Properties

Label 637.2.g.j.263.1
Level $637$
Weight $2$
Character 637.263
Analytic conductor $5.086$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(263,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.263"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,1,-2,-5,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.59066497296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 7x^{6} + 38x^{4} - 16x^{3} + 15x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 263.1
Root \(-1.11000 + 1.92258i\) of defining polynomial
Character \(\chi\) \(=\) 637.263
Dual form 637.2.g.j.373.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11000 + 1.92258i) q^{2} -0.549551 q^{3} +(-1.46422 - 2.53610i) q^{4} +(-2.11000 - 3.65463i) q^{5} +(0.610004 - 1.05656i) q^{6} +2.06113 q^{8} -2.69799 q^{9} +9.36845 q^{10} -0.549551 q^{11} +(0.804662 + 1.39372i) q^{12} +(2.95900 + 2.06017i) q^{13} +(1.15956 + 2.00841i) q^{15} +(0.640570 - 1.10950i) q^{16} +(-1.18944 - 2.06017i) q^{17} +(2.99478 - 5.18712i) q^{18} +3.61068 q^{19} +(-6.17901 + 10.7024i) q^{20} +(0.610004 - 1.05656i) q^{22} +(-2.90945 + 5.03931i) q^{23} -1.13270 q^{24} +(-6.40423 + 11.0925i) q^{25} +(-7.24536 + 3.40212i) q^{26} +3.13134 q^{27} +(1.79945 + 3.11673i) q^{29} -5.14844 q^{30} +(-2.57422 + 4.45868i) q^{31} +(3.48320 + 6.03308i) q^{32} +0.302006 q^{33} +5.28114 q^{34} +(3.95045 + 6.84238i) q^{36} +(0.164772 - 0.285393i) q^{37} +(-4.00787 + 6.94184i) q^{38} +(-1.62612 - 1.13217i) q^{39} +(-4.34900 - 7.53268i) q^{40} +(-3.14579 - 5.44866i) q^{41} +(-1.61000 + 2.78861i) q^{43} +(0.804662 + 1.39372i) q^{44} +(5.69278 + 9.86018i) q^{45} +(-6.45900 - 11.1873i) q^{46} +(4.10479 + 7.10970i) q^{47} +(-0.352026 + 0.609727i) q^{48} +(-14.2174 - 24.6253i) q^{50} +(0.653659 + 1.13217i) q^{51} +(0.892184 - 10.5209i) q^{52} +(-1.32933 + 2.30247i) q^{53} +(-3.47580 + 6.02026i) q^{54} +(1.15956 + 2.00841i) q^{55} -1.98426 q^{57} -7.98957 q^{58} +(-0.903765 - 1.56537i) q^{59} +(3.39568 - 5.88149i) q^{60} -0.609325 q^{61} +(-5.71479 - 9.89831i) q^{62} -12.9032 q^{64} +(1.28568 - 15.1610i) q^{65} +(-0.335228 + 0.580633i) q^{66} +10.3698 q^{67} +(-3.48320 + 6.03308i) q^{68} +(1.59889 - 2.76936i) q^{69} +(5.59889 - 9.69756i) q^{71} -5.56092 q^{72} +(2.45310 - 4.24890i) q^{73} +(0.365794 + 0.633574i) q^{74} +(3.51945 - 6.09587i) q^{75} +(-5.28682 - 9.15705i) q^{76} +(3.98169 - 1.86964i) q^{78} +(7.00855 + 12.1392i) q^{79} -5.40642 q^{80} +6.37315 q^{81} +13.9673 q^{82} +5.73159 q^{83} +(-5.01945 + 8.69395i) q^{85} +(-3.57422 - 6.19073i) q^{86} +(-0.988887 - 1.71280i) q^{87} -1.13270 q^{88} +(-3.73378 + 6.46709i) q^{89} -25.2760 q^{90} +17.0403 q^{92} +(1.41467 - 2.45027i) q^{93} -18.2253 q^{94} +(-7.61856 - 13.1957i) q^{95} +(-1.91420 - 3.31549i) q^{96} +(-3.42035 + 5.92422i) q^{97} +1.48269 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} - 2 q^{3} - 5 q^{4} - 7 q^{5} - 5 q^{6} - 12 q^{8} + 14 q^{9} + 22 q^{10} - 2 q^{11} + 12 q^{12} - 4 q^{13} - 3 q^{15} - 19 q^{16} - 4 q^{17} + 3 q^{18} - 2 q^{19} - 2 q^{20} - 5 q^{22} + 2 q^{23}+ \cdots + 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.11000 + 1.92258i −0.784891 + 1.35947i 0.144173 + 0.989553i \(0.453948\pi\)
−0.929064 + 0.369919i \(0.879385\pi\)
\(3\) −0.549551 −0.317283 −0.158642 0.987336i \(-0.550711\pi\)
−0.158642 + 0.987336i \(0.550711\pi\)
\(4\) −1.46422 2.53610i −0.732109 1.26805i
\(5\) −2.11000 3.65463i −0.943622 1.63440i −0.758486 0.651689i \(-0.774061\pi\)
−0.185136 0.982713i \(-0.559273\pi\)
\(6\) 0.610004 1.05656i 0.249033 0.431338i
\(7\) 0 0
\(8\) 2.06113 0.728720
\(9\) −2.69799 −0.899331
\(10\) 9.36845 2.96256
\(11\) −0.549551 −0.165696 −0.0828480 0.996562i \(-0.526402\pi\)
−0.0828480 + 0.996562i \(0.526402\pi\)
\(12\) 0.804662 + 1.39372i 0.232286 + 0.402331i
\(13\) 2.95900 + 2.06017i 0.820679 + 0.571389i
\(14\) 0 0
\(15\) 1.15956 + 2.00841i 0.299396 + 0.518569i
\(16\) 0.640570 1.10950i 0.160142 0.277375i
\(17\) −1.18944 2.06017i −0.288482 0.499665i 0.684966 0.728575i \(-0.259817\pi\)
−0.973448 + 0.228910i \(0.926484\pi\)
\(18\) 2.99478 5.18712i 0.705877 1.22262i
\(19\) 3.61068 0.828348 0.414174 0.910198i \(-0.364071\pi\)
0.414174 + 0.910198i \(0.364071\pi\)
\(20\) −6.17901 + 10.7024i −1.38167 + 2.39312i
\(21\) 0 0
\(22\) 0.610004 1.05656i 0.130053 0.225259i
\(23\) −2.90945 + 5.03931i −0.606662 + 1.05077i 0.385124 + 0.922865i \(0.374159\pi\)
−0.991786 + 0.127905i \(0.959175\pi\)
\(24\) −1.13270 −0.231211
\(25\) −6.40423 + 11.0925i −1.28085 + 2.21849i
\(26\) −7.24536 + 3.40212i −1.42093 + 0.667211i
\(27\) 3.13134 0.602626
\(28\) 0 0
\(29\) 1.79945 + 3.11673i 0.334149 + 0.578762i 0.983321 0.181879i \(-0.0582179\pi\)
−0.649172 + 0.760641i \(0.724885\pi\)
\(30\) −5.14844 −0.939973
\(31\) −2.57422 + 4.45868i −0.462344 + 0.800803i −0.999077 0.0429489i \(-0.986325\pi\)
0.536733 + 0.843752i \(0.319658\pi\)
\(32\) 3.48320 + 6.03308i 0.615749 + 1.06651i
\(33\) 0.302006 0.0525726
\(34\) 5.28114 0.905708
\(35\) 0 0
\(36\) 3.95045 + 6.84238i 0.658408 + 1.14040i
\(37\) 0.164772 0.285393i 0.0270883 0.0469183i −0.852163 0.523276i \(-0.824710\pi\)
0.879252 + 0.476357i \(0.158043\pi\)
\(38\) −4.00787 + 6.94184i −0.650163 + 1.12611i
\(39\) −1.62612 1.13217i −0.260388 0.181292i
\(40\) −4.34900 7.53268i −0.687637 1.19102i
\(41\) −3.14579 5.44866i −0.491289 0.850938i 0.508660 0.860967i \(-0.330141\pi\)
−0.999950 + 0.0100292i \(0.996808\pi\)
\(42\) 0 0
\(43\) −1.61000 + 2.78861i −0.245523 + 0.425259i −0.962279 0.272066i \(-0.912293\pi\)
0.716755 + 0.697325i \(0.245626\pi\)
\(44\) 0.804662 + 1.39372i 0.121307 + 0.210111i
\(45\) 5.69278 + 9.86018i 0.848629 + 1.46987i
\(46\) −6.45900 11.1873i −0.952328 1.64948i
\(47\) 4.10479 + 7.10970i 0.598745 + 1.03706i 0.993007 + 0.118058i \(0.0376669\pi\)
−0.394262 + 0.918998i \(0.629000\pi\)
\(48\) −0.352026 + 0.609727i −0.0508106 + 0.0880065i
\(49\) 0 0
\(50\) −14.2174 24.6253i −2.01065 3.48255i
\(51\) 0.653659 + 1.13217i 0.0915306 + 0.158536i
\(52\) 0.892184 10.5209i 0.123724 1.45898i
\(53\) −1.32933 + 2.30247i −0.182598 + 0.316269i −0.942764 0.333459i \(-0.891784\pi\)
0.760167 + 0.649728i \(0.225117\pi\)
\(54\) −3.47580 + 6.02026i −0.472996 + 0.819254i
\(55\) 1.15956 + 2.00841i 0.156354 + 0.270814i
\(56\) 0 0
\(57\) −1.98426 −0.262821
\(58\) −7.98957 −1.04908
\(59\) −0.903765 1.56537i −0.117660 0.203793i 0.801180 0.598424i \(-0.204206\pi\)
−0.918840 + 0.394630i \(0.870873\pi\)
\(60\) 3.39568 5.88149i 0.438381 0.759297i
\(61\) −0.609325 −0.0780160 −0.0390080 0.999239i \(-0.512420\pi\)
−0.0390080 + 0.999239i \(0.512420\pi\)
\(62\) −5.71479 9.89831i −0.725779 1.25709i
\(63\) 0 0
\(64\) −12.9032 −1.61290
\(65\) 1.28568 15.1610i 0.159469 1.88050i
\(66\) −0.335228 + 0.580633i −0.0412638 + 0.0714709i
