342344\pi\)
−0.999599 + 0.0283045i \(0.990989\pi\)
\(840\) 0 0
\(841\) 6.65848 11.5328i 0.229603 0.397683i
\(842\) −38.3428 + 66.4116i −1.32138 + 2.28869i
\(843\) 35.7626 1.23173
\(844\) 16.5552 28.6745i 0.569854 0.987016i
\(845\) 10.2163 7.66106i 0.351450 0.263548i
\(846\) −47.3769 −1.62885
\(847\) 0 0
\(848\) −0.490373 0.849350i −0.0168395 0.0291668i
\(849\) 46.2385 1.58690
\(850\) −31.0964 + 53.8606i −1.06660 + 1.84740i
\(851\) −7.25180 12.5605i −0.248589 0.430568i
\(852\) 36.7025 1.25741
\(853\) 5.30773 0.181733 0.0908666 0.995863i \(-0.471036\pi\)
0.0908666 + 0.995863i \(0.471036\pi\)
\(854\) 0 0
\(855\) 8.59069 + 14.8795i 0.293795 + 0.508868i
\(856\) −32.4896 + 56.2737i −1.11047 + 1.92340i
\(857\) −8.31857 + 14.4082i −0.284157 + 0.492175i −0.972404 0.233302i \(-0.925047\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(858\) −4.40316 13.2110i −0.150321 0.451017i
\(859\) −5.29426 9.16993i −0.180638 0.312874i 0.761460 0.648212i \(-0.224483\pi\)
−0.942098 + 0.335338i \(0.891150\pi\)
\(860\) 11.6039 + 20.0986i 0.395690 + 0.685356i
\(861\) 0 0
\(862\) −35.2571 + 61.0671i −1.20086 + 2.07995i
\(863\) 28.0316 + 48.5522i 0.954207 + 1.65273i 0.736173 + 0.676793i \(0.236631\pi\)
0.218033 + 0.975941i \(0.430036\pi\)
\(864\) −5.67984 9.83777i −0.193232 0.334688i
\(865\) 3.99480 + 6.91919i 0.135827 + 0.235260i
\(866\) −26.3771 45.6864i −0.896329 1.55249i
\(867\) −33.9212 + 58.7532i −1.15202 + 1.99536i
\(868\) 0 0
\(869\) 0.818634 + 1.41792i 0.0277703 + 0.0480995i
\(870\) 12.7799 + 22.1354i 0.433279 + 0.750462i
\(871\) −16.7771 + 18.9183i −0.568469 + 0.641024i
\(872\) 18.7750 32.5193i 0.635803 1.10124i
\(873\) 17.5902 30.4671i 0.595337 1.03115i
\(874\) 37.7432 + 65.3731i 1.27668 + 2.21128i
\(875\) 0 0
\(876\) −50.2702 −1.69847
\(877\) −3.66051 −0.123607 −0.0618033 0.998088i \(-0.519685\pi\)
−0.0618033 + 0.998088i \(0.519685\pi\)
\(878\) 7.58894 + 13.1444i 0.256114 + 0.443603i
\(879\) −19.3919 + 33.5878i −0.654073 + 1.13289i
\(880\) 1.33071 0.0448581
\(881\) 5.11493 + 8.85932i 0.172326 + 0.298478i 0.939233 0.343281i \(-0.111538\pi\)
−0.766906 + 0.641759i \(0.778205\pi\)
\(882\) 0 0
\(883\) −3.98979 −0.134267 −0.0671335 0.997744i \(-0.521385\pi\)
−0.0671335 + 0.997744i \(0.521385\pi\)
\(884\) −27.2451 81.7451i −0.916353 2.74938i
\(885\) −8.11982 + 14.0639i −0.272945 + 0.472754i
\(886\) 32.3882 1.08810
\(887\) −7.11039 + 12.3155i −0.238743 + 0.413516i −0.960354 0.278784i \(-0.910069\pi\)
0.721611 + 0.692299i \(0.243402\pi\)
\(888\) 9.82237 17.0128i 0.329617 0.570913i
\(889\) 0 0
\(890\) −2.45493 + 4.25206i −0.0822894 + 0.142529i
\(891\) 1.07052 0.0358636
\(892\) 40.3960 69.9678i 1.35256 2.34270i
\(893\) −8.30550 14.3855i −0.277933 0.481394i
\(894\) 9.22065 15.9706i 0.308385 0.534138i
\(895\) −10.3103 17.8579i −0.344635 0.596924i
\(896\) 0 0
\(897\) −25.9103 77.7400i −0.865119 2.59566i
\(898\) 26.1631 + 45.3158i 0.873074 + 1.51221i
\(899\) −11.8359 −0.394749
\(900\) −68.2896 −2.27632
\(901\) 2.74652 0.0915000
\(902\) −5.15392 −0.171607
\(903\) 0 0
\(904\) 20.6973 35.8487i 0.688381 1.19231i
