Properties

Label 637.2.f.l.295.3
Level $637$
Weight $2$
Character 637.295
Analytic conductor $5.086$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(295,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.295");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: 16.0.468066644398978174550016.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 8x^{14} + 45x^{12} + 124x^{10} + 248x^{8} + 250x^{6} + 177x^{4} + 14x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 295.3
Root \(-1.04641 - 1.81243i\) of defining polynomial
Character \(\chi\) \(=\) 637.295
Dual form 637.2.f.l.393.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.289905 - 0.502131i) q^{2} +(-0.946019 + 1.63855i) q^{3} +(0.831910 + 1.44091i) q^{4} -1.47362 q^{5} +(0.548512 + 0.950050i) q^{6} +2.12432 q^{8} +(-0.289905 - 0.502131i) q^{9} +O(q^{10})\) \(q+(0.289905 - 0.502131i) q^{2} +(-0.946019 + 1.63855i) q^{3} +(0.831910 + 1.44091i) q^{4} -1.47362 q^{5} +(0.548512 + 0.950050i) q^{6} +2.12432 q^{8} +(-0.289905 - 0.502131i) q^{9} +(-0.427209 + 0.739948i) q^{10} +(-0.289905 + 0.502131i) q^{11} -3.14801 q^{12} +(0.128893 + 3.60325i) q^{13} +(1.39407 - 2.41460i) q^{15} +(-1.04797 + 1.81513i) q^{16} +(-0.598285 - 1.03626i) q^{17} -0.336180 q^{18} +(-0.230479 - 0.399201i) q^{19} +(-1.22592 - 2.12335i) q^{20} +(0.168090 + 0.291141i) q^{22} +(-1.18398 + 2.05071i) q^{23} +(-2.00965 + 3.48081i) q^{24} -2.82845 q^{25} +(1.84667 + 0.979879i) q^{26} -4.57909 q^{27} +(3.44550 - 5.96777i) q^{29} +(-0.808297 - 1.40001i) q^{30} -4.44342 q^{31} +(2.73194 + 4.73187i) q^{32} +(-0.548512 - 0.950050i) q^{33} -0.693783 q^{34} +(0.482350 - 0.835455i) q^{36} +(-4.58150 + 7.93540i) q^{37} -0.267268 q^{38} +(-6.02605 - 3.19754i) q^{39} -3.13044 q^{40} +(-2.00845 + 3.47874i) q^{41} +(-4.02951 - 6.97931i) q^{43} -0.964700 q^{44} +(0.427209 + 0.739948i) q^{45} +(0.686481 + 1.18902i) q^{46} +11.5193 q^{47} +(-1.98280 - 3.43430i) q^{48} +(-0.819983 + 1.42025i) q^{50} +2.26396 q^{51} +(-5.08473 + 3.18330i) q^{52} -9.39519 q^{53} +(-1.32750 + 2.29930i) q^{54} +(0.427209 - 0.739948i) q^{55} +0.872150 q^{57} +(-1.99773 - 3.46018i) q^{58} +(0.120459 + 0.208642i) q^{59} +4.63896 q^{60} +(3.86355 + 6.69187i) q^{61} +(-1.28817 + 2.23118i) q^{62} -1.02385 q^{64} +(-0.189939 - 5.30981i) q^{65} -0.636066 q^{66} +(0.724287 - 1.25450i) q^{67} +(0.995438 - 1.72415i) q^{68} +(-2.24013 - 3.88001i) q^{69} +(6.25725 + 10.8379i) q^{71} +(-0.615852 - 1.06669i) q^{72} +3.69401 q^{73} +(2.65640 + 4.60103i) q^{74} +(2.67577 - 4.63457i) q^{75} +(0.383476 - 0.664199i) q^{76} +(-3.35257 + 2.09888i) q^{78} +16.0793 q^{79} +(1.54430 - 2.67481i) q^{80} +(5.20163 - 9.00948i) q^{81} +(1.16452 + 2.01701i) q^{82} +15.4005 q^{83} +(0.881643 + 1.52705i) q^{85} -4.67270 q^{86} +(6.51901 + 11.2913i) q^{87} +(-0.615852 + 1.06669i) q^{88} +(1.24553 - 2.15733i) q^{89} +0.495401 q^{90} -3.93984 q^{92} +(4.20356 - 7.28078i) q^{93} +(3.33950 - 5.78418i) q^{94} +(0.339638 + 0.588270i) q^{95} -10.3379 q^{96} +(7.82275 + 13.5494i) q^{97} +0.336180 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} - 12 q^{4} + 24 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 4 q^{2} - 12 q^{4} + 24 q^{8} - 4 q^{9} - 4 q^{11} - 8 q^{15} - 4 q^{16} - 56 q^{18} + 28 q^{22} + 12 q^{23} - 24 q^{25} + 8 q^{29} + 28 q^{30} + 4 q^{36} - 8 q^{37} - 4 q^{39} + 32 q^{43} - 8 q^{44} - 4 q^{46} + 36 q^{50} - 88 q^{51} - 8 q^{53} - 96 q^{57} - 48 q^{58} + 128 q^{60} - 64 q^{64} + 16 q^{65} + 20 q^{67} + 8 q^{71} + 28 q^{72} + 76 q^{74} + 28 q^{78} - 8 q^{79} + 56 q^{81} + 36 q^{85} + 8 q^{86} + 28 q^{88} - 160 q^{92} + 8 q^{93} + 52 q^{95} + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.289905 0.502131i 0.204994 0.355060i −0.745137 0.666912i \(-0.767616\pi\)
0.950131 + 0.311852i \(0.100949\pi\)
\(3\) −0.946019 + 1.63855i −0.546185 + 0.946019i 0.452347 + 0.891842i \(0.350587\pi\)
−0.998531 + 0.0541772i \(0.982746\pi\)
\(4\) 0.831910 + 1.44091i 0.415955 + 0.720455i
\(5\) −1.47362 −0.659022 −0.329511 0.944152i \(-0.606884\pi\)
−0.329511 + 0.944152i \(0.606884\pi\)
\(6\) 0.548512 + 0.950050i 0.223929 + 0.387856i
\(7\) 0 0
\(8\) 2.12432 0.751061
\(9\) −0.289905 0.502131i −0.0966351 0.167377i
\(10\) −0.427209 + 0.739948i −0.135095 + 0.233992i
\(11\) −0.289905 + 0.502131i −0.0874097 + 0.151398i −0.906415 0.422387i \(-0.861192\pi\)
0.819006 + 0.573785i \(0.194526\pi\)
\(12\) −3.14801 −0.908753
\(13\) 0.128893 + 3.60325i 0.0357485 + 0.999361i
\(14\) 0 0
\(15\) 1.39407 2.41460i 0.359947 0.623447i
\(16\) −1.04797 + 1.81513i −0.261992 + 0.453784i
\(17\) −0.598285 1.03626i −0.145105 0.251330i 0.784307 0.620373i \(-0.213019\pi\)
−0.929412 + 0.369043i \(0.879685\pi\)
\(18\) −0.336180 −0.0792384
\(19\) −0.230479 0.399201i −0.0528755 0.0915831i 0.838376 0.545092i \(-0.183505\pi\)
−0.891252 + 0.453509i \(0.850172\pi\)
\(20\) −1.22592 2.12335i −0.274123 0.474796i
\(21\) 0 0
\(22\) 0.168090 + 0.291141i 0.0358369 + 0.0620714i
\(23\) −1.18398 + 2.05071i −0.246876 + 0.427602i −0.962657 0.270723i \(-0.912737\pi\)
0.715781 + 0.698324i \(0.246071\pi\)
\(24\) −2.00965 + 3.48081i −0.410218 + 0.710518i
\(25\) −2.82845 −0.565690
\(26\) 1.84667 + 0.979879i 0.362161 + 0.192170i
\(27\) −4.57909 −0.881247
\(28\) 0 0
\(29\) 3.44550 5.96777i 0.639813 1.10819i −0.345661 0.938359i \(-0.612345\pi\)
0.985474 0.169828i \(-0.0543214\pi\)
