Properties

Label 637.2.f.k.295.6
Level $637$
Weight $2$
Character 637.295
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(295,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.295"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,1,-4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 295.6
Root \(-0.181721 - 0.314749i\) of defining polynomial
Character \(\chi\) \(=\) 637.295
Dual form 637.2.f.k.393.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19402 - 2.06810i) q^{2} +(1.37574 - 2.38285i) q^{3} +(-1.85136 - 3.20665i) q^{4} +0.982280 q^{5} +(-3.28532 - 5.69033i) q^{6} -4.06616 q^{8} +(-2.28532 - 3.95828i) q^{9} +(1.17286 - 2.03145i) q^{10} +(0.293901 - 0.509052i) q^{11} -10.1880 q^{12} +(2.39227 + 2.69760i) q^{13} +(1.35136 - 2.34063i) q^{15} +(-1.15235 + 1.99593i) q^{16} +(3.22710 + 5.58950i) q^{17} -10.9148 q^{18} +(1.91345 + 3.31419i) q^{19} +(-1.81855 - 3.14983i) q^{20} +(-0.701847 - 1.21563i) q^{22} +(-4.13001 + 7.15338i) q^{23} +(-5.59398 + 9.68906i) q^{24} -4.03513 q^{25} +(8.43532 - 1.72647i) q^{26} -4.32156 q^{27} +(1.98009 - 3.42962i) q^{29} +(-3.22710 - 5.58950i) q^{30} -2.98872 q^{31} +(-1.31430 - 2.27644i) q^{32} +(-0.808663 - 1.40065i) q^{33} +15.4129 q^{34} +(-8.46189 + 14.6564i) q^{36} +(-0.877941 + 1.52064i) q^{37} +9.13877 q^{38} +(9.71911 - 1.98923i) q^{39} -3.99411 q^{40} +(-1.83584 + 3.17977i) q^{41} +(-3.19042 - 5.52598i) q^{43} -2.17647 q^{44} +(-2.24482 - 3.88814i) q^{45} +(9.86261 + 17.0825i) q^{46} -4.34059 q^{47} +(3.17067 + 5.49176i) q^{48} +(-4.81802 + 8.34505i) q^{50} +17.7586 q^{51} +(4.22130 - 12.6654i) q^{52} +0.425541 q^{53} +(-5.16002 + 8.93742i) q^{54} +(0.288693 - 0.500031i) q^{55} +10.5296 q^{57} +(-4.72853 - 8.19006i) q^{58} +(-3.00431 - 5.20362i) q^{59} -10.0074 q^{60} +(-1.10337 - 1.91109i) q^{61} +(-3.56859 + 6.18097i) q^{62} -10.8866 q^{64} +(2.34988 + 2.64980i) q^{65} -3.86223 q^{66} +(-3.50651 + 6.07346i) q^{67} +(11.9491 - 20.6964i) q^{68} +(11.3636 + 19.6824i) q^{69} +(-1.80127 - 3.11988i) q^{71} +(9.29247 + 16.0950i) q^{72} +4.93427 q^{73} +(2.09656 + 3.63134i) q^{74} +(-5.55128 + 9.61510i) q^{75} +(7.08496 - 12.2715i) q^{76} +(7.49088 - 22.4753i) q^{78} +2.78541 q^{79} +(-1.13193 + 1.96056i) q^{80} +(0.910609 - 1.57722i) q^{81} +(4.38406 + 7.59342i) q^{82} -2.86819 q^{83} +(3.16992 + 5.49045i) q^{85} -15.2377 q^{86} +(-5.44818 - 9.43652i) q^{87} +(-1.19505 + 2.06989i) q^{88} +(1.04656 - 1.81269i) q^{89} -10.7214 q^{90} +30.5845 q^{92} +(-4.11170 + 7.12167i) q^{93} +(-5.18275 + 8.97679i) q^{94} +(1.87954 + 3.25546i) q^{95} -7.23255 q^{96} +(-3.84852 - 6.66584i) q^{97} -2.68663 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + q^{3} - 4 q^{4} - 2 q^{5} - 9 q^{6} - 6 q^{8} + 3 q^{9} + 4 q^{10} + 4 q^{11} - 10 q^{12} - 2 q^{13} - 2 q^{15} + 8 q^{16} + 5 q^{17} - 6 q^{18} - q^{19} - q^{20} - 5 q^{22} - q^{23}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.19402 2.06810i 0.844299 1.46237i −0.0419302 0.999121i \(-0.513351\pi\)