\(905\) 0.789789 + 1.36795i 0.0262535 + 0.0454723i
\(906\) −75.5980 130.940i −2.51158 4.35018i
\(907\) 43.4253 1.44191 0.720956 0.692981i \(-0.243703\pi\)
0.720956 + 0.692981i \(0.243703\pi\)
\(908\) −34.3474 + 59.4915i −1.13986 + 1.97429i
\(909\) 12.0542 0.399814
\(910\) 0 0
\(911\) 24.8617 0.823706 0.411853 0.911250i \(-0.364882\pi\)
0.411853 + 0.911250i \(0.364882\pi\)
\(912\) −12.1338 + 21.0164i −0.401791 + 0.695923i
\(913\) −1.68593 −0.0557961
\(914\) 18.1666 + 31.4654i 0.600896 + 1.04078i
\(915\) −2.98210 5.16516i −0.0985853 0.170755i
\(916\) 35.8248 62.0503i 1.18368 2.05020i
\(917\) 0 0
\(918\) −66.6076 −2.19838
\(919\) −1.66327 −0.0548664 −0.0274332 0.999624i \(-0.508733\pi\)
−0.0274332 + 0.999624i \(0.508733\pi\)
\(920\) 32.9914 1.08769
\(921\) −43.6896 −1.43962
\(922\) 19.3625 + 33.5369i 0.637671 + 1.10448i
\(923\) −4.10708 12.3227i −0.135186 0.405607i
\(924\) 0 0
\(925\) 3.54260 + 6.13597i 0.116480 + 0.201749i
\(926\) −1.72857 + 2.99397i −0.0568044 + 0.0983880i
\(927\) −24.8229 42.9945i −0.815291 1.41212i
\(928\) 5.20488 9.01512i 0.170859 0.295936i
\(929\) −9.49521 −0.311528 −0.155764 0.987794i \(-0.549784\pi\)
−0.155764 + 0.987794i \(0.549784\pi\)
\(930\) −9.64490 + 16.7055i −0.316269 + 0.547793i
\(931\) 0 0
\(932\) −29.9243 + 51.8304i −0.980202 + 1.69776i
\(933\) −39.3508 + 68.1576i −1.28829 + 2.23138i
\(934\) 33.4486 1.09447
\(935\) −1.86328 + 3.22730i −0.0609359 + 0.105544i
\(936\) 44.4602 50.1347i 1.45323 1.63870i
\(937\) 6.41678 0.209627 0.104813 0.994492i \(-0.466575\pi\)
0.104813 + 0.994492i \(0.466575\pi\)
\(938\) 0 0
\(939\) −25.5602 44.2715i −0.834125 1.44475i
\(940\) −15.7872 −0.514922
\(941\) −25.7593 + 44.6164i −0.839730 + 1.45445i 0.0503911 + 0.998730i \(0.483953\pi\)
−0.890121 + 0.455725i \(0.849380\pi\)
\(942\) −74.1691 128.465i −2.41656 4.18561i
\(943\) −30.3282 −0.987621
\(944\) −13.8481 −0.450717
\(945\) 0 0
\(946\) −4.47838 7.75678i −0.145605 0.252195i
\(947\) 4.20109 7.27651i 0.136517 0.236455i −0.789659 0.613546i \(-0.789742\pi\)
0.926176 + 0.377091i \(0.123076\pi\)
\(948\) −14.1888 + 24.5757i −0.460831 + 0.798182i
\(949\) 5.62534 + 16.8780i 0.182606 + 0.547883i
\(950\) −18.4380 31.9356i −0.598209 1.03613i
\(951\) −42.1589 73.0213i −1.36709 2.36788i
\(952\) 0 0
\(953\) 18.0455 31.2558i 0.584552 1.01247i −0.410379 0.911915i \(-0.634604\pi\)
0.994931 0.100559i \(-0.0320631\pi\)
\(954\) 2.32235 + 4.02244i 0.0751890 + 0.130231i
\(955\) −5.67867 9.83575i −0.183758 0.318277i
\(956\) −29.8138 51.6390i −0.964246 1.67012i
\(957\) −3.20245 5.54681i −0.103521 0.179303i
\(958\) 35.8496 62.0933i 1.15825 2.00614i
\(959\) 0 0
\(960\) −14.7117 25.4815i −0.474820 0.822412i
\(961\) 11.0338 + 19.1111i 0.355928 + 0.616486i
\(962\) −14.8114 3.03148i −0.477540 0.0977390i
\(963\) 36.5205 63.2553i 1.17686 2.03837i
\(964\) −7.41656 + 12.8459i −0.238871 + 0.413737i
\(965\) 11.5805 + 20.0580i 0.372790 + 0.645691i
\(966\) 0 0
\(967\) 3.18338 0.102371 0.0511853 0.998689i \(-0.483700\pi\)
0.0511853 + 0.998689i \(0.483700\pi\)
\(968\) 43.3229 1.39245
\(969\) −33.9801 58.8553i −1.09160 1.89070i
