# Properties

 Label 637.2.g.c Level $637$ Weight $2$ Character orbit 637.g Analytic conductor $5.086$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$637 = 7^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 637.g (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$5.08647060876$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{5})$$ Defining polynomial: $$x^{4} - x^{3} + 2 x^{2} + x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 91) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -1 - \beta_{1} - \beta_{3} ) q^{2} + ( 1 - \beta_{2} ) q^{3} + ( 3 \beta_{1} + 3 \beta_{2} ) q^{4} + ( -\beta_{1} - \beta_{2} - \beta_{3} ) q^{5} + ( -2 - 3 \beta_{1} - 2 \beta_{3} ) q^{6} + ( 1 - 4 \beta_{2} ) q^{8} + ( -1 - 3 \beta_{2} ) q^{9} +O(q^{10})$$ $$q + ( -1 - \beta_{1} - \beta_{3} ) q^{2} + ( 1 - \beta_{2} ) q^{3} + ( 3 \beta_{1} + 3 \beta_{2} ) q^{4} + ( -\beta_{1} - \beta_{2} - \beta_{3} ) q^{5} + ( -2 - 3 \beta_{1} - 2 \beta_{3} ) q^{6} + ( 1 - 4 \beta_{2} ) q^{8} + ( -1 - 3 \beta_{2} ) q^{9} + ( -2 + 3 \beta_{2} ) q^{10} + ( -3 - 3 \beta_{2} ) q^{11} + ( 6 \beta_{1} + 6 \beta_{2} + 3 \beta_{3} ) q^{12} + ( 1 - 3 \beta_{3} ) q^{13} + ( -3 \beta_{1} - 3 \beta_{2} - 2 \beta_{3} ) q^{15} + ( -5 - 3 \beta_{1} - 5 \beta_{3} ) q^{16} + ( 4 \beta_{1} + 4 \beta_{2} - 5 \beta_{3} ) q^{17} + ( -2 - 5 \beta_{1} - 2 \beta_{3} ) q^{18} + ( -3 - 3 \beta_{2} ) q^{19} + ( 3 + 6 \beta_{1} + 3 \beta_{3} ) q^{20} -3 \beta_{1} q^{22} + ( -2 + 4 \beta_{1} - 2 \beta_{3} ) q^{23} + ( 5 - 9 \beta_{2} ) q^{24} + ( 3 - 3 \beta_{1} + 3 \beta_{3} ) q^{25} + ( -4 - \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{26} + ( -1 - 2 \beta_{2} ) q^{27} + ( 5 \beta_{1} + 5 \beta_{2} - \beta_{3} ) q^{29} + ( -5 + 8 \beta_{2} ) q^{30} + ( 5 - 6 \beta_{1} + 5 \beta_{3} ) q^{31} + ( 3 \beta_{1} + 3 \beta_{2} + 6 \beta_{3} ) q^{32} -3 \beta_{2} q^{33} + ( -1 - 3 \beta_{2} ) q^{34} + ( 6 \beta_{1} + 6 \beta_{2} + 9 \beta_{3} ) q^{36} + ( -4 - 4 \beta_{3} ) q^{37} -3 \beta_{1} q^{38} + ( 1 - 3 \beta_{1} - 4 \beta_{2} - 3 \beta_{3} ) q^{39} + ( -9 \beta_{1} - 9 \beta_{2} - 5 \beta_{3} ) q^{40} + ( 2 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} ) q^{41} + ( 2 - 9 \beta_{1} + 2 \beta_{3} ) q^{43} + 9 \beta_{3} q^{44} + ( -5 \beta_{1} - 5 \beta_{2} - 2 \beta_{3} ) q^{45} + ( -6 \beta_{1} - 6 \beta_{2} - 2 \beta_{3} ) q^{46} + ( 2 \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{47} + ( -8 - 11 \beta_{1} - 8 \beta_{3} ) q^{48} + ( 3 \beta_{1} + 3 \beta_{2} ) q^{50} + ( 3 \beta_{1} + 3 \beta_{2} - \beta_{3} ) q^{51} + ( 12 \beta_{1} + 3 \beta_{2} ) q^{52} + ( -7 + 2 \beta_{1} - 7 \beta_{3} ) q^{53} + ( -1 - 3 \beta_{1} - \beta_{3} ) q^{54} + ( -3 \beta_{1} - 3 \beta_{2} ) q^{55} -3 \beta_{2} q^{57} + ( 4 - 9 \beta_{2} ) q^{58} + ( 