0.886229 0.463248i \(-0.153316\pi\)
\(3\) 1.37574 2.38285i 0.794283 1.37574i −0.129010 0.991643i \(-0.541180\pi\)
0.923293 0.384096i \(-0.125487\pi\)
\(4\) −1.85136 3.20665i −0.925680 1.60333i
\(5\) 0.982280 0.439289 0.219644 0.975580i \(-0.429510\pi\)
0.219644 + 0.975580i \(0.429510\pi\)
\(6\) −3.28532 5.69033i −1.34122 2.32307i
\(7\) 0 0
\(8\) −4.06616 −1.43761
\(9\) −2.28532 3.95828i −0.761772 1.31943i
\(10\) 1.17286 2.03145i 0.370891 0.642402i
\(11\) 0.293901 0.509052i 0.0886146 0.153485i −0.818311 0.574775i \(-0.805089\pi\)
0.906926 + 0.421291i \(0.138423\pi\)
\(12\) −10.1880 −2.94101
\(13\) 2.39227 + 2.69760i 0.663496 + 0.748179i
\(14\) 0 0
\(15\) 1.35136 2.34063i 0.348920 0.604347i
\(16\) −1.15235 + 1.99593i −0.288088 + 0.498983i
\(17\) 3.22710 + 5.58950i 0.782687 + 1.35565i 0.930371 + 0.366619i \(0.119485\pi\)
−0.147685 + 0.989035i \(0.547182\pi\)
\(18\) −10.9148 −2.57265
\(19\) 1.91345 + 3.31419i 0.438975 + 0.760327i 0.997611 0.0690863i \(-0.0220084\pi\)
−0.558636 + 0.829413i \(0.688675\pi\)
\(20\) −1.81855 3.14983i −0.406641 0.704323i
\(21\) 0 0
\(22\) −0.701847 1.21563i −0.149634 0.259174i
\(23\) −4.13001 + 7.15338i −0.861166 + 1.49158i 0.00963902 + 0.999954i \(0.496932\pi\)
−0.870805 + 0.491629i \(0.836402\pi\)
\(24\) −5.59398 + 9.68906i −1.14187 + 1.97777i
\(25\) −4.03513 −0.807025
\(26\) 8.43532 1.72647i 1.65430 0.338589i
\(27\) −4.32156 −0.831685
\(28\) 0 0
\(29\) 1.98009 3.42962i 0.367694 0.636864i −0.621511 0.783406i \(-0.713481\pi\)
0.989205 + 0.146541i \(0.0468141\pi\)
\(30\) −3.22710 5.58950i −0.589185 1.02050i
\(31\) −2.98872 −0.536790 −0.268395 0.963309i \(-0.586493\pi\)
−0.268395 + 0.963309i \(0.586493\pi\)
\(32\) −1.31430 2.27644i −0.232338 0.402421i
\(33\) −0.808663 1.40065i −0.140770 0.243821i
\(34\) 15.4129 2.64329
\(35\) 0 0
\(36\) −8.46189 + 14.6564i −1.41031 + 2.44274i
\(37\) −0.877941 + 1.52064i −0.144333 + 0.249991i −0.929124 0.369769i \(-0.879437\pi\)
0.784791 + 0.619760i \(0.212770\pi\)
\(38\) 9.13877 1.48250
\(39\) 9.71911 1.98923i 1.55630 0.318532i
\(40\) −3.99411 −0.631524
\(41\) −1.83584 + 3.17977i −0.286710 + 0.496597i −0.973023 0.230710i \(-0.925895\pi\)
0.686312 + 0.727307i \(0.259228\pi\)
\(42\) 0 0
\(43\) −3.19042 5.52598i −0.486535 0.842703i 0.513345 0.858182i \(-0.328406\pi\)
−0.999880 + 0.0154788i \(0.995073\pi\)
\(44\) −2.17647 −0.328115