\(67\) 10.3698 1.26687 0.633437 0.773794i \(-0.281644\pi\)
0.633437 + 0.773794i \(0.281644\pi\)
\(68\) −3.48320 + 6.03308i −0.422400 + 0.731619i
\(69\) 1.59889 2.76936i 0.192484 0.333392i
\(70\) 0 0
\(71\) 5.59889 9.69756i 0.664466 1.15089i −0.314964 0.949104i \(-0.601992\pi\)
0.979430 0.201785i \(-0.0646743\pi\)
\(72\) −5.56092 −0.655361
\(73\) 2.45310 4.24890i 0.287114 0.497296i −0.686005 0.727596i \(-0.740637\pi\)
0.973120 + 0.230300i \(0.0739707\pi\)
\(74\) 0.365794 + 0.633574i 0.0425227 + 0.0736515i
\(75\) 3.51945 6.09587i 0.406391 0.703891i
\(76\) −5.28682 9.15705i −0.606440 1.05039i
\(77\) 0 0
\(78\) 3.98169 1.86964i 0.450838 0.211695i
\(79\) 7.00855 + 12.1392i 0.788524 + 1.36576i 0.926871 + 0.375379i \(0.122488\pi\)
−0.138348 + 0.990384i \(0.544179\pi\)
\(80\) −5.40642 −0.604456
\(81\) 6.37315 0.708128
\(82\) 13.9673 1.54243
\(83\) 5.73159 0.629124 0.314562 0.949237i \(-0.398142\pi\)
0.314562 + 0.949237i \(0.398142\pi\)
\(84\) 0 0
\(85\) −5.01945 + 8.69395i −0.544436 + 0.942991i
\(86\) −3.57422 6.19073i −0.385418 0.667564i
\(87\) −0.988887 1.71280i −0.106020 0.183632i
\(88\) −1.13270 −0.120746
\(89\) −3.73378 + 6.46709i −0.395779 + 0.685510i −0.993200 0.116418i \(-0.962859\pi\)
0.597421 + 0.801928i \(0.296192\pi\)
\(90\) −25.2760 −2.66433
\(91\) 0 0
\(92\) 17.0403 1.77657
\(93\) 1.41467 2.45027i 0.146694 0.254082i
\(94\) −18.2253 −1.87980
\(95\) −7.61856 13.1957i −0.781647 1.35385i
\(96\) −1.91420 3.31549i −0.195367 0.338386i
\(97\) −3.42035 + 5.92422i −0.347284 + 0.601514i −0.985766 0.168123i \(-0.946229\pi\)
0.638482 + 0.769637i \(0.279563\pi\)
\(98\) 0 0
\(99\) 1.48269 0.149015
\(100\) 37.5088 3.75088
\(101\) −5.75913 −0.573054 −0.286527 0.958072i \(-0.592501\pi\)
−0.286527 + 0.958072i \(0.592501\pi\)
\(102\) −2.90226 −0.287366
\(103\) 0.285888 + 0.495173i 0.0281694 + 0.0487908i 0.879766 0.475406i \(-0.157699\pi\)
−0.851597 + 0.524197i \(0.824366\pi\)
\(104\) 6.09889 + 4.24629i 0.598045 + 0.416383i
\(105\) 0 0
\(106\) −2.95113 5.11150i −0.286639 0.496473i
\(107\) −2.03578 + 3.52608i −0.196807 + 0.340879i −0.947491 0.319782i \(-0.896390\pi\)
0.750685 + 0.660661i \(0.229724\pi\)
\(108\) −4.58496 7.94138i −0.441188 0.764160i
\(109\) −7.65434 + 13.2577i −0.733153 + 1.26986i 0.222376 + 0.974961i \(0.428619\pi\)
−0.955529 + 0.294897i \(0.904715\pi\)
\(110\) −5.14844 −0.490885
\(111\) −0.0905505 + 0.156838i −0.00859467 + 0.0148864i
\(112\) 0 0
\(113\) −6.08846 + 10.5455i −0.572754 + 0.992039i 0.423528 + 0.905883i \(0.360792\pi\)
−0.996282 + 0.0861558i \(0.972542\pi\)
\(114\) 2.20253 3.81490i 0.206286 0.357298i
\(115\) 24.5558 2.28984
\(116\) 5.26956 9.12714i 0.489266 0.847434i
\(117\) −7.98336 5.55833i −0.738062 0.513868i
\(118\) 4.01273 0.369402
\(119\) 0 0
\(120\) 2.39000 + 4.13959i 0.218176 + 0.377892i
\(121\) −10.6980 −0.972545
\(122\) 0.676353 1.17148i 0.0612341 0.106061i
\(123\) 1.72877 + 2.99432i 0.155878 + 0.269989i
\(124\) 15.0769 1.35394
\(125\) 32.9518 2.94730
\(126\) 0 0
\(127\) −0.980336 1.69799i −0.0869907 0.150672i 0.819247 0.573441i \(-0.194392\pi\)
−0.906238 + 0.422768i \(0.861058\pi\)
\(128\) 7.35619 12.7413i 0.650201 1.12618i
\(129\) 0.884779 1.53248i 0.0779005 0.134928i
\(130\) 27.7213 + 19.3006i 2.43131 + 1.69278i
\(131\) −3.25011 5.62935i −0.283963 0.491838i 0.688394 0.725337i \(-0.258316\pi\)
−0.972357 + 0.233498i \(0.924983\pi\)
\(132\) −0.442203 0.765918i −0.0384888 0.0666646i
\(133\) 0 0
\(134\) −11.5105 + 19.9368i −0.994358 + 1.72228i
\(135\) −6.60714 11.4439i −0.568652 0.984934i
\(136\) −2.45160 4.24629i −0.210223 0.364116i
\(137\) 7.62878 + 13.2134i 0.651770 + 1.12890i 0.982693 + 0.185242i \(0.0593068\pi\)
−0.330923 + 0.943658i \(0.607360\pi\)
\(138\) 3.54955 + 6.14800i 0.302158 + 0.523353i
\(139\) −8.74801 + 15.1520i −0.741997 + 1.28518i 0.209588 + 0.977790i \(0.432788\pi\)
−0.951585 + 0.307386i \(0.900546\pi\)
\(140\) 0 0
\(141\) −2.25579 3.90714i −0.189972 0.329041i
\(142\) 12.4296 + 21.5287i 1.04307 + 1.80665i
\(143\) −1.62612 1.13217i −0.135983 0.0946769i
\(144\) −1.72825 + 2.99342i −0.144021 + 0.249452i
\(145\) 7.59367 13.1526i 0.630620 1.09227i
\(146\) 5.44591 + 9.43260i 0.450707 + 0.780647i
\(147\) 0 0
\(148\) −0.965046 −0.0793263
\(149\) 4.55486 0.373149 0.186574 0.982441i \(-0.440261\pi\)
0.186574 + 0.982441i \(0.440261\pi\)
\(150\) 7.81321 + 13.5329i 0.637946 + 1.10496i
\(151\) 3.16456 5.48118i 0.257528 0.446052i −0.708051 0.706161i \(-0.750425\pi\)
0.965579 + 0.260109i \(0.0837586\pi\)
\(152\) 7.44210 0.603634
\(153\) 3.20911 + 5.55833i 0.259441 + 0.449365i
\(154\) 0 0
\(155\) 21.7265 1.74511
\(156\) −0.490300 + 5.78175i −0.0392555 + 0.462911i
\(157\) 8.15502 14.1249i 0.650841 1.12729i −0.332078 0.943252i \(-0.607750\pi\)
0.982919 0.184038i \(-0.0589170\pi\)
\(158\) −31.1181 −2.47562
\(159\) 0.730536 1.26533i 0.0579353 0.100347i
\(160\) 14.6991 25.4597i 1.16207 2.01276i
\(161\) 0 0
\(162\) −7.07422 + 12.2529i −0.555803 + 0.962680i
\(163\) 23.5998 1.84848 0.924241 0.381811i \(-0.124699\pi\)
0.924241 + 0.381811i \(0.124699\pi\)
\(164\) −9.21223 + 15.9561i −0.719354 + 1.24596i
\(165\) −0.637235 1.10372i −0.0496087 0.0859247i
\(166\) −6.36209 + 11.0195i −0.493794 + 0.855276i
\(167\) −8.91513 15.4415i −0.689874 1.19490i −0.971878 0.235483i \(-0.924333\pi\)
0.282005 0.959413i \(-0.409001\pi\)
\(168\) 0 0
\(169\) 4.51137 + 12.1921i 0.347028 + 0.937855i
\(170\) −11.1432 19.3006i −0.854646 1.48029i
\(171\) −9.74160 −0.744959
\(172\) 9.42958 0.718999
\(173\) 7.57135 0.575639 0.287820 0.957685i \(-0.407070\pi\)
0.287820 + 0.957685i \(0.407070\pi\)
\(174\) 4.39068 0.332856
\(175\) 0 0
\(176\) −0.352026 + 0.609727i −0.0265350 + 0.0459599i
\(177\) 0.496665 + 0.860249i 0.0373316 + 0.0646603i
\(178\) −8.28901 14.3570i −0.621288 1.07610i
\(179\) −22.8033 −1.70440 −0.852201 0.523215i \(-0.824733\pi\)
−0.852201 + 0.523215i \(0.824733\pi\)
\(180\) 16.6709 28.8749i 1.24258 2.15221i
\(181\) −13.9294 −1.03536 −0.517681 0.855574i \(-0.673205\pi\)
−0.517681 + 0.855574i \(0.673205\pi\)
\(182\) 0 0
\(183\) 0.334855 0.0247532
\(184\) −5.99676 + 10.3867i −0.442087 + 0.765717i
\(185\) −1.39068 −0.102244
\(186\) 3.14057 + 5.43963i 0.230278 + 0.398853i
\(187\) 0.653659 + 1.13217i 0.0478003 + 0.0827925i
\(188\) 12.0206 20.8203i 0.876692 1.51848i
\(189\) 0 0
\(190\) 33.8265 2.45403
\(191\) −12.6718 −0.916900 −0.458450 0.888720i \(-0.651595\pi\)
−0.458450 + 0.888720i \(0.651595\pi\)
\(192\) 7.09096 0.511746
\(193\) −4.15492 −0.299078 −0.149539 0.988756i \(-0.547779\pi\)
−0.149539 + 0.988756i \(0.547779\pi\)
\(194\) −7.59321 13.1518i −0.545160 0.944246i
\(195\) −0.706545 + 8.33177i −0.0505968 + 0.596650i
\(196\) 0 0
\(197\) 3.42510 + 5.93245i 0.244028 + 0.422669i 0.961858 0.273549i \(-0.0881977\pi\)
−0.717830 + 0.696219i \(0.754864\pi\)
