Properties

Label 637.2.g.i
Level $637$
Weight $2$
Character orbit 637.g
Analytic conductor $5.086$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.100088711424.6
Defining polynomial: \(x^{8} - 13 x^{6} + 130 x^{4} - 507 x^{2} + 1521\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \beta_{2} + \beta_{5} ) q^{2} + \beta_{3} q^{3} + ( -2 - 2 \beta_{2} - \beta_{6} ) q^{4} + ( -\beta_{3} + \beta_{7} ) q^{5} + ( \beta_{1} + 2 \beta_{4} ) q^{6} + 3 q^{8} + ( 3 + \beta_{5} - \beta_{6} ) q^{9} +O(q^{10})\) \( q + ( \beta_{2} + \beta_{5} ) q^{2} + \beta_{3} q^{3} + ( -2 - 2 \beta_{2} - \beta_{6} ) q^{4} + ( -\beta_{3} + \beta_{7} ) q^{5} + ( \beta_{1} + 2 \beta_{4} ) q^{6} + 3 q^{8} + ( 3 + \beta_{5} - \beta_{6} ) q^{9} + ( -2 \beta_{1} - \beta_{4} ) q^{10} + ( 1 - 3 \beta_{5} + 3 \beta_{6} ) q^{11} + ( \beta_{1} - \beta_{3} - \beta_{4} + \beta_{7} ) q^{12} + ( \beta_{1} + \beta_{7} ) q^{13} + ( -6 - 6 \beta_{2} + \beta_{6} ) q^{15} + ( -\beta_{2} + \beta_{5} ) q^{16} + ( \beta_{1} - \beta_{3} - \beta_{4} + \beta_{7} ) q^{17} + 3 \beta_{5} q^{18} + \beta_{3} q^{19} + ( \beta_{1} + 2 \beta_{4} - \beta_{7} ) q^{20} + ( 10 \beta_{2} + \beta_{5} ) q^{22} + ( 2 \beta_{2} - 2 \beta_{5} ) q^{23} + 3 \beta_{3} q^{24} + ( \beta_{2} - \beta_{5} ) q^{25} + ( -2 \beta_{1} + \beta_{3} + \beta_{7} ) q^{26} + ( 2 \beta_{1} + \beta_{3} + \beta_{4} ) q^{27} + ( 1 + \beta_{2} + \beta_{6} ) q^{29} + ( 3 - 6 \beta_{5} + 6 \beta_{6} ) q^{30} + ( -\beta_{1} - 2 \beta_{4} + \beta_{7} ) q^{31} + ( 4 + 4 \beta_{2} + \beta_{6} ) q^{32} + ( -6 \beta_{1} - 2 \beta_{3} - 3 \beta_{4} ) q^{33} + ( -4 \beta_{1} + 3 \beta_{3} - 2 \beta_{4} ) q^{34} + ( -3 - 3 \beta_{2} - 2 \beta_{6} ) q^{36} + ( 6 \beta_{2} + 2 \beta_{5} ) q^{37} + ( \beta_{1} + 2 \beta_{4} ) q^{38} + ( -2 - 7 \beta_{2} + 3 \beta_{5} - 4 \beta_{6} ) q^{39} + ( -3 \beta_{3} + 3 \beta_{7} ) q^{40} + ( -2 \beta_{1} + 2 \beta_{4} ) q^{41} + ( -6 \beta_{2} - 5 \beta_{5} ) q^{43} + ( -11 - 11 \beta_{2} - 4 \beta_{6} ) q^{44} + ( -\beta_{1} - 4 \beta_{3} + \beta_{4} + 4 \beta_{7} ) q^{45} + ( 4 + 4 \beta_{2} - 2 \beta_{6} ) q^{46} + ( \beta_{1} + 3 \beta_{3} - \beta_{4} - 3 \beta_{7} ) q^{47} + ( \beta_{1} + 2 \beta_{4} + 2 \beta_{7} ) q^{48} + ( 2 + 2 \beta_{2} - \beta_{6} ) q^{50} + ( -9 - 9 \beta_{2} - 5 \beta_{6} ) q^{51} + ( 2 \beta_{1} + 3 \beta_{4} - 2 \beta_{7} ) q^{52} + ( 5 \beta_{2} - 2 \beta_{5} ) q^{53} + 3 \beta_{7} q^{54} + ( 3 \beta_{1} + 2 \beta_{3} - 3 \beta_{4} - 2 \beta_{7} ) q^{55} + ( 6 + \beta_{5} - \beta_{6} ) q^{57} + ( -4 + \beta_{5} - \beta_{6} ) q^{58} + ( -\beta_{1} - \beta_{3} + \beta_{4} + \beta_{7} ) q^{59} + ( 9 \beta_{2} + 5 \beta_{5} ) q^{60} + 2 \beta_{3} q^{61} + ( -2 \beta_{1} + 3 \beta_{3} + 2 \beta_{4} - 3 \beta_{7} ) q^{62} + ( -5 + 6 \beta_{5} - 6 \beta_{6} ) q^{64} + ( -5 + 2 \beta_{2} + \beta_{5} + 3 \beta_{6} ) q^{65} + ( \beta_{1} + 2 \beta_{4} - 9 \beta_{7} ) q^{66} + q^{67} + ( 3 \beta_{1} + 6 \beta_{4} - 4 \beta_{7} ) q^{68} + ( -2 \beta_{1} - 4 \beta_{4} - 4 \beta_{7} ) q^{69} + 4 \beta_{2} q^{71} + ( 9 + 3 \beta_{5} - 3 \beta_{6} ) q^{72} + 2 \beta_{7} q^{73} + ( -12 - 12 \beta_{2} - 6 \beta_{6} ) q^{74} + ( -\beta_{1} - 2 \beta_{4} - 2 \beta_{7} ) q^{75} + ( \beta_{1} - \beta_{3} - \beta_{4} + \beta_{7} ) q^{76} + ( 10 - 4 \beta_{2} - 2 \beta_{5} + 7 \beta_{6} ) q^{78} + ( 4 + 4 \beta_{2} + 2 \beta_{6} ) q^{79} + ( -2 \beta_{1} - 2 \beta_{3} - \beta_{4} ) q^{80} + ( -6 + 4 \beta_{5} - 4 \beta_{6} ) q^{81} + ( 4 \beta_{1} - 6 \beta_{3} + 2 \beta_{4} ) q^{82} + ( -2 \beta_{1} - \beta_{3} - \beta_{4} ) q^{83} + ( 9 \beta_{2} + 5 \beta_{5} ) q^{85} + ( 21 + 21 \beta_{2} + 6 \beta_{6} ) q^{86} + ( -\beta_{1} + \beta_{4} ) q^{87} + ( 3 - 9 \beta_{5} + 9 \beta_{6} ) q^{88} -3 \beta_{7} q^{89} + ( -6 \beta_{1} - 3 \beta_{3} - 3 \beta_{4} ) q^{90} -2 q^{92} + ( -9 \beta_{2} - 5 \beta_{5} ) q^{93} + ( 4 \beta_{1} + 3 \beta_{3} + 2 \beta_{4} ) q^{94} + ( -6 - 6 \beta_{2} + \beta_{6} ) q^{95} + ( -\beta_{1} + 3 \beta_{3} + \beta_{4} - 3 \beta_{7} ) q^{96} + ( -\beta_{1} - 2 \beta_{4} + 4 \beta_{7} ) q^{97} + ( -6 - 11 \beta_{5} + 11 \beta_{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 6 q^{4} + 24 q^{8} + 28 q^{9} + O(q^{10}) \) \( 8 q - 2 q^{2} - 6 q^{4} + 24 q^{8} + 28 q^{9} - 4 q^{11} - 26 q^{15} + 6 q^{16} + 6 q^{18} - 38 q^{22} - 12 q^{23} - 6 q^{25} + 2 q^{29} + 14 q^{32} - 8 q^{36} - 20 q^{37} + 26 q^{39} + 14 q^{43} - 36 q^{44} + 20 q^{46} + 10 q^{50} - 26 q^{51} - 24 q^{53} + 52 q^{57} - 28 q^{58} - 26 q^{60} - 16 q^{64} - 52 q^{65} + 8 q^{67} - 16 q^{71} + 84 q^{72} - 36 q^{74} + 78 q^{78} + 12 q^{79} - 32 q^{81} - 26 q^{85} + 72 q^{86} - 12 q^{88} - 16 q^{92} + 26 q^{93} - 26 q^{95} - 92 q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 13 x^{6} + 130 x^{4} - 507 x^{2} + 1521\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{6} - 10 \nu^{4} + 130 \nu^{2} - 507 \)\()/390\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{7} + 70 \nu^{5} - 520 \nu^{3} + 3237 \nu \)\()/1170\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{7} + 10 \nu^{5} - 130 \nu^{3} + 117 \nu \)\()/390\)