\(45\) −2.24482 3.88814i −0.334638 0.579610i
\(46\) 9.86261 + 17.0825i 1.45416 + 2.51868i
\(47\) −4.34059 −0.633141 −0.316570 0.948569i \(-0.602531\pi\)
−0.316570 + 0.948569i \(0.602531\pi\)
\(48\) 3.17067 + 5.49176i 0.457647 + 0.792668i
\(49\) 0 0
\(50\) −4.81802 + 8.34505i −0.681370 + 1.18017i
\(51\) 17.7586 2.48670
\(52\) 4.22130 12.6654i 0.585389 1.75638i
\(53\) 0.425541 0.0584525 0.0292263 0.999573i \(-0.490696\pi\)
0.0292263 + 0.999573i \(0.490696\pi\)
\(54\) −5.16002 + 8.93742i −0.702190 + 1.21623i
\(55\) 0.288693 0.500031i 0.0389274 0.0674242i
\(56\) 0 0
\(57\) 10.5296 1.39468
\(58\) −4.72853 8.19006i −0.620887 1.07541i
\(59\) −3.00431 5.20362i −0.391128 0.677454i 0.601470 0.798895i \(-0.294582\pi\)
−0.992599 + 0.121441i \(0.961248\pi\)
\(60\) −10.0074 −1.29195
\(61\) −1.10337 1.91109i −0.141272 0.244691i 0.786704 0.617331i \(-0.211786\pi\)
−0.927976 + 0.372640i \(0.878453\pi\)
\(62\) −3.56859 + 6.18097i −0.453211 + 0.784985i
\(63\) 0 0
\(64\) −10.8866 −1.36083
\(65\) 2.34988 + 2.64980i 0.291467 + 0.328667i
\(66\) −3.86223 −0.475408
\(67\) −3.50651 + 6.07346i −0.428389 + 0.741991i −0.996730 0.0808015i \(-0.974252\pi\)
0.568341 + 0.822793i \(0.307585\pi\)
\(68\) 11.9491 20.6964i 1.44904 2.50980i
\(69\) 11.3636 + 19.6824i 1.36802 + 2.36948i
\(70\) 0 0
\(71\) −1.80127 3.11988i −0.213771 0.370262i 0.739121 0.673573i \(-0.235241\pi\)
−0.952892 + 0.303311i \(0.901908\pi\)
\(72\) 9.29247 + 16.0950i 1.09513 + 1.89682i
\(73\) 4.93427 0.577513 0.288756 0.957403i \(-0.406758\pi\)
0.288756 + 0.957403i \(0.406758\pi\)
\(74\) 2.09656 + 3.63134i 0.243720 + 0.422135i
\(75\) −5.55128 + 9.61510i −0.641007 + 1.11026i
\(76\) 7.08496 12.2715i 0.812701 1.40764i
\(77\) 0 0
\(78\) 7.49088 22.4753i 0.848175 2.54483i
\(79\) 2.78541 0.313383 0.156691 0.987648i \(-0.449917\pi\)
0.156691 + 0.987648i \(0.449917\pi\)
\(80\) −1.13193 + 1.96056i −0.126554 + 0.219198i
\(81\) 0.910609 1.57722i 0.101179 0.175247i
\(82\) 4.38406 + 7.59342i 0.484138 + 0.838552i
\(83\) −2.86819 −0.314825 −0.157412 0.987533i \(-0.550315\pi\)
−0.157412 + 0.987533i \(0.550315\pi\)
\(84\) 0 0
\(85\) 3.16992 + 5.49045i 0.343826 + 0.595523i
\(86\) −15.2377 −1.64312
\(87\) −5.44818 9.43652i −0.584106 1.01170i
\(88\) −1.19505 + 2.06989i −0.127393 + 0.220651i
\(89\) 1.04656 1.81269i 0.110935 0.192145i −0.805213 0.592986i \(-0.797949\pi\)
0.916147 + 0.400842i \(0.131282\pi\)
\(90\) −10.7214 −1.13014
\(91\) 0 0
\(92\) 30.5845 3.18866
\(93\) −4.11170 + 7.12167i −0.426363 + 0.738483i
\(94\) −5.18275 + 8.97679i −0.534560 + 0.925885i
\(95\) 1.87954 + 3.25546i 0.192837 + 0.334003i
\(96\) −7.23255 −0.738169
\(97\) −3.84852 6.66584i −0.390758 0.676813i 0.601791 0.798653i \(-0.294454\pi\)