\(198\) −1.64579 + 2.85059i −0.116961 + 0.202582i
\(199\) −0.406794 0.704587i −0.0288368 0.0499469i 0.851247 0.524766i \(-0.175847\pi\)
−0.880084 + 0.474819i \(0.842514\pi\)
\(200\) −13.2000 + 22.8630i −0.933379 + 1.61666i
\(201\) −5.69874 −0.401958
\(202\) 6.39265 11.0724i 0.449785 0.779051i
\(203\) 0 0
\(204\) 1.91420 3.31549i 0.134021 0.232131i
\(205\) −13.2752 + 22.9934i −0.927183 + 1.60593i
\(206\) −1.26935 −0.0884397
\(207\) 7.84968 13.5960i 0.545590 0.944990i
\(208\) 4.18121 1.96333i 0.289915 0.136132i
\(209\) −1.98426 −0.137254
\(210\) 0 0
\(211\) 6.98670 + 12.1013i 0.480984 + 0.833089i 0.999762 0.0218200i \(-0.00694608\pi\)
−0.518778 + 0.854909i \(0.673613\pi\)
\(212\) 7.78573 0.534726
\(213\) −3.07688 + 5.32931i −0.210824 + 0.365158i
\(214\) −4.51945 7.82792i −0.308943 0.535106i
\(215\) 13.5885 0.926725
\(216\) 6.45410 0.439146
\(217\) 0 0
\(218\) −16.9927 29.4322i −1.15089 1.99340i
\(219\) −1.34811 + 2.33499i −0.0910966 + 0.157784i
\(220\) 3.39568 5.88149i 0.228937 0.396530i
\(221\) 0.724756 8.54651i 0.0487524 0.574901i
\(222\) −0.201023 0.348182i −0.0134918 0.0233684i
\(223\) −6.76700 11.7208i −0.453152 0.784882i 0.545428 0.838158i \(-0.316367\pi\)
−0.998580 + 0.0532758i \(0.983034\pi\)
\(224\) 0 0
\(225\) 17.2786 29.9274i 1.15191 1.99516i
\(226\) −13.5164 23.4111i −0.899099 1.55729i
\(227\) −2.68376 4.64840i −0.178127 0.308525i 0.763112 0.646266i \(-0.223671\pi\)
−0.941239 + 0.337741i \(0.890337\pi\)
\(228\) 2.90538 + 5.03227i 0.192414 + 0.333270i
\(229\) 1.54955 + 2.68390i 0.102397 + 0.177357i 0.912672 0.408693i \(-0.134015\pi\)
−0.810275 + 0.586050i \(0.800682\pi\)
\(230\) −27.2570 + 47.2106i −1.79728 + 3.11297i
\(231\) 0 0
\(232\) 3.70890 + 6.42399i 0.243501 + 0.421756i
\(233\) 10.1856 + 17.6419i 0.667280 + 1.15576i 0.978662 + 0.205478i \(0.0658748\pi\)
−0.311382 + 0.950285i \(0.600792\pi\)
\(234\) 19.5479 9.17891i 1.27789 0.600044i
\(235\) 17.3222 30.0030i 1.12998 1.95718i
\(236\) −2.64662 + 4.58407i −0.172280 + 0.298398i
\(237\) −3.85156 6.67109i −0.250186 0.433334i
\(238\) 0 0
\(239\) −1.29157 −0.0835449 −0.0417725 0.999127i \(-0.513300\pi\)
−0.0417725 + 0.999127i \(0.513300\pi\)
\(240\) 2.97110 0.191784
\(241\) 1.06635 + 1.84697i 0.0686896 + 0.118974i 0.898325 0.439332i \(-0.144785\pi\)
−0.829635 + 0.558306i \(0.811452\pi\)
\(242\) 11.8748 20.5678i 0.763342 1.32215i
\(243\) −12.8964 −0.827304
\(244\) 0.892184 + 1.54531i 0.0571162 + 0.0989282i
\(245\) 0 0
\(246\) −7.67577 −0.489389
\(247\) 10.6840 + 7.43863i 0.679808 + 0.473309i
\(248\) −5.30581 + 9.18993i −0.336919 + 0.583561i
\(249\) −3.14980 −0.199611
\(250\) −36.5766 + 63.3525i −2.31331 + 4.00677i
\(251\) −15.3856 + 26.6486i −0.971128 + 1.68204i −0.278964 + 0.960302i \(0.589991\pi\)
−0.692164 + 0.721741i \(0.743342\pi\)
\(252\) 0 0
\(253\) 1.59889 2.76936i 0.100521 0.174108i
\(254\) 4.35271 0.273113
\(255\) 2.75845 4.77777i 0.172741 0.299196i
\(256\) 3.42761 + 5.93679i 0.214225 + 0.371049i
\(257\) −0.736805 + 1.27618i −0.0459607 + 0.0796062i −0.888091 0.459669i \(-0.847968\pi\)
0.842130 + 0.539275i \(0.181302\pi\)
\(258\) 1.96422 + 3.40212i 0.122287 + 0.211807i
\(259\) 0 0
\(260\) −40.3324 + 18.9385i −2.50131 + 1.17451i
\(261\) −4.85489 8.40892i −0.300510 0.520499i
\(262\) 14.4305 0.891520
\(263\) 6.67694 0.411718 0.205859 0.978582i \(-0.434001\pi\)
0.205859 + 0.978582i \(0.434001\pi\)
\(264\) 0.622475 0.0383107
\(265\) 11.2196 0.689214
\(266\) 0 0
\(267\) 2.05190 3.55400i 0.125574 0.217501i
\(268\) −15.1837 26.2989i −0.927489 1.60646i
\(269\) 3.78786 + 6.56077i 0.230950 + 0.400017i 0.958088 0.286474i \(-0.0924832\pi\)
−0.727138 + 0.686492i \(0.759150\pi\)
\(270\) 29.3358 1.78532
\(271\) 10.2840 17.8124i 0.624709 1.08203i −0.363888 0.931443i \(-0.618551\pi\)
0.988597 0.150585i \(-0.0481157\pi\)
\(272\) −3.04768 −0.184793
\(273\) 0 0
\(274\) −33.8719 −2.04628
\(275\) 3.51945 6.09587i 0.212231 0.367595i
\(276\) −9.36450 −0.563676
\(277\) −2.85271 4.94103i −0.171402 0.296878i 0.767508 0.641039i \(-0.221497\pi\)
−0.938910 + 0.344162i \(0.888163\pi\)
\(278\) −19.4207 33.6376i −1.16477 2.01745i
\(279\) 6.94523 12.0295i 0.415800 0.720187i
\(280\) 0 0
\(281\) −6.37315 −0.380190 −0.190095 0.981766i \(-0.560880\pi\)
−0.190095 + 0.981766i \(0.560880\pi\)
\(282\) 10.0157 0.596429
\(283\) −27.0194 −1.60614 −0.803068 0.595887i \(-0.796801\pi\)
−0.803068 + 0.595887i \(0.796801\pi\)
\(284\) −32.7920 −1.94585
\(285\) 4.18679 + 7.25173i 0.248004 + 0.429555i
\(286\) 3.98169 1.86964i 0.235443 0.110554i
\(287\) 0 0
\(288\) −9.39766 16.2772i −0.553762 0.959144i
\(289\) 5.67046 9.82152i 0.333556 0.577736i
\(290\) 16.8580 + 29.1989i 0.989937 + 1.71462i
\(291\) 1.87966 3.25566i 0.110187 0.190850i
\(292\) −14.3675 −0.840795
\(293\) −2.43736 + 4.22163i −0.142392 + 0.246630i −0.928397 0.371590i \(-0.878813\pi\)
0.786005 + 0.618220i \(0.212146\pi\)
\(294\) 0 0
\(295\) −3.81389 + 6.60586i −0.222053 + 0.384608i
\(296\) 0.339616 0.588232i 0.0197398 0.0341903i
\(297\) −1.72083 −0.0998527
\(298\) −5.05592 + 8.75710i −0.292881 + 0.507285i
\(299\) −18.9909 + 8.91736i −1.09827 + 0.515704i
\(300\) −20.6130 −1.19009
\(301\) 0 0
\(302\) 7.02535 + 12.1683i 0.404263 + 0.700205i
\(303\) 3.16493 0.181821
\(304\) 2.31290 4.00605i 0.132654 0.229763i
\(305\) 1.28568 + 2.22686i 0.0736177 + 0.127510i
\(306\) −14.2485 −0.814531
\(307\) −16.1760 −0.923212 −0.461606 0.887085i \(-0.652727\pi\)
−0.461606 + 0.887085i \(0.652727\pi\)
\(308\) 0 0
\(309\) −0.157110 0.272123i −0.00893769 0.0154805i
\(310\) −24.1165 + 41.7709i −1.36972 + 2.37243i
\(311\) −0.654032 + 1.13282i −0.0370868 + 0.0642362i −0.883973 0.467538i \(-0.845141\pi\)
0.846886 + 0.531774i \(0.178474\pi\)
\(312\) −3.35165 2.33355i −0.189750 0.132111i
\(313\) 6.59889 + 11.4296i 0.372991 + 0.646040i 0.990024 0.140897i \(-0.0449988\pi\)
−0.617033 + 0.786937i \(0.711665\pi\)
\(314\) 18.1042 + 31.3574i 1.02168 + 1.76960i
\(315\) 0 0
\(316\) 20.5241 35.5488i 1.15457 1.99977i
\(317\) 4.03776 + 6.99360i 0.226783 + 0.392800i 0.956853 0.290573i \(-0.0938458\pi\)
−0.730070 + 0.683373i \(0.760512\pi\)
\(318\) 1.62180 + 2.80903i 0.0909458 + 0.157523i
\(319\) −0.988887 1.71280i −0.0553671 0.0958986i
\(320\) 27.2258 + 47.1564i 1.52197 + 2.63613i
\(321\) 1.11877 1.93776i 0.0624435 0.108155i
\(322\) 0 0
\(323\) −4.29470 7.43863i −0.238963 0.413897i
\(324\) −9.33168 16.1629i −0.518426 0.897941i
\(325\) −41.8025 + 19.6288i −2.31879 + 1.08881i
\(326\) −26.1959 + 45.3726i −1.45086 + 2.51296i
\(327\) 4.20645 7.28579i 0.232617 0.402905i
\(328\) −6.48388 11.2304i −0.358012 0.620096i
\(329\) 0 0
\(330\) 2.82933 0.155750
\(331\) −14.9451 −0.821458 −0.410729 0.911757i \(-0.634726\pi\)
−0.410729 + 0.911757i \(0.634726\pi\)
\(332\) −8.39229 14.5359i −0.460587 0.797760i