\(\beta_{5}\)\(=\)\((\)\( -2 \nu^{6} + 35 \nu^{4} - 260 \nu^{2} + 1014 \)\()/195\)
\(\beta_{6}\)\(=\)\((\)\( -7 \nu^{6} + 70 \nu^{4} - 520 \nu^{2} + 819 \)\()/390\)
\(\beta_{7}\)\(=\)\((\)\( -11 \nu^{7} + 140 \nu^{5} - 1040 \nu^{3} + 2847 \nu \)\()/1170\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{6} + 7 \beta_{2} + 7\)
\(\nu^{3}\)\(=\)\(2 \beta_{7} - 7 \beta_{4} - \beta_{3}\)
\(\nu^{4}\)\(=\)\(13 \beta_{5} + 52 \beta_{2}\)
\(\nu^{5}\)\(=\)\(13 \beta_{7} - 52 \beta_{4} + 13 \beta_{3} - 52 \beta_{1}\)
\(\nu^{6}\)\(=\)\(-130 \beta_{6} + 130 \beta_{5} - 403\)
\(\nu^{7}\)\(=\)\(-130 \beta_{7} + 260 \beta_{3} - 403 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(\beta_{2}\) \(-1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
263.1
2.49541 + 1.44073i
−2.49541 1.44073i
−1.87694 1.08365i
1.87694 + 1.08365i
2.49541 1.44073i
−2.49541 + 1.44073i
−1.87694 + 1.08365i
1.87694 1.08365i
−1.15139 + 1.99426i −2.16731 −1.65139 2.86029i 1.08365 + 1.87694i 2.49541 4.32218i 0 3.00000 1.69722 −4.99082
263.2 −1.15139 + 1.99426i 2.16731 −1.65139 2.86029i −1.08365 1.87694i −2.49541 + 4.32218i 0 3.00000 1.69722 4.99082
263.3 0.651388 1.12824i −2.88145 0.151388 + 0.262211i 1.44073 + 2.49541i −1.87694 + 3.25096i 0 3.00000 5.30278 3.75389
263.4 0.651388 1.12824i 2.88145 0.151388 + 0.262211i −1.44073 2.49541i 1.87694 3.25096i 0 3.00000 5.30278 −3.75389
373.1 −1.15139 1.99426i −2.16731 −1.65139 + 2.86029i 1.08365 1.87694i 2.49541 + 4.32218i 0 3.00000 1.69722 −4.99082
373.2 −1.15139 1.99426i 2.16731 −1.65139 + 2.86029i −1.08365 + 1.87694i −2.49541 4.32218i 0 3.00000 1.69722 4.99082
373.3 0.651388 + 1.12824i −2.88145 0.151388 0.262211i 1.44073 2.49541i −1.87694 3.25096i 0 3.00000 5.30278 3.75389
373.4 0.651388 + 1.12824i 2.88145 0.151388 0.262211i −1.44073 + 2.49541i 1.87694 + 3.25096i 0 3.00000 5.30278 −3.75389
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 373.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
91.g even 3 1 inner
91.m odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.g.i 8
7.b odd 2 1 inner 637.2.g.i 8
7.c even 3 1 637.2.f.h 8
7.c even 3 1 637.2.h.j 8