−0.992550 + 0.121840i \(0.961120\pi\)
\(98\) 0 0
\(99\) −2.68663 −0.270016
\(100\) 7.47047 + 12.9392i 0.747047 + 1.29392i
\(101\) 1.31866 2.28399i 0.131212 0.227265i −0.792932 0.609310i \(-0.791447\pi\)
0.924144 + 0.382045i \(0.124780\pi\)
\(102\) 21.2041 36.7266i 2.09952 3.63647i
\(103\) −10.8619 −1.07026 −0.535128 0.844771i \(-0.679737\pi\)
−0.535128 + 0.844771i \(0.679737\pi\)
\(104\) −9.72736 10.9689i −0.953846 1.07559i
\(105\) 0 0
\(106\) 0.508103 0.880061i 0.0493514 0.0854791i
\(107\) 7.99024 13.8395i 0.772446 1.33792i −0.163773 0.986498i \(-0.552366\pi\)
0.936219 0.351418i \(-0.114300\pi\)
\(108\) 8.00077 + 13.8577i 0.769874 + 1.33346i
\(109\) 9.23477 0.884530 0.442265 0.896884i \(-0.354175\pi\)
0.442265 + 0.896884i \(0.354175\pi\)
\(110\) −0.689410 1.19409i −0.0657327 0.113852i
\(111\) 2.41564 + 4.18400i 0.229282 + 0.397128i
\(112\) 0 0
\(113\) −5.09012 8.81635i −0.478838 0.829372i 0.520867 0.853638i \(-0.325609\pi\)
−0.999706 + 0.0242655i \(0.992275\pi\)
\(114\) 12.5726 21.7763i 1.17753 2.03954i
\(115\) −4.05682 + 7.02662i −0.378301 + 0.655236i
\(116\) −14.6635 −1.36147
\(117\) 5.21077 15.6342i 0.481736 1.44538i
\(118\) −14.3488 −1.32092
\(119\) 0 0
\(120\) −5.49485 + 9.51736i −0.501609 + 0.868813i
\(121\) 5.32724 + 9.22706i 0.484295 + 0.838823i
\(122\) −5.26978 −0.477104
\(123\) 5.05128 + 8.74908i 0.455459 + 0.788878i
\(124\) 5.53320 + 9.58378i 0.496896 + 0.860649i
\(125\) −8.87502 −0.793806
\(126\) 0 0
\(127\) −2.12513 + 3.68083i −0.188575 + 0.326621i −0.944775 0.327719i \(-0.893720\pi\)
0.756201 + 0.654340i \(0.227053\pi\)
\(128\) −10.3702 + 17.9617i −0.916606 + 1.58761i
\(129\) −17.5568 −1.54579
\(130\) 8.28585 1.69588i 0.726717 0.148739i
\(131\) −2.16957 −0.189556 −0.0947779 0.995498i \(-0.530214\pi\)
−0.0947779 + 0.995498i \(0.530214\pi\)
\(132\) −2.99425 + 5.18620i −0.260616 + 0.451401i
\(133\) 0 0
\(134\) 8.37369 + 14.5037i 0.723376 + 1.25292i
\(135\) −4.24498 −0.365350
\(136\) −13.1219 22.7278i −1.12519 1.94889i
\(137\) −4.18158 7.24271i −0.357257 0.618787i 0.630245 0.776396i \(-0.282955\pi\)
−0.987501 + 0.157610i \(0.949621\pi\)
\(138\) 54.2735 4.62007
\(139\) 0.288457 + 0.499622i 0.0244666 + 0.0423774i 0.877999 0.478662i \(-0.158878\pi\)
−0.853533 + 0.521039i \(0.825545\pi\)
\(140\) 0 0
\(141\) −5.97152 + 10.3430i −0.502893 + 0.871036i
\(142\) −8.60298 −0.721946
\(143\) 2.07631 0.424962i 0.173630 0.0355371i
\(144\) 10.5340 0.877830
\(145\) 1.94500 3.36885i 0.161524 0.279767i
\(146\) 5.89161 10.2046i 0.487593 0.844537i
\(147\) 0 0
\(148\) 6.50154 0.534423
\(149\) −1.40331 2.43061i −0.114964 0.199123i 0.802801 0.596246i \(-0.203342\pi\)