\(333\) −0.444553 + 0.769988i −0.0243613 + 0.0421951i
\(334\) 39.5833 2.16590
\(335\) −21.8803 37.8979i −1.19545 2.07058i
\(336\) 0 0
\(337\) −17.1695 −0.935282 −0.467641 0.883918i \(-0.654896\pi\)
−0.467641 + 0.883918i \(0.654896\pi\)
\(338\) −28.4480 4.85981i −1.54737 0.264339i
\(339\) 3.34592 5.79530i 0.181725 0.314758i
\(340\) 29.3983 1.59435
\(341\) 1.41467 2.45027i 0.0766085 0.132690i
\(342\) 10.8132 18.7290i 0.584712 1.01275i
\(343\) 0 0
\(344\) −3.31843 + 5.74769i −0.178918 + 0.309895i
\(345\) −13.4947 −0.726528
\(346\) −8.40423 + 14.5566i −0.451814 + 0.782565i
\(347\) 1.96922 + 3.41079i 0.105713 + 0.183101i 0.914029 0.405648i \(-0.132954\pi\)
−0.808316 + 0.588749i \(0.799621\pi\)
\(348\) −2.89589 + 5.01583i −0.155236 + 0.268877i
\(349\) 8.58883 + 14.8763i 0.459750 + 0.796310i 0.998947 0.0458695i \(-0.0146058\pi\)
−0.539198 + 0.842179i \(0.681272\pi\)
\(350\) 0 0
\(351\) 9.26563 + 6.45110i 0.494563 + 0.344334i
\(352\) −1.91420 3.31549i −0.102027 0.176716i
\(353\) 18.1964 0.968498 0.484249 0.874930i \(-0.339093\pi\)
0.484249 + 0.874930i \(0.339093\pi\)
\(354\) −2.20520 −0.117205
\(355\) −47.2547 −2.50802
\(356\) 21.8682 1.15901
\(357\) 0 0
\(358\) 25.3118 43.8413i 1.33777 2.31709i
\(359\) −8.15631 14.1272i −0.430474 0.745603i 0.566440 0.824103i \(-0.308320\pi\)
−0.996914 + 0.0785003i \(0.974987\pi\)
\(360\) 11.7336 + 20.3231i 0.618413 + 1.07112i
\(361\) −5.96297 −0.313840
\(362\) 15.4617 26.7804i 0.812647 1.40755i
\(363\) 5.87909 0.308572
\(364\) 0 0
\(365\) −20.7042 −1.08371
\(366\) −0.371690 + 0.643787i −0.0194286 + 0.0336513i
\(367\) 36.1963 1.88943 0.944716 0.327889i \(-0.106337\pi\)
0.944716 + 0.327889i \(0.106337\pi\)
\(368\) 3.72741 + 6.45607i 0.194305 + 0.336546i
\(369\) 8.48731 + 14.7005i 0.441832 + 0.765275i
\(370\) 1.54366 2.67369i 0.0802508 0.138998i
\(371\) 0 0
\(372\) −8.28551 −0.429584
\(373\) 9.79784 0.507313 0.253657 0.967294i \(-0.418367\pi\)
0.253657 + 0.967294i \(0.418367\pi\)
\(374\) −2.90226 −0.150072
\(375\) −18.1087 −0.935129
\(376\) 8.46051 + 14.6540i 0.436317 + 0.755724i
\(377\) −1.09645 + 12.9296i −0.0564699 + 0.665907i
\(378\) 0 0
\(379\) −6.53275 11.3151i −0.335565 0.581216i 0.648028 0.761616i \(-0.275594\pi\)
−0.983593 + 0.180401i \(0.942261\pi\)
\(380\) −22.3104 + 38.6428i −1.14450 + 1.98233i
\(381\) 0.538745 + 0.933133i 0.0276007 + 0.0478058i
\(382\) 14.0658 24.3626i 0.719667 1.24650i
\(383\) −27.7929 −1.42015 −0.710076 0.704125i \(-0.751339\pi\)
−0.710076 + 0.704125i \(0.751339\pi\)
\(384\) −4.04260 + 7.00199i −0.206298 + 0.357319i
\(385\) 0 0
\(386\) 4.61198 7.98818i 0.234744 0.406588i
\(387\) 4.34378 7.52365i 0.220807 0.382449i
\(388\) 20.0325 1.01700
\(389\) −6.85233 + 11.8686i −0.347427 + 0.601761i −0.985792 0.167973i \(-0.946278\pi\)
0.638365 + 0.769734i \(0.279611\pi\)
\(390\) −15.2342 10.6067i −0.771416 0.537090i
\(391\) 13.8425 0.700044
\(392\) 0 0
\(393\) 1.78610 + 3.09361i 0.0900968 + 0.156052i
\(394\) −15.2075 −0.766143
\(395\) 29.5761 51.2274i 1.48814 2.57753i
\(396\) −2.17097 3.76024i −0.109096 0.188959i
\(397\) −7.91194 −0.397089 −0.198545 0.980092i \(-0.563621\pi\)
−0.198545 + 0.980092i \(0.563621\pi\)
\(398\) 1.80617 0.0905351
\(399\) 0 0
\(400\) 8.20472 + 14.2110i 0.410236 + 0.710549i
\(401\) 8.27212 14.3277i 0.413090 0.715493i −0.582136 0.813092i \(-0.697783\pi\)
0.995226 + 0.0975987i \(0.0311162\pi\)
\(402\) 6.32562 10.9563i 0.315493 0.546451i
\(403\) −16.8028 + 7.88990i −0.837006 + 0.393024i
\(404\) 8.43261 + 14.6057i 0.419538 + 0.726661i
\(405\) −13.4474 23.2915i −0.668205 1.15737i
\(406\) 0 0
\(407\) −0.0905505 + 0.156838i −0.00448842 + 0.00777417i
\(408\) 1.34728 + 2.33355i 0.0667002 + 0.115528i
\(409\) 12.8909 + 22.3278i 0.637416 + 1.10404i 0.985998 + 0.166758i \(0.0533299\pi\)
−0.348582 + 0.937278i \(0.613337\pi\)
\(410\) −29.4711 51.0455i −1.45548 2.52096i
\(411\) −4.19240 7.26146i −0.206796 0.358181i
\(412\) 0.837205 1.45008i 0.0412461 0.0714404i
\(413\) 0 0
\(414\) 17.4263 + 30.1833i 0.856458 + 1.48343i
\(415\) −12.0937 20.9469i −0.593655 1.02824i
\(416\) −2.12240 + 25.0279i −0.104059 + 1.22709i
\(417\) 4.80748 8.32680i 0.235423 0.407765i
\(418\) 2.20253 3.81490i 0.107729 0.186593i
\(419\) 11.8436 + 20.5137i 0.578596 + 1.00216i 0.995641 + 0.0932720i \(0.0297326\pi\)
−0.417044 + 0.908886i \(0.636934\pi\)
\(420\) 0 0
\(421\) −20.8246 −1.01493 −0.507465 0.861672i \(-0.669417\pi\)
−0.507465 + 0.861672i \(0.669417\pi\)
\(422\) −31.0211 −1.51008
\(423\) −11.0747 19.1819i −0.538470 0.932657i
\(424\) −2.73993 + 4.74570i −0.133063 + 0.230471i
\(425\) 30.4698 1.47800
\(426\) −6.83069 11.8311i −0.330948 0.573219i
\(427\) 0 0
\(428\) 11.9233 0.576335
\(429\) 0.893637 + 0.622186i 0.0431452 + 0.0300394i
\(430\) −15.0832 + 26.1249i −0.727378 + 1.25986i
\(431\) 19.9504 0.960978 0.480489 0.877001i \(-0.340459\pi\)
0.480489 + 0.877001i \(0.340459\pi\)
\(432\) 2.00584 3.47422i 0.0965061 0.167153i
\(433\) 0.00834083 0.0144467i 0.000400835 0.000694266i −0.865825 0.500347i \(-0.833206\pi\)
0.866226 + 0.499653i \(0.166539\pi\)
\(434\) 0 0
\(435\) −4.17311 + 7.22804i −0.200085 + 0.346558i
\(436\) 44.8305 2.14699
\(437\) −10.5051 + 18.1954i −0.502527 + 0.870402i
\(438\) −2.99281 5.18369i −0.143002 0.247686i
\(439\) 6.74801 11.6879i 0.322065 0.557833i −0.658849 0.752275i \(-0.728956\pi\)
0.980914 + 0.194442i \(0.0622897\pi\)
\(440\) 2.39000 + 4.13959i 0.113939 + 0.197347i
\(441\) 0 0
\(442\) 15.6269 + 10.8801i 0.743296 + 0.517512i
\(443\) 7.50552 + 12.9999i 0.356598 + 0.617646i 0.987390 0.158306i \(-0.0506032\pi\)
−0.630792 + 0.775952i \(0.717270\pi\)
\(444\) 0.530342 0.0251689
\(445\) 31.5131 1.49387
\(446\) 30.0456 1.42270
\(447\) −2.50313 −0.118394
\(448\) 0 0
\(449\) 11.8918 20.5972i 0.561210 0.972044i −0.436181 0.899859i \(-0.643669\pi\)
0.997391 0.0721852i \(-0.0229973\pi\)
\(450\) 38.3586 + 66.4390i 1.80824 + 3.13196i
\(451\) 1.72877 + 2.99432i 0.0814046 + 0.140997i
\(452\) 35.6593 1.67727
\(453\) −1.73909 + 3.01219i −0.0817095 + 0.141525i
\(454\) 11.9159 0.559242
\(455\) 0 0
\(456\) −4.08981 −0.191523
\(457\) −9.06567 + 15.7022i −0.424074 + 0.734518i −0.996333 0.0855548i \(-0.972734\pi\)
0.572259 + 0.820073i \(0.306067\pi\)
\(458\) −6.88003 −0.321483
\(459\) −3.72455 6.45110i −0.173847 0.301112i
\(460\) −35.9550 62.2759i −1.67641 2.90363i
\(461\) −3.03980 + 5.26508i −0.141577 + 0.245219i −0.928091 0.372354i \(-0.878551\pi\)
0.786513 + 0.617573i \(0.211884\pi\)
\(462\) 0 0
\(463\) 5.19289 0.241334 0.120667 0.992693i \(-0.461497\pi\)
0.120667 + 0.992693i \(0.461497\pi\)
\(464\) 4.61068 0.214046
\(465\) −11.9398 −0.553695
\(466\) −45.2242 −2.09497
\(467\) −4.34984 7.53414i −0.201287 0.348638i 0.747657 0.664085i \(-0.231179\pi\)
−0.948943 + 0.315447i \(0.897846\pi\)
\(468\) −2.40711 + 28.3852i −0.111268 + 1.31211i