\(30\) −0.808297 1.40001i −0.147574 0.255606i
\(31\) −4.44342 −0.798061 −0.399031 0.916938i \(-0.630653\pi\)
−0.399031 + 0.916938i \(0.630653\pi\)
\(32\) 2.73194 + 4.73187i 0.482944 + 0.836484i
\(33\) −0.548512 0.950050i −0.0954837 0.165383i
\(34\) −0.693783 −0.118983
\(35\) 0 0
\(36\) 0.482350 0.835455i 0.0803917 0.139242i
\(37\) −4.58150 + 7.93540i −0.753195 + 1.30457i 0.193072 + 0.981185i \(0.438155\pi\)
−0.946267 + 0.323387i \(0.895179\pi\)
\(38\) −0.267268 −0.0433566
\(39\) −6.02605 3.19754i −0.964940 0.512017i
\(40\) −3.13044 −0.494965
\(41\) −2.00845 + 3.47874i −0.313667 + 0.543288i −0.979153 0.203123i \(-0.934891\pi\)
0.665486 + 0.746410i \(0.268224\pi\)
\(42\) 0 0
\(43\) −4.02951 6.97931i −0.614494 1.06433i −0.990473 0.137706i \(-0.956027\pi\)
0.375979 0.926628i \(-0.377306\pi\)
\(44\) −0.964700 −0.145434
\(45\) 0.427209 + 0.739948i 0.0636846 + 0.110305i
\(46\) 0.686481 + 1.18902i 0.101216 + 0.175312i
\(47\) 11.5193 1.68026 0.840129 0.542386i \(-0.182479\pi\)
0.840129 + 0.542386i \(0.182479\pi\)
\(48\) −1.98280 3.43430i −0.286192 0.495699i
\(49\) 0 0
\(50\) −0.819983 + 1.42025i −0.115963 + 0.200854i
\(51\) 2.26396 0.317017
\(52\) −5.08473 + 3.18330i −0.705125 + 0.441444i
\(53\) −9.39519 −1.29053 −0.645264 0.763959i \(-0.723253\pi\)
−0.645264 + 0.763959i \(0.723253\pi\)
\(54\) −1.32750 + 2.29930i −0.180650 + 0.312895i
\(55\) 0.427209 0.739948i 0.0576049 0.0997746i
\(56\) 0 0
\(57\) 0.872150 0.115519
\(58\) −1.99773 3.46018i −0.262315 0.454344i
\(59\) 0.120459 + 0.208642i 0.0156825 + 0.0271629i 0.873760 0.486357i \(-0.161675\pi\)
−0.858078 + 0.513520i \(0.828341\pi\)
\(60\) 4.63896 0.598888
\(61\) 3.86355 + 6.69187i 0.494677 + 0.856806i 0.999981 0.00613544i \(-0.00195298\pi\)
−0.505304 + 0.862941i \(0.668620\pi\)
\(62\) −1.28817 + 2.23118i −0.163598 + 0.283360i
\(63\) 0 0
\(64\) −1.02385 −0.127982
\(65\) −0.189939 5.30981i −0.0235590 0.658600i
\(66\) −0.636066 −0.0782943
\(67\) 0.724287 1.25450i 0.0884857 0.153262i −0.818385 0.574670i \(-0.805131\pi\)
0.906871 + 0.421408i \(0.138464\pi\)
\(68\) 0.995438 1.72415i 0.120715 0.209084i
\(69\) −2.24013 3.88001i −0.269680 0.467099i
\(70\) 0 0
\(71\) 6.25725 + 10.8379i 0.742599 + 1.28622i 0.951308 + 0.308241i \(0.0997405\pi\)
−0.208709 + 0.977978i \(0.566926\pi\)
\(72\) −0.615852 1.06669i −0.0725788 0.125710i
\(73\) 3.69401 0.432352 0.216176 0.976354i \(-0.430642\pi\)
0.216176 + 0.976354i \(0.430642\pi\)
\(74\) 2.65640 + 4.60103i 0.308801 + 0.534858i
\(75\) 2.67577 4.63457i 0.308971 0.535154i
\(76\) 0.383476 0.664199i 0.0439877 0.0761889i
\(77\) 0 0
\(78\) −3.35257 + 2.09888i −0.379603 + 0.237651i
\(79\) 16.0793 1.80907 0.904533 0.426403i \(-0.140219\pi\)
0.904533 + 0.426403i \(0.140219\pi\)
\(80\) 1.54430 2.67481i 0.172658 0.299053i
\(81\) 5.20163 9.00948i 0.577958 1.00105i
\(82\) 1.16452 + 2.01701i 0.128600 + 0.222741i
\(83\) 15.4005 1.69042 0.845212 0.534431i \(-0.179474\pi\)
0.845212 + 0.534431i \(0.179474\pi\)
\(84\) 0 0
\(85\) 0.881643 + 1.52705i 0.0956276 + 0.165632i
\(86\) −4.67270 −0.503870
\(87\) 6.51901 + 11.2913i 0.698911 + 1.21055i
\(88\) −0.615852 + 1.06669i −0.0656500 + 0.113709i
\(89\) 1.24553 2.15733i 0.132026 0.228676i −0.792431 0.609961i \(-0.791185\pi\)
0.924458 + 0.381285i \(0.124518\pi\)
\(90\) 0.495401 0.0522198
\(91\) 0 0
\(92\) −3.93984 −0.410757
\(93\) 4.20356 7.28078i 0.435889 0.754982i
\(94\) 3.33950 5.78418i 0.344443 0.596593i
\(95\) 0.339638 + 0.588270i 0.0348461 + 0.0603552i
\(96\) −10.3379 −1.05511
\(97\) 7.82275 + 13.5494i 0.794280 + 1.37573i 0.923295 + 0.384091i \(0.125485\pi\)
−0.129015 + 0.991643i \(0.541182\pi\)
\(98\) 0 0
\(99\) 0.336180 0.0337874
\(100\) −2.35302 4.07555i −0.235302 0.407555i
\(101\) 7.00682 12.1362i 0.697205 1.20759i −0.272227 0.962233i \(-0.587760\pi\)
0.969432 0.245361i \(-0.0789066\pi\)
\(102\) 0.656332 1.13680i 0.0649866 0.112560i
\(103\) −10.7492 −1.05915 −0.529576 0.848262i \(-0.677649\pi\)
−0.529576 + 0.848262i \(0.677649\pi\)
\(104\) 0.273810 + 7.65445i 0.0268493 + 0.750581i
\(105\) 0 0
\(106\) −2.72371 + 4.71761i −0.264551 + 0.458215i
\(107\) −1.87761 + 3.25212i −0.181516 + 0.314394i −0.942397 0.334497i \(-0.891434\pi\)
0.760881 + 0.648891i \(0.224767\pi\)
\(108\) −3.80939 6.59806i −0.366559 0.634899i
\(109\) −8.20833 −0.786215 −0.393108 0.919492i \(-0.628600\pi\)
−0.393108 + 0.919492i \(0.628600\pi\)
\(110\) −0.247700 0.429030i −0.0236173 0.0409064i
\(111\) −8.66838 15.0141i −0.822766 1.42507i
\(112\) 0 0
\(113\) 3.90423 + 6.76233i 0.367279 + 0.636146i 0.989139 0.146982i \(-0.0469560\pi\)
−0.621860 + 0.783129i \(0.713623\pi\)
\(114\) 0.252841 0.437933i 0.0236807 0.0410162i
\(115\) 1.74473 3.02196i 0.162697 0.281799i
\(116\) 11.4654 1.06453
\(117\) 1.77193 1.10932i 0.163815 0.102557i
\(118\) 0.139687 0.0128593
\(119\) 0 0
\(120\) 2.96145 5.12939i 0.270342 0.468247i
\(121\) 5.33191 + 9.23514i 0.484719 + 0.839558i
\(122\) 4.48026 0.405623
\(123\) −3.80007 6.58191i −0.342641 0.593471i
\(124\) −3.69652 6.40257i −0.331958 0.574967i
\(125\) 11.5361 1.03182
\(126\) 0 0
\(127\) 0.469682 0.813513i 0.0416775 0.0721876i −0.844434 0.535659i \(-0.820063\pi\)
0.886112 + 0.463472i \(0.153396\pi\)
\(128\) −5.76071 + 9.97784i −0.509179 + 0.881925i
\(129\) 15.2480 1.34251
\(130\) −2.72128 1.44397i −0.238672 0.126644i
\(131\) 1.13717 0.0993546 0.0496773 0.998765i \(-0.484181\pi\)