2 \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{59} + ( 9 + 15 \beta_{1} + 9 \beta_{3} ) q^{60} + 6 q^{61} + ( 7 \beta_{1} + 7 \beta_{2} + \beta_{3} ) q^{62} + ( -1 - 6 \beta_{2} ) q^{64} + ( -3 - 4 \beta_{1} - \beta_{2} - 4 \beta_{3} ) q^{65} + ( -3 - 6 \beta_{1} - 3 \beta_{3} ) q^{66} + ( -3 + 6 \beta_{2} ) q^{67} + ( -12 + 3 \beta_{1} - 12 \beta_{3} ) q^{68} + ( 2 + 6 \beta_{1} + 2 \beta_{3} ) q^{69} + ( -2 + 10 \beta_{1} - 2 \beta_{3} ) q^{71} + ( 11 - 11 \beta_{2} ) q^{72} + ( -2 - 2 \beta_{3} ) q^{73} + ( 4 \beta_{1} + 4 \beta_{2} + 4 \beta_{3} ) q^{74} -3 \beta_{1} q^{75} + 9 \beta_{3} q^{76} + ( -8 - 3 \beta_{1} + 9 \beta_{2} - 2 \beta_{3} ) q^{78} + 4 \beta_{3} q^{79} + ( -8 + 11 \beta_{2} ) q^{80} + ( 4 + 6 \beta_{2} ) q^{81} -2 q^{82} + ( 3 + 6 \beta_{2} ) q^{83} + ( -1 + 3 \beta_{1} - \beta_{3} ) q^{85} + ( 16 \beta_{1} + 16 \beta_{2} + 7 \beta_{3} ) q^{86} + ( 9 \beta_{1} + 9 \beta_{2} + 4 \beta_{3} ) q^{87} + ( 9 - 3 \beta_{2} ) q^{88} + ( 13 - 5 \beta_{1} + 13 \beta_{3} ) q^{89} + ( -7 + 12 \beta_{2} ) q^{90} + ( -12 + 6 \beta_{2} ) q^{92} + ( -1 - 7 \beta_{1} - \beta_{3} ) q^{93} + ( 1 - 3 \beta_{2} ) q^{94} + ( -3 \beta_{1} - 3 \beta_{2} ) q^{95} + ( 12 \beta_{1} + 12 \beta_{2} + 9 \beta_{3} ) q^{96} + ( 14 + 3 \beta_{1} + 14 \beta_{3} ) q^{97} + ( 12 + 3 \beta_{2} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 3 q^{2} + 6 q^{3} - 3 q^{4} + 3 q^{5} - 7 q^{6} + 12 q^{8} + 2 q^{9} + O(q^{10})$$ $$4 q - 3 q^{2} + 6 q^{3} - 3 q^{4} + 3 q^{5} - 7 q^{6} + 12 q^{8} + 2 q^{9} - 14 q^{10} - 6 q^{11} - 12 q^{12} + 10 q^{13} + 7 q^{15} - 13 q^{16} + 6 q^{17} - 9 q^{18} - 6 q^{19} + 12 q^{20} - 3 q^{22} + 38 q^{24} + 3 q^{25} - 21 q^{26} - 3 q^{29} - 36 q^{30} + 4 q^{31} - 15 q^{32} + 6 q^{33} + 2 q^{34} - 24 q^{36} - 8 q^{37} - 3 q^{38} + 15 q^{39} + 19 q^{40} + 6 q^{41} - 5 q^{43} - 18 q^{44} + 9 q^{45} + 10 q^{46} - 27 q^{48} - 3 q^{50} - q^{51} + 6 q^{52} - 12 q^{53} - 5 q^{54} + 3 q^{55} + 6 q^{57} + 34 q^{58} + 33 q^{60} + 24 q^{61} - 9 q^{62} + 8 q^{64} - 6 q^{65} - 12 q^{66} - 24 q^{67} - 21 q^{68} + 10 q^{69} + 6 q^{71} + 66 q^{72} - 4 q^{73} - 12 q^{74} - 3 q^{75} - 18 q^{76} - 49 q^{78} - 8 q^{79} - 54 q^{80} + 4 q^{81} - 8 q^{82} + q^{85} - 30 q^{86} - 17 q^{87} + 42 q^{88} + 21 q^{89} - 52 q^{90} - 60 q^{92} - 9 q^{93} + 10 q^{94} + 3 q^{95} - 30 q^{96} + 31 q^{97} + 42 q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - x^{3} + 2 x^{2} + x + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{3} + 1$$$$)/2$$ $$\beta_{3}$$ $$=$$ $$($$$$-\nu^{3} + 2 \nu^{2} - 2 \nu - 1$$$$)/2$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{3} + \beta_{2} + \beta_{1}$$ $$\nu^{3}$$ $$=$$ $$2 \beta_{2} - 1$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/637\mathbb{Z}\right)^\times$$.