\(469\) 0 0
\(470\) 38.4555 + 66.6069i 1.77382 + 3.07235i
\(471\) −4.48160 + 7.76236i −0.206501 + 0.357671i
\(472\) −1.86278 3.22643i −0.0857413 0.148508i
\(473\) 0.884779 1.53248i 0.0406822 0.0704636i
\(474\) 17.1010 0.785474
\(475\) −23.1237 + 40.0513i −1.06099 + 1.83768i
\(476\) 0 0
\(477\) 3.58653 6.21205i 0.164216 0.284430i
\(478\) 1.43365 2.48316i 0.0655737 0.113577i
\(479\) −24.2188 −1.10659 −0.553294 0.832986i \(-0.686629\pi\)
−0.553294 + 0.832986i \(0.686629\pi\)
\(480\) −8.07793 + 13.9914i −0.368705 + 0.638616i
\(481\) 1.07552 0.505020i 0.0490394 0.0230269i
\(482\) −4.73461 −0.215655
\(483\) 0 0
\(484\) 15.6642 + 27.1312i 0.712009 + 1.23323i
\(485\) 28.8678 1.31082
\(486\) 14.3150 24.7944i 0.649343 1.12470i
\(487\) −0.886967 1.53627i −0.0401923 0.0696151i 0.845229 0.534404i \(-0.179464\pi\)
−0.885422 + 0.464788i \(0.846130\pi\)
\(488\) −1.25590 −0.0568519
\(489\) −12.9693 −0.586493
\(490\) 0 0
\(491\) 3.34483 + 5.79342i 0.150950 + 0.261453i 0.931577 0.363544i \(-0.118433\pi\)
−0.780627 + 0.624997i \(0.785100\pi\)
\(492\) 5.06259 8.76867i 0.228239 0.395322i
\(493\) 4.28067 7.41434i 0.192792 0.333925i
\(494\) −26.1607 + 12.2840i −1.17703 + 0.552683i
\(495\) −3.12847 5.41867i −0.140614 0.243551i
\(496\) 3.29794 + 5.71220i 0.148082 + 0.256485i
\(497\) 0 0
\(498\) 3.49629 6.05575i 0.156673 0.271365i
\(499\) −12.3194 21.3378i −0.551491 0.955210i −0.998167 0.0605143i \(-0.980726\pi\)
0.446677 0.894695i \(-0.352607\pi\)
\(500\) −48.2486 83.5690i −2.15774 3.73732i
\(501\) 4.89932 + 8.48588i 0.218886 + 0.379121i
\(502\) −34.1560 59.1600i −1.52446 2.64044i
\(503\) 16.5726 28.7046i 0.738936 1.27987i −0.214039 0.976825i \(-0.568662\pi\)
0.952975 0.303049i \(-0.0980046\pi\)
\(504\) 0 0
\(505\) 12.1518 + 21.0475i 0.540747 + 0.936601i
\(506\) 3.54955 + 6.14800i 0.157797 + 0.273312i
\(507\) −2.47923 6.70019i −0.110106 0.297566i
\(508\) −2.87085 + 4.97246i −0.127373 + 0.220617i
\(509\) −13.8290 + 23.9526i −0.612961 + 1.06168i 0.377778 + 0.925896i \(0.376688\pi\)
−0.990739 + 0.135783i \(0.956645\pi\)
\(510\) 6.12377 + 10.6067i 0.271165 + 0.469672i
\(511\) 0 0
\(512\) 14.2061 0.627828
\(513\) 11.3063 0.499184
\(514\) −1.63571 2.83314i −0.0721482 0.124964i
\(515\) 1.20645 2.08963i 0.0531626 0.0920802i
\(516\) −5.18204 −0.228126
\(517\) −2.25579 3.90714i −0.0992096 0.171836i
\(518\) 0 0
\(519\) −4.16085 −0.182641
\(520\) 2.64995 31.2489i 0.116208 1.37036i
\(521\) 0.711083 1.23163i 0.0311531 0.0539587i −0.850029 0.526737i \(-0.823415\pi\)
0.881182 + 0.472778i \(0.156749\pi\)
\(522\) 21.5558 0.943472
\(523\) −1.68089 + 2.91139i −0.0735002 + 0.127306i −0.900433 0.434995i \(-0.856750\pi\)
0.826933 + 0.562301i \(0.190084\pi\)
\(524\) −9.51772 + 16.4852i −0.415784 + 0.720158i
\(525\) 0 0
\(526\) −7.41143 + 12.8370i −0.323154 + 0.559718i
\(527\) 12.2475 0.533511
\(528\) 0.193456 0.335076i 0.00841910 0.0145823i
\(529\) −5.42979 9.40468i −0.236078 0.408899i
\(530\) −12.4538 + 21.5706i −0.540958 + 0.936966i
\(531\) 2.43835 + 4.22335i 0.105815 + 0.183278i
\(532\) 0 0
\(533\) 1.91681 22.6035i 0.0830260 0.979065i
\(534\) 4.55524 + 7.88990i 0.197124 + 0.341429i
\(535\) 17.1820 0.742844
\(536\) 21.3735 0.923197
\(537\) 12.5316 0.540779
\(538\) −16.8182 −0.725083
\(539\) 0 0
\(540\) −19.3486 + 33.5127i −0.832630 + 1.44216i
\(541\) −3.88144 6.72286i −0.166876 0.289038i 0.770444 0.637508i \(-0.220035\pi\)
−0.937320 + 0.348470i \(0.886701\pi\)
\(542\) 22.8306 + 39.5437i 0.980657 + 1.69855i
\(543\) 7.65490 0.328503
\(544\) 8.28613 14.3520i 0.355265 0.615337i
\(545\) 64.6027 2.76728
\(546\) 0 0
\(547\) −6.19247 −0.264771 −0.132385 0.991198i \(-0.542264\pi\)
−0.132385 + 0.991198i \(0.542264\pi\)
\(548\) 22.3404 38.6947i 0.954334 1.65295i
\(549\) 1.64395 0.0701622
\(550\) 7.81321 + 13.5329i 0.333157 + 0.577044i
\(551\) 6.49723 + 11.2535i 0.276791 + 0.479416i
\(552\) 3.29553 5.70802i 0.140267 0.242949i
\(553\) 0 0
\(554\) 12.6661 0.538129
\(555\) 0.764247 0.0324405
\(556\) 51.2360 2.17289
\(557\) 29.5458 1.25190 0.625948 0.779865i \(-0.284712\pi\)
0.625948 + 0.779865i \(0.284712\pi\)
\(558\) 15.4185 + 26.7056i 0.652716 + 1.13054i
\(559\) −10.5090 + 4.93461i −0.444484 + 0.208712i
\(560\) 0 0
\(561\) −0.359219 0.622186i −0.0151662 0.0262687i
\(562\) 7.07422 12.2529i 0.298408 0.516858i
\(563\) 3.23368 + 5.60090i 0.136283 + 0.236050i 0.926087 0.377310i \(-0.123151\pi\)
−0.789804 + 0.613360i \(0.789818\pi\)
\(564\) −6.60593 + 11.4418i −0.278160 + 0.481787i
\(565\) 51.3867 2.16185
\(566\) 29.9916 51.9470i 1.26064 2.18350i
\(567\) 0 0
\(568\) 11.5401 19.9880i 0.484210 0.838676i
\(569\) −10.8478 + 18.7889i −0.454763 + 0.787673i −0.998675 0.0514697i \(-0.983609\pi\)
0.543911 + 0.839143i \(0.316943\pi\)
\(570\) −18.5894 −0.778624
\(571\) 8.32088 14.4122i 0.348218 0.603131i −0.637715 0.770272i \(-0.720120\pi\)
0.985933 + 0.167141i \(0.0534536\pi\)
\(572\) −0.490300 + 5.78175i −0.0205005 + 0.241747i
\(573\) 6.96381 0.290917
\(574\) 0 0
\(575\) −37.2656 64.5459i −1.55408 2.69175i
\(576\) 34.8127 1.45053
\(577\) −1.32120 + 2.28839i −0.0550024 + 0.0952669i −0.892216 0.451610i \(-0.850850\pi\)
0.837213 + 0.546877i \(0.184183\pi\)
\(578\) 12.5885 + 21.8038i 0.523611 + 0.906921i
\(579\) 2.28334 0.0948925
\(580\) −44.4752 −1.84673
\(581\) 0 0
\(582\) 4.17286 + 7.22760i 0.172970 + 0.299594i
\(583\) 0.730536 1.26533i 0.0302557 0.0524044i
\(584\) 5.05617 8.75755i 0.209226 0.362390i
\(585\) −3.46875 + 40.9044i −0.143415 + 1.69119i
\(586\) −5.41096 9.37205i −0.223525 0.387156i
\(587\) 3.69407 + 6.39832i 0.152471 + 0.264087i 0.932135 0.362110i \(-0.117944\pi\)
−0.779664 + 0.626198i \(0.784610\pi\)
\(588\) 0 0
\(589\) −9.29470 + 16.0989i −0.382981 + 0.663343i
\(590\) −8.46687 14.6651i −0.348576 0.603751i
\(591\) −1.88227 3.26018i −0.0774261 0.134106i
\(592\) −0.211096 0.365628i −0.00867597 0.0150272i
\(593\) 23.4515 + 40.6192i 0.963037 + 1.66803i 0.714799 + 0.699330i \(0.246518\pi\)
0.248238 + 0.968699i \(0.420149\pi\)
\(594\) 1.91013 3.30844i 0.0783735 0.135747i
\(595\) 0 0
\(596\) −6.66931 11.5516i −0.273186 0.473171i
\(597\) 0.223554 + 0.387207i 0.00914945 + 0.0158473i
\(598\) 3.93563 46.4099i 0.160940 1.89784i
\(599\) −0.811449 + 1.40547i −0.0331549 + 0.0574260i −0.882127 0.471012i \(-0.843889\pi\)
0.848972 + 0.528438i \(0.177222\pi\)
\(600\) 7.25406 12.5644i 0.296146 0.512939i
\(601\) −23.5174 40.7333i −0.959293 1.66154i −0.724223 0.689566i \(-0.757801\pi\)
−0.235070 0.971978i \(-0.575532\pi\)
\(602\) 0 0
\(603\) −27.9777 −1.13934
\(604\) −18.5344 −0.754155
\(605\) 22.5728 + 39.0973i 0.917715 + 1.58953i
\(606\) −3.51309 + 6.08485i −0.142709 + 0.247180i
\(607\) 28.3869 1.15219 0.576095 0.817383i \(-0.304576\pi\)
0.576095 + 0.817383i \(0.304576\pi\)