0.0496773 + 0.998765i \(0.484181\pi\)
\(132\) 0.912625 1.58071i 0.0794338 0.137583i
\(133\) 0 0
\(134\) −0.419949 0.727373i −0.0362781 0.0628355i
\(135\) 6.74783 0.580761
\(136\) −1.27095 2.20135i −0.108983 0.188764i
\(137\) 4.31998 + 7.48243i 0.369081 + 0.639267i 0.989422 0.145065i \(-0.0463391\pi\)
−0.620341 + 0.784332i \(0.713006\pi\)
\(138\) −2.59770 −0.221131
\(139\) −7.27709 12.6043i −0.617235 1.06908i −0.989988 0.141151i \(-0.954920\pi\)
0.372753 0.927930i \(-0.378414\pi\)
\(140\) 0 0
\(141\) −10.8975 + 18.8749i −0.917731 + 1.58956i
\(142\) 7.25604 0.608913
\(143\) −1.84667 0.979879i −0.154426 0.0819416i
\(144\) 1.21525 0.101270
\(145\) −5.07734 + 8.79422i −0.421650 + 0.730320i
\(146\) 1.07091 1.85488i 0.0886295 0.153511i
\(147\) 0 0
\(148\) −15.2456 −1.25318
\(149\) −6.69011 11.5876i −0.548075 0.949294i −0.998406 0.0564323i \(-0.982027\pi\)
0.450331 0.892861i \(-0.351306\pi\)
\(150\) −1.55144 2.68717i −0.126675 0.219407i
\(151\) 16.1392 1.31339 0.656693 0.754158i \(-0.271955\pi\)
0.656693 + 0.754158i \(0.271955\pi\)
\(152\) −0.489611 0.848032i −0.0397127 0.0687845i
\(153\) −0.346892 + 0.600834i −0.0280445 + 0.0485745i
\(154\) 0 0
\(155\) 6.54790 0.525940
\(156\) −0.405757 11.3431i −0.0324866 0.908172i
\(157\) 0.628681 0.0501742 0.0250871 0.999685i \(-0.492014\pi\)
0.0250871 + 0.999685i \(0.492014\pi\)
\(158\) 4.66148 8.07393i 0.370848 0.642327i
\(159\) 8.88803 15.3945i 0.704867 1.22087i
\(160\) −4.02584 6.97296i −0.318271 0.551261i
\(161\) 0 0
\(162\) −3.01596 5.22379i −0.236956 0.410420i
\(163\) 5.84207 + 10.1188i 0.457586 + 0.792563i 0.998833 0.0483011i \(-0.0153807\pi\)
−0.541246 + 0.840864i \(0.682047\pi\)
\(164\) −6.68340 −0.521886
\(165\) 0.808297 + 1.40001i 0.0629258 + 0.108991i
\(166\) 4.46469 7.73306i 0.346527 0.600202i
\(167\) 11.0293 19.1033i 0.853474 1.47826i −0.0245803 0.999698i \(-0.507825\pi\)
0.878054 0.478562i \(-0.158842\pi\)
\(168\) 0 0
\(169\) −12.9668 + 0.928867i −0.997444 + 0.0714513i
\(170\) 1.02237 0.0784123
\(171\) −0.133634 + 0.231461i −0.0102193 + 0.0177003i
\(172\) 6.70437 11.6123i 0.511204 0.885431i
\(173\) 5.69534 + 9.86463i 0.433009 + 0.749994i 0.997131 0.0756980i \(-0.0241185\pi\)
−0.564122 + 0.825692i \(0.690785\pi\)
\(174\) 7.55958 0.573090
\(175\) 0 0
\(176\) −0.607623 1.05243i −0.0458013 0.0793302i
\(177\) −0.455828 −0.0342621
\(178\) −0.722173 1.25084i −0.0541292 0.0937544i
\(179\) 1.73621 3.00721i 0.129771 0.224769i −0.793817 0.608157i \(-0.791909\pi\)
0.923588 + 0.383387i \(0.125243\pi\)
\(180\) −0.710799 + 1.23114i −0.0529799 + 0.0917638i
\(181\) −21.0992 −1.56829 −0.784145 0.620578i \(-0.786898\pi\)
−0.784145 + 0.620578i \(0.786898\pi\)
\(182\) 0 0
\(183\) −14.6200 −1.08074
\(184\) −2.51514 + 4.35636i −0.185419 + 0.321155i
\(185\) 6.75138 11.6937i 0.496372 0.859741i
\(186\) −2.43727 4.22147i −0.178709 0.309533i
\(187\) 0.693783 0.0507345
\(188\) 9.58300 + 16.5982i 0.698912 + 1.21055i
\(189\) 0 0
\(190\) 0.393851 0.0285730
\(191\) −5.95945 10.3221i −0.431211 0.746879i 0.565767 0.824565i \(-0.308580\pi\)
−0.996978 + 0.0776864i \(0.975247\pi\)
\(192\) 0.968585 1.67764i 0.0699016 0.121073i
\(193\) −7.18970 + 12.4529i −0.517526 + 0.896381i 0.482267 + 0.876024i \(0.339814\pi\)
−0.999793 + 0.0203567i \(0.993520\pi\)
\(194\) 9.07143 0.651290
\(195\) 8.88009 + 4.71195i 0.635916 + 0.337430i
\(196\) 0 0
\(197\) −3.48462 + 6.03553i −0.248269 + 0.430014i −0.963046 0.269339i \(-0.913195\pi\)
0.714777 + 0.699353i \(0.246528\pi\)
\(198\) 0.0974604 0.168806i 0.00692621 0.0119965i
\(199\) 1.78676 + 3.09476i 0.126660 + 0.219382i 0.922381 0.386282i \(-0.126241\pi\)
−0.795721 + 0.605664i \(0.792908\pi\)
\(200\) −6.00854 −0.424868
\(201\) 1.37038 + 2.37357i 0.0966591 + 0.167418i
\(202\) −4.06263 7.03668i −0.285846 0.495099i
\(203\) 0 0
\(204\) 1.88341 + 3.26216i 0.131865 + 0.228397i
\(205\) 2.95969 5.12633i 0.206714 0.358038i
\(206\) −3.11626 + 5.39751i −0.217120 + 0.376062i
\(207\) 1.37296 0.0954275
\(208\) −6.67545 3.54213i −0.462859 0.245603i
\(209\) 0.267268 0.0184873
\(210\) 0 0
\(211\) 7.05694 12.2230i 0.485820 0.841464i −0.514048 0.857762i \(-0.671855\pi\)
0.999867 + 0.0162974i \(0.00518784\pi\)
\(212\) −7.81595 13.5376i −0.536802 0.929768i
\(213\) −23.6779 −1.62238
\(214\) 1.08866 + 1.88561i 0.0744192 + 0.128898i
\(215\) 5.93795 + 10.2848i 0.404965 + 0.701420i
\(216\) −9.72746 −0.661870
\(217\) 0 0
\(218\) −2.37964 + 4.12165i −0.161169 + 0.279154i
\(219\) −3.49461 + 6.05284i −0.236144 + 0.409013i
\(220\) 1.42160 0.0958442
\(221\) 3.65678 2.28933i 0.245982 0.153997i
\(222\) −10.0520 −0.674649
\(223\) −0.454565 + 0.787329i −0.0304399 + 0.0527235i −0.880844 0.473407i \(-0.843024\pi\)
0.850404 + 0.526130i \(0.176357\pi\)
\(224\) 0 0
\(225\) 0.819983 + 1.42025i 0.0546655 + 0.0946835i
\(226\) 4.52743 0.301160
\(227\) −1.16756 2.02228i −0.0774938 0.134223i 0.824674 0.565608i \(-0.191358\pi\)
−0.902168 + 0.431385i \(0.858025\pi\)
\(228\) 0.725550 + 1.25669i 0.0480508 + 0.0832263i
\(229\) 16.6807 1.10229 0.551147 0.834408i \(-0.314190\pi\)
0.551147 + 0.834408i \(0.314190\pi\)
\(230\) −1.01161 1.75216i −0.0667036 0.115534i
\(231\) 0 0
\(232\) 7.31934 12.6775i 0.480538 0.832317i
\(233\) −16.5264 −1.08268 −0.541341 0.840803i \(-0.682083\pi\)
−0.541341 + 0.840803i \(0.682083\pi\)
\(234\) −0.0433313 1.21134i −0.00283266 0.0791878i
\(235\) −16.9750 −1.10733