−0.917765 + 0.397123i \(0.870009\pi\)
\(150\) 13.2567 + 22.9612i 1.08240 + 1.87478i
\(151\) −23.0109 −1.87260 −0.936300 0.351202i \(-0.885773\pi\)
−0.936300 + 0.351202i \(0.885773\pi\)
\(152\) −7.78039 13.4760i −0.631073 1.09305i
\(153\) 14.7499 25.5476i 1.19246 2.06540i
\(154\) 0 0
\(155\) −2.93576 −0.235806
\(156\) −24.3724 27.4830i −1.95135 2.20040i
\(157\) 22.5760 1.80176 0.900879 0.434071i \(-0.142923\pi\)
0.900879 + 0.434071i \(0.142923\pi\)
\(158\) 3.32583 5.76050i 0.264588 0.458281i
\(159\) 0.585433 1.01400i 0.0464278 0.0804154i
\(160\) −1.29101 2.23610i −0.102064 0.176779i
\(161\) 0 0
\(162\) −2.17457 3.76646i −0.170850 0.295921i
\(163\) −4.08857 7.08161i −0.320242 0.554675i 0.660296 0.751005i \(-0.270431\pi\)
−0.980538 + 0.196331i \(0.937097\pi\)
\(164\) 13.5952 1.06161
\(165\) −0.794333 1.37583i −0.0618388 0.107108i
\(166\) −3.42467 + 5.93170i −0.265806 + 0.460389i
\(167\) 1.16386 2.01586i 0.0900619 0.155992i −0.817475 0.575964i \(-0.804627\pi\)
0.907537 + 0.419972i \(0.137960\pi\)
\(168\) 0 0
\(169\) −1.55408 + 12.9068i −0.119545 + 0.992829i
\(170\) 15.1398 1.16117
\(171\) 8.74566 15.1479i 0.668798 1.15839i
\(172\) −11.8133 + 20.4611i −0.900752 + 1.56015i
\(173\) 4.06686 + 7.04401i 0.309198 + 0.535546i 0.978187 0.207726i \(-0.0666061\pi\)
−0.668989 + 0.743272i \(0.733273\pi\)
\(174\) −26.0209 −1.97264
\(175\) 0 0
\(176\) 0.677355 + 1.17321i 0.0510576 + 0.0884343i
\(177\) −16.5326 −1.24267
\(178\) −2.49922 4.32877i −0.187324 0.324455i
\(179\) 10.4963 18.1801i 0.784528 1.35884i −0.144752 0.989468i \(-0.546239\pi\)
0.929281 0.369375i \(-0.120428\pi\)
\(180\) −8.31194 + 14.3967i −0.619536 + 1.07307i
\(181\) −1.60807 −0.119527 −0.0597635 0.998213i \(-0.519035\pi\)
−0.0597635 + 0.998213i \(0.519035\pi\)
\(182\) 0 0
\(183\) −6.07180 −0.448841
\(184\) 16.7933 29.0868i 1.23802 2.14431i
\(185\) −0.862384 + 1.49369i −0.0634037 + 0.109818i
\(186\) 9.81889 + 17.0068i 0.719956 + 1.24700i
\(187\) 3.79379 0.277430
\(188\) 8.03601 + 13.9188i 0.586086 + 1.01513i
\(189\) 0 0
\(190\) 8.97683 0.651247
\(191\) 5.78111 + 10.0132i 0.418307 + 0.724529i 0.995769 0.0918886i \(-0.0292904\pi\)
−0.577463 + 0.816417i \(0.695957\pi\)
\(192\) −14.9771 + 25.9412i −1.08088 + 1.87214i
\(193\) −11.7894 + 20.4199i −0.848621 + 1.46985i 0.0338178 + 0.999428i \(0.489233\pi\)
−0.882439 + 0.470427i \(0.844100\pi\)
\(194\) −18.3808 −1.31967
\(195\) 9.54689 1.95398i 0.683667 0.139927i
\(196\) 0 0
\(197\) 0.735472 1.27387i 0.0524002 0.0907598i −0.838636 0.544693i \(-0.816646\pi\)
0.891036 + 0.453933i \(0.149980\pi\)
\(198\) −3.20788 + 5.55622i −0.227974 + 0.394863i
\(199\) −4.69700 8.13543i −0.332961 0.576706i 0.650130 0.759823i \(-0.274714\pi\)