\(608\) 12.5767 + 21.7836i 0.510054 + 0.883440i
\(609\) 0 0
\(610\) −5.70843 −0.231127
\(611\) −2.50115 + 29.4942i −0.101186 + 1.19321i
\(612\) 9.39766 16.2772i 0.379878 0.657968i
\(613\) −47.5564 −1.92079 −0.960393 0.278650i \(-0.910113\pi\)
−0.960393 + 0.278650i \(0.910113\pi\)
\(614\) 17.9554 31.0997i 0.724621 1.25508i
\(615\) 7.29543 12.6360i 0.294180 0.509535i
\(616\) 0 0
\(617\) 8.24338 14.2780i 0.331866 0.574809i −0.651012 0.759068i \(-0.725655\pi\)
0.982878 + 0.184259i \(0.0589885\pi\)
\(618\) 0.697572 0.0280604
\(619\) −15.9706 + 27.6619i −0.641912 + 1.11182i 0.343094 + 0.939301i \(0.388525\pi\)
−0.985006 + 0.172523i \(0.944808\pi\)
\(620\) −31.8123 55.1005i −1.27761 2.21289i
\(621\) −9.11047 + 15.7798i −0.365591 + 0.633222i
\(622\) −1.45196 2.51486i −0.0582182 0.100837i
\(623\) 0 0
\(624\) −2.29779 + 1.07895i −0.0919851 + 0.0431925i
\(625\) −37.5072 64.9644i −1.50029 2.59858i
\(626\) −29.2992 −1.17103
\(627\) 1.09045 0.0435484
\(628\) −47.7629 −1.90595
\(629\) −0.783945 −0.0312579
\(630\) 0 0
\(631\) −6.59577 + 11.4242i −0.262573 + 0.454790i −0.966925 0.255061i \(-0.917905\pi\)
0.704352 + 0.709851i \(0.251238\pi\)
\(632\) 14.4456 + 25.0204i 0.574613 + 0.995259i
\(633\) −3.83955 6.65029i −0.152608 0.264325i
\(634\) −17.9277 −0.712000
\(635\) −4.13702 + 7.16554i −0.164173 + 0.284356i
\(636\) −4.27865 −0.169660
\(637\) 0 0
\(638\) 4.39068 0.173829
\(639\) −15.1058 + 26.1640i −0.597575 + 1.03503i
\(640\) −62.0864 −2.45418
\(641\) 23.5814 + 40.8441i 0.931408 + 1.61325i 0.780918 + 0.624634i \(0.214752\pi\)
0.150490 + 0.988612i \(0.451915\pi\)
\(642\) 2.48367 + 4.30184i 0.0980227 + 0.169780i
\(643\) −1.40679 + 2.43664i −0.0554785 + 0.0960916i −0.892431 0.451184i \(-0.851002\pi\)
0.836952 + 0.547276i \(0.184335\pi\)
\(644\) 0 0
\(645\) −7.46755 −0.294035
\(646\) 19.0685 0.750241
\(647\) −25.9783 −1.02131 −0.510656 0.859785i \(-0.670597\pi\)
−0.510656 + 0.859785i \(0.670597\pi\)
\(648\) 13.1359 0.516027
\(649\) 0.496665 + 0.860249i 0.0194958 + 0.0337677i
\(650\) 8.66304 102.157i 0.339792 4.00692i
\(651\) 0 0
\(652\) −34.5553 59.8515i −1.35329 2.34397i
\(653\) 13.4213 23.2464i 0.525216 0.909700i −0.474353 0.880335i \(-0.657318\pi\)
0.999569 0.0293654i \(-0.00934865\pi\)
\(654\) 9.33835 + 16.1745i 0.365158 + 0.632473i
\(655\) −13.7155 + 23.7559i −0.535908 + 0.928219i
\(656\) −8.06039 −0.314705
\(657\) −6.61846 + 11.4635i −0.258211 + 0.447234i
\(658\) 0 0
\(659\) −7.78666 + 13.4869i −0.303325 + 0.525375i −0.976887 0.213756i \(-0.931430\pi\)
0.673562 + 0.739131i \(0.264764\pi\)
\(660\) −1.86610 + 3.23218i −0.0726379 + 0.125812i
\(661\) −33.3804 −1.29835 −0.649174 0.760640i \(-0.724885\pi\)
−0.649174 + 0.760640i \(0.724885\pi\)
\(662\) 16.5891 28.7332i 0.644755 1.11675i
\(663\) −0.398291 + 4.69674i −0.0154683 + 0.182406i
\(664\) 11.8136 0.458455
\(665\) 0 0
\(666\) −0.986911 1.70938i −0.0382420 0.0662371i
\(667\) −20.9416 −0.810861
\(668\) −26.1074 + 45.2193i −1.01013 + 1.74959i
\(669\) 3.71881 + 6.44117i 0.143778 + 0.249030i
\(670\) 97.1490 3.75319
\(671\) 0.334855 0.0129269
\(672\) 0 0
\(673\) −0.427076 0.739717i −0.0164626 0.0285140i 0.857677 0.514189i \(-0.171907\pi\)
−0.874139 + 0.485675i \(0.838574\pi\)
\(674\) 19.0582 33.0098i 0.734095 1.27149i
\(675\) −20.0538 + 34.7342i −0.771872 + 1.33692i
\(676\) 24.3148 29.2932i 0.935183 1.12666i
\(677\) −12.2725 21.2565i −0.471669 0.816955i 0.527805 0.849365i \(-0.323015\pi\)
−0.999475 + 0.0324100i \(0.989682\pi\)
\(678\) 7.42797 + 12.8656i 0.285269 + 0.494101i
\(679\) 0 0
\(680\) −10.3458 + 17.9194i −0.396742 + 0.687177i
\(681\) 1.47486 + 2.55454i 0.0565168 + 0.0978900i
\(682\) 3.14057 + 5.43963i 0.120259 + 0.208294i
\(683\) 21.5186 + 37.2714i 0.823387 + 1.42615i 0.903146 + 0.429334i \(0.141252\pi\)
−0.0797583 + 0.996814i \(0.525415\pi\)
\(684\) 14.2638 + 24.7057i 0.545391 + 0.944645i
\(685\) 32.1935 55.7608i 1.23005 2.13051i
\(686\) 0 0
\(687\) −0.851558 1.47494i −0.0324889 0.0562725i
\(688\) 2.06264 + 3.57260i 0.0786374 + 0.136204i
\(689\) −8.67699 + 4.07436i −0.330567 + 0.155221i
\(690\) 14.9791 25.9446i 0.570246 0.987695i
\(691\) −12.9098 + 22.3604i −0.491110 + 0.850628i −0.999948 0.0102348i \(-0.996742\pi\)
0.508837 + 0.860863i \(0.330075\pi\)
\(692\) −11.0861 19.2017i −0.421431 0.729939i
\(693\) 0 0
\(694\) −8.74338 −0.331894
\(695\) 73.8334 2.80066
\(696\) −2.03823 3.53031i −0.0772588 0.133816i
\(697\) −7.48346 + 12.9617i −0.283456 + 0.490961i
\(698\) −38.1345 −1.44341
\(699\) −5.59750 9.69515i −0.211717 0.366704i
\(700\) 0 0
\(701\) 16.3178 0.616313 0.308156 0.951336i \(-0.400288\pi\)
0.308156 + 0.951336i \(0.400288\pi\)
\(702\) −22.6877 + 10.6532i −0.856291 + 0.402079i
\(703\) 0.594938 1.03046i 0.0224385 0.0388647i
\(704\) 7.09096 0.267251
\(705\) −9.51945 + 16.4882i −0.358523 + 0.620981i
\(706\) −20.1981 + 34.9841i −0.760166 + 1.31665i
\(707\) 0 0
\(708\) 1.45445 2.51918i 0.0546616 0.0946767i
\(709\) −22.3794 −0.840476 −0.420238 0.907414i \(-0.638053\pi\)
−0.420238 + 0.907414i \(0.638053\pi\)
\(710\) 52.4529 90.8511i 1.96852 3.40958i
\(711\) −18.9090 32.7514i −0.709144 1.22827i
\(712\) −7.69581 + 13.3295i −0.288413 + 0.499545i
\(713\) −14.9791 25.9446i −0.560973 0.971634i
\(714\) 0 0
\(715\) −0.706545 + 8.33177i −0.0264233 + 0.311590i
\(716\) 33.3891 + 57.8315i 1.24781 + 2.16127i
\(717\) 0.709785 0.0265074
\(718\) 36.2142 1.35150
\(719\) 22.7445 0.848227 0.424113 0.905609i \(-0.360586\pi\)
0.424113 + 0.905609i \(0.360586\pi\)
\(720\) 14.5865 0.543606
\(721\) 0 0
\(722\) 6.61892 11.4643i 0.246331 0.426657i
\(723\) −0.586013 1.01500i −0.0217941 0.0377484i
\(724\) 20.3956 + 35.3263i 0.757997 + 1.31289i
\(725\) −46.0963 −1.71197
\(726\) −6.52582 + 11.3030i −0.242196 + 0.419495i
\(727\) −18.7274 −0.694561 −0.347280 0.937761i \(-0.612895\pi\)
−0.347280 + 0.937761i \(0.612895\pi\)
\(728\) 0 0
\(729\) −12.0322 −0.445638
\(730\) 22.9818 39.8056i 0.850594 1.47327i
\(731\) 7.66002 0.283316
\(732\) −0.490300 0.849225i −0.0181220 0.0313883i
\(733\) −0.846341 1.46591i −0.0312603 0.0541445i 0.849972 0.526828i \(-0.176619\pi\)
−0.881232 + 0.472683i \(0.843285\pi\)
\(734\) −40.1781 + 69.5904i −1.48300 + 2.56863i
\(735\) 0 0
\(736\) −40.5368 −1.49421
\(737\) −5.69874 −0.209916
\(738\) −37.6838 −1.38716
\(739\) 46.9161 1.72584 0.862919 0.505343i \(-0.168634\pi\)
0.862919 + 0.505343i \(0.168634\pi\)
\(740\) 2.03625 + 3.52689i 0.0748541 + 0.129651i
\(741\) −5.87141 4.08791i −0.215692 0.150173i
\(742\) 0 0
\(743\) −6.44831 11.1688i −0.236566 0.409744i 0.723161 0.690680i \(-0.242688\pi\)
−0.959727 + 0.280936i \(0.909355\pi\)
\(744\) 2.91581 5.05034i 0.106899 0.185154i
\(745\) −9.61078 16.6464i −0.352112 0.609875i
\(746\) −10.8756 + 18.8372i −0.398186 + 0.689678i
\(747\) −15.4638 −0.565790
\(748\) 1.91420 3.31549i 0.0699900 0.121226i