\(236\) −0.200423 + 0.347143i −0.0130464 + 0.0225971i
\(237\) −15.2114 + 26.3469i −0.988084 + 1.71141i
\(238\) 0 0
\(239\) 3.18043 0.205725 0.102862 0.994696i \(-0.467200\pi\)
0.102862 + 0.994696i \(0.467200\pi\)
\(240\) 2.92188 + 5.06085i 0.188607 + 0.326676i
\(241\) 7.92992 + 13.7350i 0.510811 + 0.884751i 0.999922 + 0.0125290i \(0.00398819\pi\)
−0.489110 + 0.872222i \(0.662678\pi\)
\(242\) 6.18299 0.397458
\(243\) 2.97304 + 5.14945i 0.190720 + 0.330338i
\(244\) −6.42825 + 11.1341i −0.411527 + 0.712785i
\(245\) 0 0
\(246\) −4.40664 −0.280957
\(247\) 1.40871 0.881927i 0.0896343 0.0561157i
\(248\) −9.43925 −0.599393
\(249\) −14.5692 + 25.2345i −0.923284 + 1.59917i
\(250\) 3.34439 5.79265i 0.211518 0.366359i
\(251\) −1.24788 2.16139i −0.0787654 0.136426i 0.823952 0.566659i \(-0.191764\pi\)
−0.902718 + 0.430234i \(0.858431\pi\)
\(252\) 0 0
\(253\) −0.686481 1.18902i −0.0431587 0.0747531i
\(254\) −0.272326 0.471683i −0.0170873 0.0295960i
\(255\) −3.33620 −0.208921
\(256\) 2.31626 + 4.01189i 0.144767 + 0.250743i
\(257\) −5.26020 + 9.11094i −0.328123 + 0.568325i −0.982139 0.188155i \(-0.939749\pi\)
0.654017 + 0.756480i \(0.273083\pi\)
\(258\) 4.42046 7.65647i 0.275206 0.476671i
\(259\) 0 0
\(260\) 7.49294 4.69097i 0.464693 0.290921i
\(261\) −3.99547 −0.247313
\(262\) 0.329670 0.571006i 0.0203671 0.0352768i
\(263\) 15.6749 27.1498i 0.966558 1.67413i 0.261188 0.965288i \(-0.415886\pi\)
0.705370 0.708839i \(-0.250781\pi\)
\(264\) −1.16522 2.01821i −0.0717140 0.124212i
\(265\) 13.8449 0.850486
\(266\) 0 0
\(267\) 2.35660 + 4.08174i 0.144221 + 0.249799i
\(268\) 2.41017 0.147224
\(269\) 10.5633 + 18.2961i 0.644054 + 1.11553i 0.984519 + 0.175277i \(0.0560821\pi\)
−0.340465 + 0.940257i \(0.610585\pi\)
\(270\) 1.95623 3.38829i 0.119052 0.206205i
\(271\) −3.26004 + 5.64655i −0.198033 + 0.343004i −0.947891 0.318596i \(-0.896789\pi\)
0.749857 + 0.661599i \(0.230122\pi\)
\(272\) 2.50793 0.152066
\(273\) 0 0
\(274\) 5.00954 0.302638
\(275\) 0.819983 1.42025i 0.0494468 0.0856444i
\(276\) 3.72717 6.45565i 0.224349 0.388584i
\(277\) 7.26548 + 12.5842i 0.436540 + 0.756110i 0.997420 0.0717873i \(-0.0228703\pi\)
−0.560880 + 0.827897i \(0.689537\pi\)
\(278\) −8.43866 −0.506117
\(279\) 1.28817 + 2.23118i 0.0771207 + 0.133577i
\(280\) 0 0
\(281\) 27.1832 1.62161 0.810807 0.585314i \(-0.199029\pi\)
0.810807 + 0.585314i \(0.199029\pi\)
\(282\) 6.31846 + 10.9439i 0.376259 + 0.651699i
\(283\) −4.28791 + 7.42688i −0.254890 + 0.441482i −0.964866 0.262744i \(-0.915373\pi\)
0.709976 + 0.704226i \(0.248706\pi\)
\(284\) −10.4109 + 18.0323i −0.617775 + 1.07002i
\(285\) −1.28522 −0.0761296
\(286\) −1.02739 + 0.643196i −0.0607506 + 0.0380330i
\(287\) 0 0
\(288\) 1.58401 2.74358i 0.0933387 0.161667i
\(289\) 7.78411 13.4825i 0.457889 0.793087i
\(290\) 2.94390 + 5.09898i 0.172872 + 0.299422i
\(291\) −29.6019 −1.73529
\(292\) 3.07309 + 5.32274i 0.179839 + 0.311490i
\(293\) 5.24356 + 9.08212i 0.306332 + 0.530583i 0.977557 0.210671i \(-0.0675648\pi\)
−0.671225 + 0.741254i \(0.734232\pi\)
\(294\) 0 0
\(295\) −0.177511 0.307458i −0.0103351 0.0179009i
\(296\) −9.73258 + 16.8573i −0.565695 + 0.979812i
\(297\) 1.32750 2.29930i 0.0770295 0.133419i
\(298\) −7.75799 −0.449408
\(299\) −7.54181 4.00183i −0.436154 0.231432i
\(300\) 8.90400 0.514073
\(301\) 0 0
\(302\) 4.67882 8.10396i 0.269236 0.466331i
\(303\) 13.2572 + 22.9621i 0.761605 + 1.31914i
\(304\) 0.966139 0.0554118
\(305\) −5.69340 9.86125i −0.326003 0.564654i
\(306\) 0.201131 + 0.348370i 0.0114979 + 0.0199150i
\(307\) −19.1751 −1.09438 −0.547190 0.837008i \(-0.684303\pi\)
−0.547190 + 0.837008i \(0.684303\pi\)
\(308\) 0 0
\(309\) 10.1690 17.6132i 0.578493 1.00198i
\(310\) 1.89827 3.28790i 0.107814 0.186740i
\(311\) −3.48854 −0.197817 −0.0989086 0.995097i \(-0.531535\pi\)
−0.0989086 + 0.995097i \(0.531535\pi\)
\(312\) −12.8013 6.79261i −0.724729 0.384556i
\(313\) −20.3214 −1.14864 −0.574318 0.818632i \(-0.694733\pi\)
−0.574318 + 0.818632i \(0.694733\pi\)
\(314\) 0.182258 0.315680i 0.0102854 0.0178148i
\(315\) 0 0
\(316\) 13.3766 + 23.1689i 0.752490 + 1.30335i
\(317\) −27.8220 −1.56264 −0.781320 0.624131i \(-0.785453\pi\)
−0.781320 + 0.624131i \(0.785453\pi\)
\(318\) −5.15337 8.92591i −0.288987 0.500540i
\(319\) 1.99773 + 3.46018i 0.111852 + 0.193733i
\(320\) 1.50877 0.0843427
\(321\) −3.55252 6.15314i −0.198282 0.343435i
\(322\) 0 0
\(323\) −0.275784 + 0.477672i −0.0153450 + 0.0265784i
\(324\) 17.3091 0.961619
\(325\) −0.364568 10.1916i −0.0202226 0.565329i
\(326\) 6.77459 0.375210
\(327\) 7.76524 13.4498i 0.429419 0.743775i
\(328\) −4.26660 + 7.38996i −0.235583 + 0.408042i
\(329\) 0 0
\(330\) 0.937318 0.0515976
\(331\) 4.67148 + 8.09123i 0.256768 + 0.444734i 0.965374 0.260869i \(-0.0840092\pi\)
−0.708607 + 0.705604i \(0.750676\pi\)
\(332\) 12.8118 + 22.1907i 0.703141 + 1.21788i
\(333\) 5.31281 0.291140
\(334\) −6.39491 11.0763i −0.349914 0.606069i
\(335\) −1.06732 + 1.84866i −0.0583140 + 0.101003i
\(336\) 0 0
\(337\) 22.9182 1.24844 0.624218 0.781250i \(-0.285418\pi\)
0.624218 + 0.781250i \(0.285418\pi\)
\(338\) −3.29272 + 6.78030i −0.179100 + 0.368800i
\(339\) −14.7739 −0.802409
\(340\) −1.46689 + 2.54074i −0.0795535 + 0.137791i
\(341\) 1.28817 2.23118i 0.0697583 0.120825i
\(342\) 0.0774824 + 0.134204i 0.00418977 + 0.00725690i
\(343\) 0 0
\(344\) −8.55996 14.8263i −0.461522 0.799380i