7.d odd 6 1 637.2.f.h 8
7.d odd 6 1 637.2.h.j 8
13.c even 3 1 637.2.h.j 8
91.g even 3 1 inner 637.2.g.i 8
91.g even 3 1 8281.2.a.bu 4
91.h even 3 1 637.2.f.h 8
91.m odd 6 1 inner 637.2.g.i 8
91.m odd 6 1 8281.2.a.bu 4
91.n odd 6 1 637.2.h.j 8
91.p odd 6 1 8281.2.a.bo 4
91.u even 6 1 8281.2.a.bo 4
91.v odd 6 1 637.2.f.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
637.2.f.h 8 7.c even 3 1
637.2.f.h 8 7.d odd 6 1
637.2.f.h 8 91.h even 3 1
637.2.f.h 8 91.v odd 6 1
637.2.g.i 8 1.a even 1 1 trivial
637.2.g.i 8 7.b odd 2 1 inner
637.2.g.i 8 91.g even 3 1 inner
637.2.g.i 8 91.m odd 6 1 inner
637.2.h.j 8 7.c even 3 1
637.2.h.j 8 7.d odd 6 1
637.2.h.j 8 13.c even 3 1
637.2.h.j 8 91.n odd 6 1
8281.2.a.bo 4 91.p odd 6 1
8281.2.a.bo 4 91.u even 6 1
8281.2.a.bu 4 91.g even 3 1
8281.2.a.bu 4 91.m odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(637, [\chi])\):

\( T_{2}^{4} + T_{2}^{3} + 4 T_{2}^{2} - 3 T_{2} + 9 \)
\( T_{3}^{4} - 13 T_{3}^{2} + 39 \)
\( T_{5}^{8} + 13 T_{5}^{6} + 130 T_{5}^{4} + 507 T_{5}^{2} + 1521 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 9 - 3 T + 4 T^{2} + T^{3} + T^{4} )^{2} \)
$3$ \( ( 39 - 13 T^{2} + T^{4} )^{2} \)
$5$ \( 1521 + 507 T^{2} + 130 T^{4} + 13 T^{6} + T^{8} \)
$7$ \( T^{8} \)
$11$ \( ( -29 + T + T^{2} )^{4} \)
$13$ \( 28561 + 13 T^{4} + T^{8} \)
$17$ \( 1521 + 2028 T^{2} + 2665 T^{4} + 52 T^{6} + T^{8} \)
$19$ \( ( 39 - 13 T^{2} + T^{4} )^{2} \)
$23$ \( ( 16 - 24 T + 40 T^{2} + 6 T^{3} + T^{4} )^{2} \)
$29$ \( ( 9 + 3 T + 4 T^{2} - T^{3} + T^{4} )^{2} \)
$31$ \( 1521 + 2028 T^{2} + 2665 T^{4} + 52 T^{6} + T^{8} \)
$37$ \( ( 144 + 120 T + 88 T^{2} + 10 T^{3} + T^{4} )^{2} \)
$41$ \( 31539456 + 876096 T^{2} + 18720 T^{4} + 156 T^{6} + T^{8} \)
$43$ \( ( 4761 + 483 T + 118 T^{2} - 7 T^{3} + T^{4} )^{2} \)
$47$ \( 123201 + 54756 T^{2} + 23985 T^{4} + 156 T^{6} + T^{8} \)
$53$ \( ( 529 + 276 T + 121 T^{2} + 12 T^{3} + T^{4} )^{2} \)
$59$ \( 123201 + 18252 T^{2} + 2353 T^{4} + 52 T^{6} + T^{8} \)
$61$ \( ( 624 - 52 T^{2} + T^{4} )^{2} \)
$67$ \( ( -1 + T )^{8} \)
$71$ \( ( 16 + 4 T + T^{2} )^{4} \)
$73$ \( 389376 + 32448 T^{2} + 2080 T^{4} + 52 T^{6} + T^{8} \)
$79$ \( ( 16 + 24 T + 40 T^{2} - 6 T^{3} + T^{4} )^{2} \)
$83$ \( ( 351 - 52 T^{2} + T^{4} )^{2} \)
$89$ \( 9979281 + 369603 T^{2} + 10530 T^{4} + 117 T^{6} + T^{8} \)
$97$ \( 127035441 + 2783937 T^{2} + 49738 T^{4} + 247 T^{6} + T^{8} \)
show more
show less