\(970\) 9.02756 15.6362i 0.289857 0.502048i
\(971\) −37.7476 −1.21138 −0.605690 0.795701i \(-0.707103\pi\)
−0.605690 + 0.795701i \(0.707103\pi\)
\(972\) 33.2795 + 57.6419i 1.06744 + 1.84886i
\(973\) 0 0
\(974\) 68.0359 2.18001
\(975\) 12.6575 + 37.9771i 0.405365 + 1.21624i
\(976\) 2.54294 4.40451i 0.0813977 0.140985i
\(977\) −21.3076 −0.681692 −0.340846 0.940119i \(-0.610713\pi\)
−0.340846 + 0.940119i \(0.610713\pi\)
\(978\) 26.8645 46.5307i 0.859032 1.48789i
\(979\) 0.615168 1.06550i 0.0196609 0.0340536i
\(980\) 0 0
\(981\) −21.1044 + 36.5538i −0.673810 + 1.16707i
\(982\) 67.9819 2.16939
\(983\) −11.0158 + 19.0799i −0.351350 + 0.608556i −0.986486 0.163844i \(-0.947611\pi\)
0.635136 + 0.772400i \(0.280944\pi\)
\(984\) −20.5393 35.5752i −0.654770 1.13409i
\(985\) −0.722439 + 1.25130i −0.0230188 + 0.0398698i
\(986\) −30.5189 52.8603i −0.971919 1.68341i
\(987\) 0 0
\(988\) 50.0528 + 10.2444i 1.59239 + 0.325918i
\(989\) −26.3529 45.6446i −0.837975 1.45141i
\(990\) −6.30208 −0.200293
\(991\) −22.0259 −0.699676 −0.349838 0.936810i \(-0.613763\pi\)
−0.349838 + 0.936810i \(0.613763\pi\)
\(992\) 7.85617 0.249434
\(993\) 74.9164 2.37740
\(994\) 0 0
\(995\) −4.61376 + 7.99127i −0.146266 + 0.253340i
\(996\) −14.6105 25.3061i −0.462951 0.801855i
\(997\) 5.04102 + 8.73130i 0.159651 + 0.276523i 0.934743 0.355325i \(-0.115630\pi\)
−0.775092 + 0.631848i \(0.782297\pi\)
\(998\) 62.6450 1.98299
\(999\) −3.79408 + 6.57153i −0.120039 + 0.207914i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.g.l.263.6 12
7.2 even 3 637.2.h.l.471.1 12
7.3 odd 6 637.2.f.k.393.6 12
7.4 even 3 637.2.f.j.393.6 12
7.5 odd 6 91.2.h.b.16.1 yes 12
7.6 odd 2 91.2.g.b.81.6 yes 12
13.9 even 3 637.2.h.l.165.1 12
21.5 even 6 819.2.s.d.289.6 12
21.20 even 2 819.2.n.d.172.1 12
91.3 odd 6 8281.2.a.bz.1.1 6
91.9 even 3 inner 637.2.g.l.373.6 12
91.10 odd 6 8281.2.a.ce.1.6 6
91.48 odd 6 91.2.h.b.74.1 yes 12
91.55 odd 6 1183.2.e.h.508.6 12
91.61 odd 6 91.2.g.b.9.6 12
91.62 odd 6 1183.2.e.g.508.1 12
91.68 odd 6 1183.2.e.h.170.6 12
91.74 even 3 637.2.f.j.295.6 12
91.75 odd 6 1183.2.e.g.170.1 12
91.81 even 3 8281.2.a.ca.1.1 6
91.87 odd 6 637.2.f.k.295.6 12
91.88 even 6 8281.2.a.cf.1.6 6
273.152 even 6 819.2.n.d.100.1 12
273.230 even 6 819.2.s.d.802.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.6 12 91.61 odd 6
91.2.g.b.81.6 yes 12 7.6 odd 2
91.2.h.b.16.1 yes 12 7.5 odd 6
91.2.h.b.74.1 yes 12 91.48 odd 6
637.2.f.j.295.6 12 91.74 even 3
637.2.f.j.393.6 12 7.4 even 3
637.2.f.k.295.6 12 91.87 odd 6
637.2.f.k.393.6 12 7.3 odd 6
637.2.g.l.263.6 12 1.1 even 1 trivial
637.2.g.l.373.6 12 91.9 even 3 inner
637.2.h.l.165.1 12 13.9 even 3
637.2.h.l.471.1 12 7.2 even 3
819.2.n.d.100.1 12 273.152 even 6
819.2.n.d.172.1 12 21.20 even 2
819.2.s.d.289.6 12 21.5 even 6
819.2.s.d.802.6 12 273.230 even 6
1183.2.e.g.170.1 12 91.75 odd 6
1183.2.e.g.508.1 12 91.62 odd 6
1183.2.e.h.170.6 12 91.68 odd 6
1183.2.e.h.508.6 12 91.55 odd 6
8281.2.a.bz.1.1 6 91.3 odd 6
8281.2.a.ca.1.1 6 91.81 even 3
8281.2.a.ce.1.6 6 91.10 odd 6
8281.2.a.cf.1.6 6 91.88 even 6