\(345\) 3.30109 + 5.71766i 0.177725 + 0.307828i
\(346\) 6.60444 0.355057
\(347\) 13.3355 + 23.0978i 0.715889 + 1.23996i 0.962616 + 0.270871i \(0.0873117\pi\)
−0.246726 + 0.969085i \(0.579355\pi\)
\(348\) −10.8465 + 18.7866i −0.581431 + 1.00707i
\(349\) 7.61723 13.1934i 0.407741 0.706228i −0.586895 0.809663i \(-0.699650\pi\)
0.994636 + 0.103435i \(0.0329832\pi\)
\(350\) 0 0
\(351\) −0.590213 16.4996i −0.0315033 0.880683i
\(352\) −3.16802 −0.168856
\(353\) −11.2044 + 19.4066i −0.596352 + 1.03291i 0.397003 + 0.917817i \(0.370050\pi\)
−0.993355 + 0.115094i \(0.963283\pi\)
\(354\) −0.132147 + 0.228885i −0.00702353 + 0.0121651i
\(355\) −9.22079 15.9709i −0.489389 0.847646i
\(356\) 4.14468 0.219668
\(357\) 0 0
\(358\) −1.00667 1.74361i −0.0532044 0.0921528i
\(359\) 16.0385 0.846482 0.423241 0.906017i \(-0.360892\pi\)
0.423241 + 0.906017i \(0.360892\pi\)
\(360\) 0.907530 + 1.57189i 0.0478310 + 0.0828457i
\(361\) 9.39376 16.2705i 0.494408 0.856340i
\(362\) −6.11676 + 10.5945i −0.321490 + 0.556837i
\(363\) −20.1764 −1.05898
\(364\) 0 0
\(365\) −5.44356 −0.284929
\(366\) −4.23841 + 7.34114i −0.221545 + 0.383727i
\(367\) −3.45002 + 5.97561i −0.180090 + 0.311924i −0.941911 0.335863i \(-0.890972\pi\)
0.761821 + 0.647787i \(0.224305\pi\)
\(368\) −2.48154 4.29815i −0.129359 0.224057i
\(369\) 2.32904 0.121245
\(370\) −3.91452 6.78015i −0.203506 0.352483i
\(371\) 0 0
\(372\) 13.9879 0.725240
\(373\) −3.84264 6.65566i −0.198965 0.344617i 0.749228 0.662312i \(-0.230425\pi\)
−0.948193 + 0.317695i \(0.897091\pi\)
\(374\) 0.201131 0.348370i 0.0104003 0.0180138i
\(375\) −10.9134 + 18.9026i −0.563566 + 0.976125i
\(376\) 24.4706 1.26198
\(377\) 21.9475 + 11.6458i 1.13035 + 0.599788i
\(378\) 0 0
\(379\) 12.5817 21.7922i 0.646281 1.11939i −0.337723 0.941245i \(-0.609657\pi\)
0.984004 0.178146i \(-0.0570098\pi\)
\(380\) −0.565096 + 0.978775i −0.0289888 + 0.0502101i
\(381\) 0.888656 + 1.53920i 0.0455272 + 0.0788555i
\(382\) −6.91070 −0.353582
\(383\) −11.0218 19.0904i −0.563189 0.975473i −0.997216 0.0745724i \(-0.976241\pi\)
0.434026 0.900900i \(-0.357093\pi\)
\(384\) −10.8995 18.8785i −0.556212 0.963387i
\(385\) 0 0
\(386\) 4.16866 + 7.22033i 0.212179 + 0.367505i
\(387\) −2.33635 + 4.04668i −0.118763 + 0.205704i
\(388\) −13.0156 + 22.5438i −0.660769 + 1.14449i
\(389\) −10.9812 −0.556767 −0.278383 0.960470i \(-0.589799\pi\)
−0.278383 + 0.960470i \(0.589799\pi\)
\(390\) 4.94040 3.09294i 0.250167 0.156617i
\(391\) 2.83342 0.143292
\(392\) 0 0
\(393\) −1.07578 + 1.86331i −0.0542660 + 0.0939914i
\(394\) 2.02042 + 3.49946i 0.101787 + 0.176300i
\(395\) −23.6948 −1.19221
\(396\) 0.279672 + 0.484405i 0.0140540 + 0.0243423i
\(397\) 12.5382 + 21.7168i 0.629275 + 1.08994i 0.987698 + 0.156377i \(0.0499813\pi\)
−0.358423 + 0.933559i \(0.616685\pi\)
\(398\) 2.07196 0.103858
\(399\) 0 0
\(400\) 2.96413 5.13402i 0.148206 0.256701i
\(401\) 11.3301 19.6243i 0.565797 0.979989i −0.431178 0.902267i \(-0.641902\pi\)
0.996975 0.0777222i \(-0.0247647\pi\)
\(402\) 1.58912 0.0792581
\(403\) −0.572726 16.0107i −0.0285295 0.797551i
\(404\) 23.3162 1.16002
\(405\) −7.66521 + 13.2765i −0.380887 + 0.659716i
\(406\) 0 0
\(407\) −2.65640 4.60103i −0.131673 0.228064i
\(408\) 4.80937 0.238099
\(409\) −8.57324 14.8493i −0.423919 0.734250i 0.572400 0.819975i \(-0.306013\pi\)
−0.996319 + 0.0857251i \(0.972679\pi\)
\(410\) −1.71606 2.97230i −0.0847501 0.146791i
\(411\) −16.3472 −0.806345
\(412\) −8.94238 15.4887i −0.440560 0.763072i
\(413\) 0 0
\(414\) 0.398029 0.689407i 0.0195621 0.0338825i
\(415\) −22.6944 −1.11403
\(416\) −16.6979 + 10.4538i −0.818684 + 0.512538i
\(417\) 27.5371 1.34850
\(418\) 0.0774824 0.134204i 0.00378979 0.00656411i
\(419\) −16.9902 + 29.4279i −0.830027 + 1.43765i 0.0679891 + 0.997686i \(0.478342\pi\)
−0.898016 + 0.439963i \(0.854992\pi\)
\(420\) 0 0
\(421\) −32.3623 −1.57724 −0.788621 0.614879i \(-0.789205\pi\)
−0.788621 + 0.614879i \(0.789205\pi\)
\(422\) −4.09169 7.08701i −0.199180 0.344990i
\(423\) −3.33950 5.78418i −0.162372 0.281236i
\(424\) −19.9584 −0.969266
\(425\) 1.69222 + 2.93101i 0.0820847 + 0.142175i
\(426\) −6.86435 + 11.8894i −0.332579 + 0.576044i
\(427\) 0 0
\(428\) −6.24802 −0.302009
\(429\) 3.35257 2.09888i 0.161863 0.101335i
\(430\) 6.88577 0.332061
\(431\) 9.45640 16.3790i 0.455499 0.788947i −0.543218 0.839592i \(-0.682794\pi\)
0.998717 + 0.0506447i \(0.0161276\pi\)
\(432\) 4.79874 8.31167i 0.230880 0.399895i
\(433\) 9.57006 + 16.5758i 0.459908 + 0.796584i 0.998956 0.0456914i \(-0.0145491\pi\)
−0.539048 + 0.842275i \(0.681216\pi\)
\(434\) 0 0
\(435\) −9.60653 16.6390i −0.460598 0.797779i
\(436\) −6.82859 11.8275i −0.327030 0.566433i
\(437\) 1.09153 0.0522148
\(438\) 2.02621 + 3.50950i 0.0968161 + 0.167690i
\(439\) 4.80144 8.31634i 0.229160 0.396917i −0.728399 0.685153i \(-0.759735\pi\)
0.957560 + 0.288236i \(0.0930686\pi\)
\(440\) 0.907530 1.57189i 0.0432648 0.0749368i
\(441\) 0 0
\(442\) −0.0894239 2.49987i −0.00425346 0.118907i
\(443\) −40.3996 −1.91944 −0.959721 0.280955i \(-0.909349\pi\)
−0.959721 + 0.280955i \(0.909349\pi\)
\(444\) 14.4226 24.9807i 0.684468 1.18553i
\(445\) −1.83544 + 3.17907i −0.0870081 + 0.150703i
\(446\) 0.263561 + 0.456502i 0.0124800 + 0.0216160i
\(447\) 25.3159 1.19740
\(448\) 0 0
\(449\) 13.3112 + 23.0556i 0.628194 + 1.08806i 0.987914 + 0.155003i \(0.0495387\pi\)