\(749\) 0 0
\(750\) 20.1007 34.8155i 0.733974 1.27128i
\(751\) 22.8166 39.5196i 0.832591 1.44209i −0.0633855 0.997989i \(-0.520190\pi\)
0.895977 0.444101i \(-0.146477\pi\)
\(752\) 10.5176 0.383538
\(753\) 8.45515 14.6447i 0.308123 0.533684i
\(754\) −23.6411 16.4599i −0.860959 0.599434i
\(755\) −26.7089 −0.972038
\(756\) 0 0
\(757\) 19.0782 + 33.0445i 0.693410 + 1.20102i 0.970714 + 0.240239i \(0.0772260\pi\)
−0.277303 + 0.960782i \(0.589441\pi\)
\(758\) 29.0055 1.05353
\(759\) −0.878673 + 1.52191i −0.0318938 + 0.0552417i
\(760\) −15.7028 27.1981i −0.569602 0.986580i
\(761\) −42.7345 −1.54912 −0.774562 0.632498i \(-0.782030\pi\)
−0.774562 + 0.632498i \(0.782030\pi\)
\(762\) −2.39203 −0.0866543
\(763\) 0 0
\(764\) 18.5543 + 32.1370i 0.671271 + 1.16267i
\(765\) 13.5425 23.4562i 0.489628 0.848061i
\(766\) 30.8502 53.4342i 1.11466 1.93066i
\(767\) 0.550686 6.49383i 0.0198841 0.234479i
\(768\) −1.88364 3.26257i −0.0679702 0.117728i
\(769\) 10.8088 + 18.7215i 0.389777 + 0.675113i 0.992419 0.122898i \(-0.0392189\pi\)
−0.602643 + 0.798011i \(0.705886\pi\)
\(770\) 0 0
\(771\) 0.404912 0.701329i 0.0145826 0.0252577i
\(772\) 6.08371 + 10.5373i 0.218958 + 0.379246i
\(773\) 5.00056 + 8.66123i 0.179858 + 0.311523i 0.941832 0.336085i \(-0.109103\pi\)
−0.761974 + 0.647608i \(0.775770\pi\)
\(774\) 9.64323 + 16.7026i 0.346619 + 0.600361i
\(775\) −32.9718 57.1089i −1.18438 2.05141i
\(776\) −7.04980 + 12.2106i −0.253073 + 0.438335i
\(777\) 0 0
\(778\) −15.2122 26.3484i −0.545385 0.944634i
\(779\) −11.3584 19.6734i −0.406958 0.704872i
\(780\) 22.1647 10.4076i 0.793624 0.372654i
\(781\) −3.07688 + 5.32931i −0.110099 + 0.190698i
\(782\) −15.3652 + 26.6133i −0.549459 + 0.951691i
\(783\) 5.63467 + 9.75954i 0.201367 + 0.348778i
\(784\) 0 0
\(785\) −68.8285 −2.45659
\(786\) −7.93031 −0.282865
\(787\) 20.8939 + 36.1893i 0.744787 + 1.29001i 0.950294 + 0.311353i \(0.100782\pi\)
−0.205507 + 0.978656i \(0.565884\pi\)
\(788\) 10.0302 17.3728i 0.357310 0.618880i
\(789\) −3.66932 −0.130631
\(790\) 65.6593 + 113.725i 2.33605 + 4.04616i
\(791\) 0 0
\(792\) 3.05601 0.108591
\(793\) −1.80299 1.25531i −0.0640261 0.0445775i
\(794\) 8.78229 15.2114i 0.311672 0.539831i
\(795\) −6.16574 −0.218676
\(796\) −1.19127 + 2.06334i −0.0422234 + 0.0731331i
\(797\) −11.3856 + 19.7204i −0.403297 + 0.698531i −0.994122 0.108269i \(-0.965469\pi\)
0.590825 + 0.806800i \(0.298803\pi\)
\(798\) 0 0
\(799\) 9.76481 16.9131i 0.345454 0.598344i
\(800\) −89.2290 −3.15472
\(801\) 10.0737 17.4482i 0.355937 0.616501i
\(802\) 18.3642 + 31.8077i 0.648461 + 1.12317i
\(803\) −1.34811 + 2.33499i −0.0475736 + 0.0824000i
\(804\) 8.34419 + 14.4526i 0.294277 + 0.509703i
\(805\) 0 0
\(806\) 3.48216 41.0626i 0.122654 1.44637i
\(807\) −2.08163 3.60548i −0.0732767 0.126919i
\(808\) −11.8703 −0.417596
\(809\) −37.5702 −1.32090 −0.660449 0.750871i \(-0.729634\pi\)
−0.660449 + 0.750871i \(0.729634\pi\)
\(810\) 59.7065 2.09787
\(811\) −11.5936 −0.407106 −0.203553 0.979064i \(-0.565249\pi\)
−0.203553 + 0.979064i \(0.565249\pi\)
\(812\) 0 0
\(813\) −5.65159 + 9.78884i −0.198210 + 0.343309i
\(814\) −0.201023 0.348182i −0.00704584 0.0122038i
\(815\) −49.7957 86.2487i −1.74427 3.02116i
\(816\) 1.67486 0.0586317
\(817\) −5.81321 + 10.0688i −0.203379 + 0.352262i
\(818\) −57.2359 −2.00121
\(819\) 0 0
\(820\) 77.7514 2.71520
\(821\) −15.5121 + 26.8678i −0.541378 + 0.937693i 0.457448 + 0.889237i \(0.348764\pi\)
−0.998825 + 0.0484569i \(0.984570\pi\)
\(822\) 18.6143 0.649250
\(823\) −14.5387 25.1818i −0.506789 0.877784i −0.999969 0.00785682i \(-0.997499\pi\)
0.493180 0.869927i \(-0.335834\pi\)
\(824\) 0.589253 + 1.02062i 0.0205276 + 0.0355549i
\(825\) −1.93412 + 3.34999i −0.0673374 + 0.116632i
\(826\) 0 0
\(827\) 14.8920 0.517846 0.258923 0.965898i \(-0.416632\pi\)
0.258923 + 0.965898i \(0.416632\pi\)
\(828\) −45.9745 −1.59773
\(829\) 4.37189 0.151842 0.0759210 0.997114i \(-0.475810\pi\)
0.0759210 + 0.997114i \(0.475810\pi\)
\(830\) 53.6961 1.86382
\(831\) 1.56771 + 2.71535i 0.0543832 + 0.0941944i
\(832\) −38.1806 26.5828i −1.32367 0.921593i
\(833\) 0 0
\(834\) 10.6726 + 18.4856i 0.369563 + 0.640103i
\(835\) −37.6219 + 65.1631i −1.30196 + 2.25506i
\(836\) 2.90538 + 5.03227i 0.100485 + 0.174045i
\(837\) −8.06076 + 13.9616i −0.278621 + 0.482585i
\(838\) −52.5856 −1.81654
\(839\) 11.4109 19.7643i 0.393948 0.682338i −0.599018 0.800735i \(-0.704442\pi\)
0.992966 + 0.118397i \(0.0377756\pi\)
\(840\) 0 0
\(841\) 8.02399 13.8980i 0.276689 0.479240i
\(842\) 23.1154 40.0371i 0.796610 1.37977i
\(843\) 3.50237 0.120628
\(844\) 20.4601 35.4379i 0.704265 1.21982i
\(845\) 35.0387 42.2128i 1.20537 1.45216i
\(846\) 49.1718 1.69056
\(847\) 0 0
\(848\) 1.70306 + 2.94979i 0.0584833 + 0.101296i
\(849\) 14.8485 0.509601
\(850\) −33.8216 + 58.5808i −1.16007 + 2.00931i
\(851\) 0.958790 + 1.66067i 0.0328669 + 0.0569271i
\(852\) 18.0209 0.617385
\(853\) −23.3549 −0.799656 −0.399828 0.916590i \(-0.630930\pi\)
−0.399828 + 0.916590i \(0.630930\pi\)
\(854\) 0 0
\(855\) 20.5548 + 35.6020i 0.702960 + 1.21756i
\(856\) −4.19602 + 7.26771i −0.143417 + 0.248405i
\(857\) −21.7653 + 37.6986i −0.743488 + 1.28776i 0.207410 + 0.978254i \(0.433497\pi\)
−0.950898 + 0.309505i \(0.899837\pi\)
\(858\) −2.18814 + 1.02746i −0.0747020 + 0.0350770i
\(859\) 10.2557 + 17.7633i 0.349919 + 0.606078i 0.986235 0.165351i \(-0.0528757\pi\)
−0.636316 + 0.771429i \(0.719542\pi\)
\(860\) −19.8965 34.4617i −0.678464 1.17513i
\(861\) 0 0
\(862\) −22.1451 + 38.3564i −0.754263 + 1.30642i
\(863\) 25.3339 + 43.8796i 0.862376 + 1.49368i 0.869629 + 0.493706i \(0.164358\pi\)
−0.00725258 + 0.999974i \(0.502309\pi\)
\(864\) 10.9071 + 18.8916i 0.371067 + 0.642706i
\(865\) −15.9756 27.6705i −0.543186 0.940826i
\(866\) 0.0185167 + 0.0320719i 0.000629224 + 0.00108985i
\(867\) −3.11621 + 5.39743i −0.105832 + 0.183306i
\(868\) 0 0
\(869\) −3.85156 6.67109i −0.130655 0.226301i
\(870\) −9.26434 16.0463i −0.314091 0.544021i
\(871\) 30.6843 + 21.3636i 1.03970 + 0.723878i
\(872\) −15.7766 + 27.3259i −0.534263 + 0.925371i
\(873\) 9.22809 15.9835i 0.312323 0.540960i
\(874\) −23.3214 40.3939i −0.788858 1.36634i
\(875\) 0 0
\(876\) 7.89568 0.266770
\(877\) −47.0361 −1.58830 −0.794148 0.607725i \(-0.792082\pi\)
−0.794148 + 0.607725i \(0.792082\pi\)
\(878\) 14.9806 + 25.9472i 0.505572 + 0.875677i
\(879\) 1.33945 2.32000i 0.0451787 0.0782517i
\(880\) 2.97110 0.100156
\(881\) −8.05674 13.9547i −0.271439 0.470145i 0.697792 0.716301i \(-0.254166\pi\)
−0.969230 + 0.246155i \(0.920833\pi\)
\(882\) 0 0
\(883\) 42.0733 1.41588 0.707940 0.706273i \(-0.249625\pi\)
0.707940 + 0.706273i \(0.249625\pi\)
\(884\) −22.7360 + 10.6759i −0.764694 + 0.359069i
\(885\) 2.09593 3.63026i 0.0704539 0.122030i
\(886\) −33.3246 −1.11956