 $$n$$ $$197$$ $$248$$ $$\chi(n)$$ $$-1 - \beta_{3}$$ $$\beta_{3}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
263.1
 0.809017 − 1.40126i −0.309017 + 0.535233i 0.809017 + 1.40126i −0.309017 − 0.535233i
−1.30902 + 2.26728i 2.61803 −2.42705 4.20378i 1.30902 + 2.26728i −3.42705 + 5.93583i 0 7.47214 3.85410 −6.85410
263.2 −0.190983 + 0.330792i 0.381966 0.927051 + 1.60570i 0.190983 + 0.330792i −0.0729490 + 0.126351i 0 −1.47214 −2.85410 −0.145898
373.1 −1.30902 2.26728i 2.61803 −2.42705 + 4.20378i 1.30902 2.26728i −3.42705 5.93583i 0 7.47214 3.85410 −6.85410
373.2 −0.190983 0.330792i 0.381966 0.927051 1.60570i 0.190983 0.330792i −0.0729490 0.126351i 0 −1.47214 −2.85410 −0.145898
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.g even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 637.2.g.c 4
7.b odd 2 1 637.2.g.b 4
7.c even 3 1 637.2.f.c 4
7.c even 3 1 637.2.h.f 4
7.d odd 6 1 91.2.f.a 4
7.d odd 6 1 637.2.h.g 4
13.c even 3 1 637.2.h.f 4
21.g even 6 1 819.2.o.c 4
28.f even 6 1 1456.2.s.h 4
91.g even 3 1 inner 637.2.g.c 4
91.g even 3 1 8281.2.a.bb 2
91.h even 3 1 637.2.f.c 4
91.m odd 6 1 637.2.g.b 4
91.m odd 6 1 1183.2.a.g 2
91.n odd 6 1 637.2.h.g 4
91.p odd 6 1 1183.2.a.c 2
91.u even 6 1 8281.2.a.n 2
91.v odd 6 1 91.2.f.a 4
91.w even 12 2 1183.2.c.c 4
273.r even 6 1 819.2.o.c 4
364.ba even 6 1 1456.2.s.h 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.f.a 4 7.d odd 6 1
91.2.f.a 4 91.v odd 6 1
637.2.f.c 4 7.c even 3 1
637.2.f.c 4 91.h even 3 1
637.2.g.b 4 7.b odd 2 1
637.2.g.b 4 91.m odd 6 1
637.2.g.c 4 1.a even 1 1 trivial
637.2.g.c 4 91.g even 3 1 inner
637.2.h.f 4 7.c even 3 1
637.2.h.f 4 13.c even 3 1
637.2.h.g 4 7.d odd 6 1
637.2.h.g 4 91.n odd 6 1
819.2.o.c 4 21.g even 6 1
819.2.o.c 4 273.r even 6 1
1183.2.a.c 2 91.p odd 6 1
1183.2.a.g 2 91.m odd 6 1
1183.2.c.c 4 91.w even 12 2
1456.2.s.h 4 28.f even 6 1
1456.2.s.h 4 364.ba even 6 1
8281.2.a.n 2 91.u even 6 1
8281.2.a.bb 2 91.g even 3 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(637, [\chi])$$:

 $$T_{2}^{4} + 3 T_{2}^{3} + 8 T_{2}^{2} + 3 T_{2} + 1$$ $$T_{3}^{2} - 3 T_{3} + 1$$ $$T_{5}^{4} - 3 T_{5}^{3} + 8 T_{5}^{2} - 3 T_{5} + 1$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + 3 T + 8 T^{2} + 3 T^{3} + T^{4}$$
$3$ $$( 1 - 3 T + T^{2} )^{2}$$
$5$ $$1 - 3 T + 8 T^{2} - 3 T^{3} + T^{4}$$
$7$ $$T^{4}$$
$11$ $$( -9 + 3 T + T^{2} )^{2}$$
$13$ $$( 13 - 5 T + T^{2} )^{2}$$
$17$ $$121 + 66 T + 47 T^{2} - 6 T^{3} + T^{4}$$
$19$ $$( -9 + 3 T + T^{2} )^{2}$$
$23$ $$400 + 20 T^{2} + T^{4}$$
$29$ $$841 - 87 T + 38 T^{2} + 3 T^{3} + T^{4}$$
$31$ $$1681 + 164 T + 57 T^{2} - 4 T^{3} + T^{4}$$
$37$ $$( 16 + 4 T + T^{2} )^{2}$$
$41$ $$16 - 24 T + 32 T^{2} - 6 T^{3} + T^{4}$$
$43$ $$9025 - 475 T + 120 T^{2} + 5 T^{3} + T^{4}$$
$47$ $$25 + 5 T^{2} + T^{4}$$
$53$ $$961 + 372 T + 113 T^{2} + 12 T^{3} + T^{4}$$
$59$ $$25 + 5 T^{2} + T^{4}$$
$61$ $$( -6 + T )^{4}$$
$67$ $$( -9 + 12 T + T^{2} )^{2}$$
$71$ $$13456 + 696 T + 152 T^{2} - 6 T^{3} + T^{4}$$
$73$ $$( 4 + 2 T + T^{2} )^{2}$$
$79$ $$( 16 + 4 T + T^{2} )^{2}$$
$83$ $$( -45 + T^{2} )^{2}$$
$89$ $$6241 - 1659 T + 362 T^{2} - 21 T^{3} + T^{4}$$
$97$ $$52441 - 7099 T + 732 T^{2} - 31 T^{3} + T^{4}$$