−0.359720 + 0.933060i \(0.617128\pi\)
\(450\) 0.950869 0.0448244
\(451\) −1.16452 2.01701i −0.0548352 0.0949773i
\(452\) −6.49594 + 11.2513i −0.305543 + 0.529217i
\(453\) −15.2680 + 26.4449i −0.717351 + 1.24249i
\(454\) −1.35393 −0.0635430
\(455\) 0 0
\(456\) 1.85273 0.0867619
\(457\) 0.806434 1.39678i 0.0377234 0.0653388i −0.846547 0.532314i \(-0.821323\pi\)
0.884271 + 0.466975i \(0.154656\pi\)
\(458\) 4.83583 8.37590i 0.225963 0.391380i
\(459\) 2.73960 + 4.74513i 0.127874 + 0.221484i
\(460\) 5.80582 0.270698
\(461\) −7.96032 13.7877i −0.370749 0.642156i 0.618932 0.785445i \(-0.287566\pi\)
−0.989681 + 0.143289i \(0.954232\pi\)
\(462\) 0 0
\(463\) −28.8475 −1.34066 −0.670328 0.742065i \(-0.733847\pi\)
−0.670328 + 0.742065i \(0.733847\pi\)
\(464\) 7.22154 + 12.5081i 0.335252 + 0.580673i
\(465\) −6.19444 + 10.7291i −0.287260 + 0.497549i
\(466\) −4.79110 + 8.29842i −0.221943 + 0.384417i
\(467\) 7.44536 0.344530 0.172265 0.985051i \(-0.444891\pi\)
0.172265 + 0.985051i \(0.444891\pi\)
\(468\) 3.07252 + 1.63034i 0.142027 + 0.0753626i
\(469\) 0 0
\(470\) −4.92114 + 8.52367i −0.226995 + 0.393167i
\(471\) −0.594744 + 1.03013i −0.0274044 + 0.0474657i
\(472\) 0.255895 + 0.443222i 0.0117785 + 0.0204010i
\(473\) 4.67270 0.214851
\(474\) 8.81971 + 15.2762i 0.405103 + 0.701658i
\(475\) 0.651899 + 1.12912i 0.0299112 + 0.0518077i
\(476\) 0 0
\(477\) 2.72371 + 4.71761i 0.124710 + 0.216005i
\(478\) 0.922022 1.59699i 0.0421723 0.0730446i
\(479\) 18.6263 32.2617i 0.851058 1.47408i −0.0291956 0.999574i \(-0.509295\pi\)
0.880254 0.474503i \(-0.157372\pi\)
\(480\) 15.2341 0.695338
\(481\) −29.1837 15.4855i −1.33066 0.706077i
\(482\) 9.19570 0.418853
\(483\) 0 0
\(484\) −8.87134 + 15.3656i −0.403243 + 0.698437i
\(485\) −11.5277 19.9666i −0.523448 0.906638i
\(486\) 3.44760 0.156386
\(487\) −12.0863 20.9341i −0.547684 0.948616i −0.998433 0.0559651i \(-0.982176\pi\)
0.450749 0.892651i \(-0.351157\pi\)
\(488\) 8.20742 + 14.2157i 0.371533 + 0.643513i
\(489\) −22.1069 −0.999707
\(490\) 0 0
\(491\) −3.03571 + 5.25800i −0.137000 + 0.237290i −0.926360 0.376640i \(-0.877079\pi\)
0.789360 + 0.613931i \(0.210413\pi\)
\(492\) 6.32263 10.9511i 0.285046 0.493714i
\(493\) −8.24555 −0.371361
\(494\) −0.0344490 0.963033i −0.00154993 0.0433289i
\(495\) −0.495401 −0.0222666
\(496\) 4.65656 8.06540i 0.209086 0.362147i
\(497\) 0 0
\(498\) 8.44736 + 14.6313i 0.378535 + 0.655642i
\(499\) −2.51565 −0.112616 −0.0563079 0.998413i \(-0.517933\pi\)
−0.0563079 + 0.998413i \(0.517933\pi\)
\(500\) 9.59703 + 16.6225i 0.429192 + 0.743383i
\(501\) 20.8679 + 36.1442i 0.932308 + 1.61481i
\(502\) −1.44707 −0.0645858
\(503\) −17.0026 29.4493i −0.758107 1.31308i −0.943815 0.330474i \(-0.892791\pi\)
0.185708 0.982605i \(-0.440542\pi\)
\(504\) 0 0
\(505\) −10.3254 + 17.8841i −0.459473 + 0.795831i
\(506\) −0.796058 −0.0353891
\(507\) 10.7448 22.1255i 0.477194 0.982627i
\(508\) 1.56293 0.0693439
\(509\) 14.6524 25.3787i 0.649457 1.12489i −0.333796 0.942645i \(-0.608330\pi\)
0.983253 0.182247i \(-0.0583370\pi\)
\(510\) −0.967183 + 1.67521i −0.0428276 + 0.0741795i
\(511\) 0 0
\(512\) −20.3568 −0.899654
\(513\) 1.05538 + 1.82798i 0.0465964 + 0.0807073i
\(514\) 3.04992 + 5.28262i 0.134526 + 0.233006i
\(515\) 15.8402 0.698004
\(516\) 12.6849 + 21.9709i 0.558423 + 0.967217i
\(517\) −3.33950 + 5.78418i −0.146871 + 0.254388i
\(518\) 0 0
\(519\) −21.5516 −0.946011
\(520\) −0.403492 11.2797i −0.0176943 0.494649i
\(521\) 9.14772 0.400769 0.200385 0.979717i \(-0.435781\pi\)
0.200385 + 0.979717i \(0.435781\pi\)
\(522\) −1.15831 + 2.00625i −0.0506977 + 0.0878111i
\(523\) −7.05373 + 12.2174i −0.308438 + 0.534231i −0.978021 0.208507i \(-0.933140\pi\)
0.669583 + 0.742737i \(0.266473\pi\)
\(524\) 0.946019 + 1.63855i 0.0413270 + 0.0715805i
\(525\) 0 0
\(526\) −9.08849 15.7417i −0.396277 0.686372i
\(527\) 2.65843 + 4.60453i 0.115803 + 0.200577i
\(528\) 2.29929 0.100064
\(529\) 8.69640 + 15.0626i 0.378104 + 0.654896i
\(530\) 4.01371 6.95196i 0.174345 0.301974i
\(531\) 0.0698437 0.120973i 0.00303096 0.00524977i
\(532\) 0 0
\(533\) −12.7936 6.78856i −0.554154 0.294045i
\(534\) 2.73276 0.118258
\(535\) 2.76688 4.79238i 0.119623 0.207193i
\(536\) 1.53862 2.66496i 0.0664582 0.115109i
\(537\) 3.28498 + 5.68976i 0.141758 + 0.245531i
\(538\) 12.2494 0.528109
\(539\) 0 0
\(540\) 5.61359 + 9.72302i 0.241570 + 0.418412i
\(541\) 7.80293 0.335474 0.167737 0.985832i \(-0.446354\pi\)
0.167737 + 0.985832i \(0.446354\pi\)
\(542\) 1.89020 + 3.27393i 0.0811912 + 0.140627i
\(543\) 19.9602 34.5721i 0.856576 1.48363i
\(544\) 3.26896 5.66200i 0.140155 0.242756i
\(545\) 12.0959 0.518133
\(546\) 0 0
\(547\) 6.99390 0.299038 0.149519 0.988759i \(-0.452228\pi\)
0.149519 + 0.988759i \(0.452228\pi\)
\(548\) −7.18767 + 12.4494i −0.307042 + 0.531813i
\(549\) 2.24013 3.88001i 0.0956063 0.165595i
\(550\) −0.475435 0.823477i −0.0202726 0.0351132i
\(551\) −3.17646 −0.135322
\(552\) −4.75875 8.24240i −0.202546 0.350820i
\(553\) 0 0
\(554\) 8.42520 0.357952
\(555\) 12.7739 + 22.1250i 0.542221 + 0.939154i
\(556\) 12.1078 20.9713i 0.513484 0.889380i
\(557\) 3.62124 6.27218i 0.153437 0.265761i −0.779052 0.626960i \(-0.784299\pi\)
0.932489 + 0.361199i \(0.117632\pi\)
\(558\) 1.49379 0.0632371
\(559\) 24.6288 15.4189i 1.04169 0.652149i
\(560\) 0 0
\(561\) −0.656332 + 1.13680i −0.0277104 + 0.0479958i