\(887\) −20.8814 + 36.1676i −0.701128 + 1.21439i 0.266942 + 0.963713i \(0.413987\pi\)
−0.968071 + 0.250678i \(0.919347\pi\)
\(888\) −0.186636 + 0.323264i −0.00626311 + 0.0108480i
\(889\) 0 0
\(890\) −34.9797 + 60.5866i −1.17252 + 2.03087i
\(891\) −3.50237 −0.117334
\(892\) −19.8167 + 34.3236i −0.663513 + 1.14924i
\(893\) 14.8211 + 25.6709i 0.495969 + 0.859043i
\(894\) 2.77848 4.81248i 0.0929264 0.160953i
\(895\) 48.1151 + 83.3379i 1.60831 + 2.78568i
\(896\) 0 0
\(897\) 10.4365 4.90055i 0.348464 0.163625i
\(898\) 26.3999 + 45.7260i 0.880977 + 1.52590i
\(899\) −18.5287 −0.617966
\(900\) −101.198 −3.37328
\(901\) 6.32465 0.210705
\(902\) −7.67577 −0.255575
\(903\) 0 0
\(904\) −12.5491 + 21.7357i −0.417377 + 0.722919i
\(905\) 29.3910 + 50.9068i 0.976991 + 1.69220i
\(906\) −3.86079 6.68708i −0.128266 0.222163i
\(907\) −15.4225 −0.512095 −0.256048 0.966664i \(-0.582420\pi\)
−0.256048 + 0.966664i \(0.582420\pi\)
\(908\) −7.85921 + 13.6125i −0.260817 + 0.451748i
\(909\) 15.5381 0.515366
\(910\) 0 0
\(911\) 37.5462 1.24396 0.621981 0.783033i \(-0.286328\pi\)
0.621981 + 0.783033i \(0.286328\pi\)
\(912\) −1.27105 + 2.20153i −0.0420888 + 0.0729000i
\(913\) −3.14980 −0.104243
\(914\) −20.1259 34.8590i −0.665704 1.15303i
\(915\) −0.706545 1.22377i −0.0233577 0.0404567i
\(916\) 4.53776 7.85963i 0.149932 0.259689i
\(917\) 0 0
\(918\) 16.5370 0.545804
\(919\) −9.47464 −0.312540 −0.156270 0.987714i \(-0.549947\pi\)
−0.156270 + 0.987714i \(0.549947\pi\)
\(920\) 50.6127 1.66865
\(921\) 8.88953 0.292920
\(922\) −6.74837 11.6885i −0.222246 0.384941i
\(923\) 36.5458 17.1604i 1.20292 0.564842i
\(924\) 0 0
\(925\) 2.11047 + 3.65545i 0.0693919 + 0.120190i
\(926\) −5.76413 + 9.98377i −0.189421 + 0.328087i
\(927\) −0.771324 1.33597i −0.0253336 0.0438791i
\(928\) −12.5357 + 21.7124i −0.411503 + 0.712745i
\(929\) −35.8439 −1.17600 −0.588001 0.808860i \(-0.700085\pi\)
−0.588001 + 0.808860i \(0.700085\pi\)
\(930\) 13.2532 22.9553i 0.434591 0.752733i
\(931\) 0 0
\(932\) 29.8278 51.6633i 0.977043 1.69229i
\(933\) 0.359424 0.622541i 0.0117670 0.0203811i
\(934\) 19.3134 0.631952
\(935\) 2.75845 4.77777i 0.0902108 0.156250i
\(936\) −16.4548 11.4565i −0.537841 0.374466i
\(937\) 31.3709 1.02484 0.512422 0.858734i \(-0.328748\pi\)
0.512422 + 0.858734i \(0.328748\pi\)
\(938\) 0 0
\(939\) −3.62643 6.28116i −0.118344 0.204978i
\(940\) −101.454 −3.30907
\(941\) 22.3922 38.7844i 0.729964 1.26433i −0.226934 0.973910i \(-0.572870\pi\)
0.956898 0.290425i \(-0.0937966\pi\)
\(942\) −9.94919 17.2325i −0.324162 0.561465i
\(943\) 36.6100 1.19219
\(944\) −2.31570 −0.0753695
\(945\) 0 0
\(946\) 1.96422 + 3.40212i 0.0638622 + 0.110613i
\(947\) 17.5337 30.3692i 0.569768 0.986868i −0.426820 0.904337i \(-0.640366\pi\)
0.996588 0.0825312i \(-0.0263004\pi\)
\(948\) −11.2790 + 19.5359i −0.366326 + 0.634495i
\(949\) 16.0122 7.51868i 0.519778 0.244067i
\(950\) −51.3347 88.9143i −1.66552 2.88476i
\(951\) −2.21896 3.84334i −0.0719546 0.124629i
\(952\) 0 0
\(953\) −29.4852 + 51.0699i −0.955120 + 1.65432i −0.221027 + 0.975268i \(0.570941\pi\)
−0.734093 + 0.679048i \(0.762393\pi\)
\(954\) 7.96212 + 13.7908i 0.257783 + 0.446494i
\(955\) 26.7376 + 46.3108i 0.865208 + 1.49858i
\(956\) 1.89114 + 3.27556i 0.0611640 + 0.105939i
\(957\) 0.543444 + 0.941273i 0.0175671 + 0.0304270i
\(958\) 26.8830 46.5627i 0.868550 1.50437i
\(959\) 0 0
\(960\) −14.9620 25.9149i −0.482895 0.836399i
\(961\) 2.24677 + 3.89152i 0.0724765 + 0.125533i
\(962\) −0.222888 + 2.62835i −0.00718618 + 0.0847413i
\(963\) 5.49253 9.51334i 0.176994 0.306563i
\(964\) 3.12273 5.40873i 0.100576 0.174204i
\(965\) 8.76690 + 15.1847i 0.282217 + 0.488813i
\(966\) 0 0
\(967\) 30.3671 0.976540 0.488270 0.872693i \(-0.337628\pi\)
0.488270 + 0.872693i \(0.337628\pi\)
\(968\) −22.0500 −0.708713
\(969\) 2.36016 + 4.08791i 0.0758191 + 0.131323i
\(970\) −32.0434 + 55.5008i −1.02885 + 1.78202i
\(971\) 49.5175 1.58909 0.794546 0.607204i \(-0.207709\pi\)
0.794546 + 0.607204i \(0.207709\pi\)
\(972\) 18.8831 + 32.7065i 0.605676 + 1.04906i
\(973\) 0 0
\(974\) 3.93815 0.126186
\(975\) 22.9726 10.7870i 0.735713 0.345461i
\(976\) −0.390315 + 0.676045i −0.0124937 + 0.0216397i
\(977\) −10.8671 −0.347670 −0.173835 0.984775i \(-0.555616\pi\)
−0.173835 + 0.984775i \(0.555616\pi\)
\(978\) 14.3960 24.9346i 0.460333 0.797320i
\(979\) 2.05190 3.55400i 0.0655790 0.113586i
\(980\) 0 0
\(981\) 20.6514 35.7692i 0.659347 1.14202i
\(982\) −14.8511 −0.473918
\(983\) 1.17417 2.03371i 0.0374501 0.0648654i −0.846693 0.532082i \(-0.821410\pi\)
0.884143 + 0.467217i \(0.154743\pi\)
\(984\) 3.56322 + 6.17169i 0.113591 + 0.196746i
\(985\) 14.4539 25.0350i 0.460541 0.797680i
\(986\) 9.50312 + 16.4599i 0.302641 + 0.524190i
\(987\) 0 0
\(988\) 3.22139 37.9875i 0.102486 1.20854i
\(989\) −9.36845 16.2266i −0.297899 0.515977i
\(990\) 13.8905 0.441468
\(991\) 24.4815 0.777681 0.388841 0.921305i \(-0.372876\pi\)
0.388841 + 0.921305i \(0.372876\pi\)
\(992\) −35.8661 −1.13875
\(993\) 8.21311 0.260635
\(994\) 0 0
\(995\) −1.71667 + 2.97336i −0.0544222 + 0.0942620i
\(996\) 4.61199 + 7.98821i 0.146137 + 0.253116i
\(997\) −3.31171 5.73604i −0.104883 0.181662i 0.808808 0.588073i \(-0.200113\pi\)
−0.913690 + 0.406411i \(0.866780\pi\)
\(998\) 54.6982 1.73144
\(999\) 0.515956 0.893662i 0.0163241 0.0282742i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.g.j.263.1 8
7.2 even 3 637.2.h.i.471.4 8
7.3 odd 6 91.2.f.c.29.1 yes 8
7.4 even 3 637.2.f.i.393.1 8
7.5 odd 6 637.2.h.h.471.4 8
7.6 odd 2 637.2.g.k.263.1 8
13.9 even 3 637.2.h.i.165.4 8
21.17 even 6 819.2.o.h.757.4 8
28.3 even 6 1456.2.s.q.1121.2 8
91.3 odd 6 1183.2.a.k.1.4 4
91.9 even 3 inner 637.2.g.j.373.1 8
91.10 odd 6 1183.2.a.l.1.1 4
91.24 even 12 1183.2.c.g.337.7 8
91.48 odd 6 637.2.h.h.165.4 8
91.61 odd 6 637.2.g.k.373.1 8
91.74 even 3 637.2.f.i.295.1 8
91.80 even 12 1183.2.c.g.337.2 8
91.81 even 3 8281.2.a.bp.1.4 4
91.87 odd 6 91.2.f.c.22.1 8
91.88 even 6 8281.2.a.bt.1.1 4
273.269 even 6 819.2.o.h.568.4 8
364.87 even 6 1456.2.s.q.113.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.f.c.22.1 8 91.87 odd 6
91.2.f.c.29.1 yes 8 7.3 odd 6
637.2.f.i.295.1 8 91.74 even 3
637.2.f.i.393.1 8 7.4 even 3
637.2.g.j.263.1 8 1.1 even 1 trivial
637.2.g.j.373.1 8 91.9 even 3 inner
637.2.g.k.263.1 8 7.6 odd 2
637.2.g.k.373.1 8 91.61 odd 6
637.2.h.h.165.4 8 91.48 odd 6
637.2.h.h.471.4 8 7.5 odd 6
637.2.h.i.165.4 8 13.9 even 3
637.2.h.i.471.4 8 7.2 even 3
819.2.o.h.568.4 8 273.269 even 6
819.2.o.h.757.4 8 21.17 even 6
1183.2.a.k.1.4 4 91.3 odd 6
1183.2.a.l.1.1 4 91.10 odd 6
1183.2.c.g.337.2 8 91.80 even 12
1183.2.c.g.337.7 8 91.24 even 12
1456.2.s.q.113.2 8 364.87 even 6
1456.2.s.q.1121.2 8 28.3 even 6
8281.2.a.bp.1.4 4 91.81 even 3
8281.2.a.bt.1.1 4 91.88 even 6