\(562\) 7.88055 13.6495i 0.332421 0.575770i
\(563\) 7.96606 + 13.7976i 0.335730 + 0.581501i 0.983625 0.180229i \(-0.0576838\pi\)
−0.647895 + 0.761730i \(0.724350\pi\)
\(564\) −36.2628 −1.52694
\(565\) −5.75334 9.96509i −0.242045 0.419234i
\(566\) 2.48618 + 4.30618i 0.104502 + 0.181002i
\(567\) 0 0
\(568\) 13.2924 + 23.0231i 0.557737 + 0.966029i
\(569\) 21.1379 36.6120i 0.886149 1.53485i 0.0417571 0.999128i \(-0.486704\pi\)
0.844392 0.535727i \(-0.179962\pi\)
\(570\) −0.372591 + 0.645346i −0.0156061 + 0.0270306i
\(571\) 13.6249 0.570186 0.285093 0.958500i \(-0.407976\pi\)
0.285093 + 0.958500i \(0.407976\pi\)
\(572\) −0.124343 3.47605i −0.00519905 0.145341i
\(573\) 22.5510 0.942082
\(574\) 0 0
\(575\) 3.34882 5.80032i 0.139655 0.241890i
\(576\) 0.296821 + 0.514108i 0.0123675 + 0.0214212i
\(577\) −26.3849 −1.09842 −0.549209 0.835685i \(-0.685071\pi\)
−0.549209 + 0.835685i \(0.685071\pi\)
\(578\) −4.51331 7.81728i −0.187729 0.325156i
\(579\) −13.6032 23.5614i −0.565329 0.979179i
\(580\) −16.8956 −0.701550
\(581\) 0 0
\(582\) −8.58174 + 14.8640i −0.355725 + 0.616133i
\(583\) 2.72371 4.71761i 0.112805 0.195384i
\(584\) 7.84727 0.324722
\(585\) −2.61115 + 1.63471i −0.107958 + 0.0675871i
\(586\) 6.08054 0.251185
\(587\) 11.0720 19.1773i 0.456990 0.791530i −0.541810 0.840501i \(-0.682261\pi\)
0.998800 + 0.0489708i \(0.0155941\pi\)
\(588\) 0 0
\(589\) 1.02411 + 1.77382i 0.0421979 + 0.0730889i
\(590\) −0.205846 −0.00847453
\(591\) −6.59303 11.4195i −0.271201 0.469734i
\(592\) −9.60254 16.6321i −0.394662 0.683575i
\(593\) −26.0838 −1.07114 −0.535568 0.844492i \(-0.679902\pi\)
−0.535568 + 0.844492i \(0.679902\pi\)
\(594\) −0.769700 1.33316i −0.0315812 0.0547002i
\(595\) 0 0
\(596\) 11.1311 19.2797i 0.455949 0.789727i
\(597\) −6.76124 −0.276719
\(598\) −4.19585 + 2.62682i −0.171581 + 0.107419i
\(599\) −16.8440 −0.688229 −0.344114 0.938928i \(-0.611821\pi\)
−0.344114 + 0.938928i \(0.611821\pi\)
\(600\) 5.68420 9.84532i 0.232056 0.401933i
\(601\) −4.31691 + 7.47710i −0.176090 + 0.304997i −0.940538 0.339688i \(-0.889678\pi\)
0.764448 + 0.644686i \(0.223012\pi\)
\(602\) 0 0
\(603\) −0.839898 −0.0342033
\(604\) 13.4263 + 23.2551i 0.546309 + 0.946235i
\(605\) −7.85719 13.6091i −0.319440 0.553287i
\(606\) 15.3733 0.624498
\(607\) −10.9181 18.9107i −0.443153 0.767564i 0.554768 0.832005i \(-0.312807\pi\)
−0.997922 + 0.0644411i \(0.979474\pi\)
\(608\) 1.25931 2.18119i 0.0510718 0.0884590i
\(609\) 0 0
\(610\) −6.60218 −0.267315
\(611\) 1.48475 + 41.5068i 0.0600668 + 1.67918i
\(612\) −1.15433 −0.0466610
\(613\) 24.0244 41.6114i 0.970334 1.68067i 0.275791 0.961218i \(-0.411060\pi\)
0.694543 0.719451i \(-0.255607\pi\)
\(614\) −5.55896 + 9.62840i −0.224341 + 0.388571i
\(615\) 5.59985 + 9.69922i 0.225808 + 0.391110i
\(616\) 0 0
\(617\) 8.23709 + 14.2671i 0.331613 + 0.574370i 0.982828 0.184523i \(-0.0590739\pi\)
−0.651215 + 0.758893i \(0.725741\pi\)
\(618\) −5.89608 10.2123i −0.237175 0.410799i
\(619\) 42.0533 1.69027 0.845133 0.534557i \(-0.179521\pi\)
0.845133 + 0.534557i \(0.179521\pi\)
\(620\) 5.44726 + 9.43493i 0.218767 + 0.378916i
\(621\) 5.42153 9.39037i 0.217559 0.376823i
\(622\) −1.01135 + 1.75170i −0.0405513 + 0.0702370i
\(623\) 0 0
\(624\) 12.1191 7.58716i 0.485151 0.303730i
\(625\) −2.85760 −0.114304
\(626\) −5.89129 + 10.2040i −0.235463 + 0.407835i
\(627\) −0.252841 + 0.437933i −0.0100975 + 0.0174894i
\(628\) 0.523006 + 0.905872i 0.0208702 + 0.0361482i
\(629\) 10.9642 0.437170
\(630\) 0 0
\(631\) 6.06667 + 10.5078i 0.241510 + 0.418308i 0.961145 0.276045i \(-0.0890239\pi\)
−0.719634 + 0.694353i \(0.755691\pi\)
\(632\) 34.1577 1.35872
\(633\) 13.3520 + 23.1263i 0.530694 + 0.919190i
\(634\) −8.06575 + 13.9703i −0.320332 + 0.554831i
\(635\) −0.692131 + 1.19881i −0.0274664 + 0.0475732i
\(636\) 29.5762 1.17277
\(637\) 0 0
\(638\) 2.31661 0.0917157
\(639\) 3.62802 6.28391i 0.143522 0.248588i
\(640\) 8.48908 14.7035i 0.335560 0.581207i
\(641\) 0.202177 + 0.350182i 0.00798553 + 0.0138313i 0.869991 0.493068i \(-0.164125\pi\)
−0.862005 + 0.506900i \(0.830791\pi\)
\(642\) −4.11957 −0.162587
\(643\) −14.1741 24.5503i −0.558973 0.968169i −0.997583 0.0694914i \(-0.977862\pi\)
0.438610 0.898678i \(-0.355471\pi\)
\(644\) 0 0
\(645\) −22.4697 −0.884742
\(646\) 0.159902 + 0.276959i 0.00629128 + 0.0108968i
\(647\) 17.4045 30.1455i 0.684242 1.18514i −0.289433 0.957198i \(-0.593467\pi\)
0.973675 0.227943i \(-0.0731999\pi\)
\(648\) 11.0499 19.1390i 0.434082 0.751852i
\(649\) −0.139687 −0.00548321
\(650\) −5.22321 2.77154i −0.204871 0.108709i
\(651\) 0 0
\(652\) −9.72016 + 16.8358i −0.380671 + 0.659341i
\(653\) 12.5750 21.7805i 0.492098 0.852338i −0.507861 0.861439i \(-0.669564\pi\)
0.999959 + 0.00910088i \(0.00289694\pi\)
\(654\) −4.50237 7.79833i −0.176056 0.304939i
\(655\) −1.67575 −0.0654768
\(656\) −4.20959 7.29122i −0.164357 0.284674i
\(657\) −1.07091 1.85488i −0.0417803 0.0723657i
\(658\) 0 0
\(659\) −4.33723 7.51230i −0.168954 0.292638i 0.769098 0.639131i \(-0.220706\pi\)
−0.938053 + 0.346493i \(0.887372\pi\)
\(660\) −1.34486 + 2.32937i −0.0523486 + 0.0906704i
\(661\) −9.50000 + 16.4545i −0.369507 + 0.640005i −0.989489 0.144612i \(-0.953807\pi\)
0.619982 + 0.784616i \(0.287140\pi\)
\(662\) 5.41714 0.210543
\(663\) 0.291808 + 8.15759i 0.0113329 + 0.316815i
\(664\) 32.7156 1.26961
\(665\) 0 0
\(666\) 1.54021 2.66772i 0.0596819 0.103372i
\(667\) 8.15877 + 14.1314i 0.315909 + 0.547170i
\(668\) 36.7016 1.42003
\(669\) −0.860054 1.48966i −0.0332516 0.0575935i
\(670\) 0.618844 + 1.07187i 0.0239080 + 0.0414099i
\(671\) −4.48026 −0.172958
\(672\) 0 0
\(673\) 0.284273 0.492376i 0.0109579 0.0189797i −0.860494 0.509460i \(-0.829845\pi\)
0.871452 + 0.490480i \(0.163179\pi\)
\(674\) 6.64412 11.5079i 0.255922 0.443269i
\(675\) 12.9517 0.498513
\(676\) −12.1256 17.9112i −0.466369 0.688893i
\(677\) 27.6797 1.06382 0.531908 0.846802i \(-0.321475\pi\)
0.531908 + 0.846802i \(0.321475\pi\)
\(678\) −4.28304 + 7.41844i −0.164489 + 0.284903i
\(679\) 0 0
\(680\) 1.87289 + 3.24394i 0.0718221 + 0.124400i
\(681\) 4.41814 0.169304
\(682\) −0.746894 1.29366i −0.0286001 0.0495368i
\(683\) 11.8958 + 20.6042i 0.455181 + 0.788397i 0.998699 0.0510006i \(-0.0162411\pi\)
−0.543517 + 0.839398i \(0.682908\pi\)
\(684\) −0.444686 −0.0170030
\(685\) −6.36600 11.0262i −0.243232 0.421291i
\(686\) 0 0
\(687\) −15.7803 + 27.3323i −0.602056 + 1.04279i
\(688\) 16.8912 0.643970
\(689\) −1.21098 33.8532i −0.0461345 1.28970i
\(690\) 3.82801 0.145730
\(691\) −18.4217 + 31.9073i −0.700793 + 1.21381i 0.267395 + 0.963587i \(0.413837\pi\)
−0.968188 + 0.250222i \(0.919496\pi\)
\(692\) −9.47603 + 16.4130i −0.360224 + 0.623927i
\(693\) 0 0
\(694\) 15.4642 0.587012
\(695\) 10.7236 + 18.5739i 0.406771 + 0.704548i
\(696\) 13.8485 + 23.9863i 0.524925 + 0.909197i
\(697\) 4.80650 0.182059
\(698\) −4.41655 7.64969i −0.167169 0.289545i
\(699\) 15.6343 27.0794i 0.591344 1.02424i
\(700\) 0 0
\(701\) 2.34987 0.0887533 0.0443767 0.999015i \(-0.485870\pi\)
0.0443767 + 0.999015i \(0.485870\pi\)
\(702\) −8.45606 4.48696i −0.319153 0.169349i
\(703\) 4.22376 0.159302
\(704\) 0.296821 0.514108i 0.0111868 0.0193762i
\(705\) 16.0587 27.8145i 0.604805 1.04755i
\(706\) 6.49645 + 11.2522i 0.244497 + 0.423481i
\(707\) 0 0
\(708\) −0.379208 0.656807i −0.0142515 0.0246843i
\(709\) −5.04160 8.73231i −0.189341 0.327949i 0.755689 0.654930i \(-0.227302\pi\)
−0.945031 + 0.326981i \(0.893969\pi\)
\(710\) −10.6926 −0.401287
\(711\) −4.66148 8.07393i −0.174819 0.302796i
\(712\) 2.64591 4.58285i 0.0991597 0.171750i
\(713\) 5.26090 9.11214i 0.197022 0.341252i
\(714\) 0 0
\(715\) 2.72128 + 1.44397i 0.101770 + 0.0540013i
\(716\) 5.77749 0.215915
\(717\) −3.00875 + 5.21130i −0.112364 + 0.194620i
\(718\) 4.64966 8.05344i 0.173524 0.300552i
\(719\) −3.25113 5.63113i −0.121247 0.210006i 0.799013 0.601314i \(-0.205356\pi\)
−0.920260 + 0.391308i \(0.872023\pi\)
\(720\) −1.79081 −0.0667394
\(721\) 0 0
\(722\) −5.44660 9.43379i −0.202701 0.351089i
\(723\) −30.0074 −1.11599
\(724\) −17.5526 30.4020i −0.652338 1.12988i
\(725\) −9.74542 + 16.8796i −0.361936 + 0.626891i
\(726\) −5.84923 + 10.1312i −0.217085 + 0.376003i
\(727\) −3.12636 −0.115950 −0.0579750 0.998318i \(-0.518464\pi\)
−0.0579750 + 0.998318i \(0.518464\pi\)
\(728\) 0 0
\(729\) 19.9595 0.739242
\(730\) −1.57812 + 2.73338i −0.0584087 + 0.101167i
\(731\) −4.82158 + 8.35123i −0.178333 + 0.308881i
\(732\) −12.1625 21.0661i −0.449539 0.778625i
\(733\) −7.66440 −0.283091 −0.141545 0.989932i \(-0.545207\pi\)
−0.141545 + 0.989932i \(0.545207\pi\)
\(734\) 2.00036 + 3.46472i 0.0738346 + 0.127885i
\(735\) 0 0
\(736\) −12.9382 −0.476909
\(737\) 0.419949 + 0.727373i 0.0154690 + 0.0267931i
\(738\) 0.675201 1.16948i 0.0248545 0.0430493i
\(739\) −10.2162 + 17.6950i −0.375810 + 0.650922i −0.990448 0.137887i \(-0.955969\pi\)
0.614638 + 0.788809i \(0.289302\pi\)
\(740\) 22.4662 0.825873
\(741\) 0.112414 + 3.14257i 0.00412964 + 0.115445i
\(742\) 0 0
\(743\) −5.07080 + 8.78288i −0.186030 + 0.322213i −0.943923 0.330166i \(-0.892895\pi\)
0.757893 + 0.652378i \(0.226229\pi\)
\(744\) 8.92971 15.4667i 0.327379 0.567037i
\(745\) 9.85866 + 17.0757i 0.361193 + 0.625605i
\(746\) −4.45601 −0.163146
\(747\) −4.46469 7.73306i −0.163354 0.282938i
\(748\) 0.577165 + 0.999680i 0.0211033 + 0.0365519i
\(749\) 0 0
\(750\) 6.32771 + 10.9599i 0.231055 + 0.400200i
\(751\) 11.1481 19.3090i 0.406799 0.704597i −0.587730 0.809057i \(-0.699978\pi\)
0.994529 + 0.104461i \(0.0333116\pi\)
\(752\) −12.0718 + 20.9090i −0.440214 + 0.762474i
\(753\) 4.72207 0.172082
\(754\) 12.2104 7.64432i 0.444676 0.278390i
\(755\) −23.7829 −0.865550
\(756\) 0 0
\(757\) −12.2909 + 21.2884i −0.446720 + 0.773741i −0.998170 0.0604666i \(-0.980741\pi\)
0.551451 + 0.834207i \(0.314074\pi\)
\(758\) −7.29503 12.6354i −0.264967 0.458937i
\(759\) 2.59770 0.0942905
\(760\) 0.721500 + 1.24967i 0.0261715 + 0.0453304i
\(761\) 17.6167 + 30.5130i 0.638603 + 1.10609i 0.985739 + 0.168279i \(0.0538209\pi\)
−0.347136 + 0.937815i \(0.612846\pi\)
\(762\) 1.03050 0.0373312
\(763\) 0 0
\(764\) 9.91545 17.1741i 0.358728 0.621336i
\(765\) 0.511186 0.885399i 0.0184820 0.0320117i
\(766\) −12.7811 −0.461802
\(767\) −0.736262 + 0.460938i −0.0265849 + 0.0166435i
\(768\) −8.76493 −0.316277
\(769\) −4.62257 + 8.00653i −0.166694 + 0.288723i −0.937256 0.348643i \(-0.886643\pi\)
0.770561 + 0.637366i \(0.219976\pi\)
\(770\) 0 0
\(771\) −9.95251 17.2383i −0.358431 0.620821i
\(772\) −23.9247 −0.861070
\(773\) 3.16336 + 5.47909i 0.113778 + 0.197069i 0.917291 0.398218i \(-0.130371\pi\)
−0.803513 + 0.595288i \(0.797038\pi\)
\(774\) 1.35464 + 2.34630i 0.0486915 + 0.0843362i
\(775\) 12.5680 0.451456
\(776\) 16.6180 + 28.7833i 0.596553 + 1.03326i
\(777\)