−0.983091 + 0.183117i \(0.941381\pi\)
\(200\) 16.4075 1.16018
\(201\) 9.64810 + 16.7110i 0.680524 + 1.17870i
\(202\) −3.14901 5.45425i −0.221564 0.383760i
\(203\) 0 0
\(204\) −32.8776 56.9456i −2.30189 3.98699i
\(205\) −1.80331 + 3.12343i −0.125949 + 0.218150i
\(206\) −12.9693 + 22.4635i −0.903615 + 1.56511i
\(207\) 37.7535 2.62405
\(208\) −8.14096 + 1.66623i −0.564474 + 0.115532i
\(209\) 2.24946 0.155598
\(210\) 0 0
\(211\) 4.47109 7.74416i 0.307803 0.533130i −0.670079 0.742290i \(-0.733740\pi\)
0.977881 + 0.209160i \(0.0670730\pi\)
\(212\) −0.787829 1.36456i −0.0541083 0.0937184i
\(213\) −9.91229 −0.679179
\(214\) −19.0810 33.0493i −1.30435 2.25920i
\(215\) −3.13389 5.42805i −0.213729 0.370190i
\(216\) 17.5722 1.19563
\(217\) 0 0
\(218\) 11.0265 19.0984i 0.746808 1.29351i
\(219\) 6.78827 11.7576i 0.458709 0.794507i
\(220\) −2.13790 −0.144137
\(221\) −7.35814 + 22.0770i −0.494962 + 1.48506i
\(222\) 11.5373 0.774330
\(223\) −10.9098 + 18.8963i −0.730574 + 1.26539i 0.226064 + 0.974112i \(0.427414\pi\)
−0.956638 + 0.291279i \(0.905919\pi\)
\(224\) 0 0
\(225\) 9.22154 + 15.9722i 0.614769 + 1.06481i
\(226\) −24.3108 −1.61713
\(227\) 9.27627 + 16.0670i 0.615687 + 1.06640i 0.990263 + 0.139206i \(0.0444549\pi\)
−0.374576 + 0.927196i \(0.622212\pi\)
\(228\) −19.4941 33.7648i −1.29103 2.23613i
\(229\) 19.3505 1.27872 0.639359 0.768909i \(-0.279200\pi\)
0.639359 + 0.768909i \(0.279200\pi\)
\(230\) 9.68784 + 16.7798i 0.638797 + 1.10643i
\(231\) 0 0
\(232\) −8.05137 + 13.9454i −0.528599 + 0.915560i
\(233\) 16.1634 1.05890 0.529450 0.848341i \(-0.322398\pi\)
0.529450 + 0.848341i \(0.322398\pi\)
\(234\) −26.1113 29.4439i −1.70695 1.92481i
\(235\) −4.26368 −0.278132
\(236\) −11.1241 + 19.2676i −0.724119 + 1.25421i
\(237\) 3.83199 6.63720i 0.248915 0.431133i
\(238\) 0 0
\(239\) 16.1037 1.04166 0.520831 0.853660i \(-0.325622\pi\)
0.520831 + 0.853660i \(0.325622\pi\)
\(240\) 3.11449 + 5.39445i 0.201039 + 0.348210i
\(241\) 2.00300 + 3.46930i 0.129025 + 0.223477i 0.923299 0.384082i \(-0.125482\pi\)
−0.794274 + 0.607559i \(0.792149\pi\)
\(242\) 25.4433 1.63556
\(243\) −8.98786 15.5674i −0.576572 0.998651i
\(244\) −4.08548 + 7.07625i −0.261546 + 0.453011i
\(245\) 0 0
\(246\) 24.1253 1.53817
\(247\) −4.36287 + 13.0901i −0.277603 + 0.832906i
\(248\) 12.1526 0.771692
\(249\) −3.94588 + 6.83446i −0.250060 + 0.433116i
\(250\) −10.5969 + 18.3544i −0.670209 + 1.16084i
\(251\) −1.62344 2.81188i −0.102471 0.177484i 0.810231 0.586110i \(-0.199341\pi\)
−0.912702 + 0.408626i \(0.866008\pi\)
\(252\) 0 0
\(253\) 2.42763 + 4.20477i 0.152624 + 0.264352i
\(254\) 5.07489 + 8.78996i 0.318427 + 0.551531i
\(255\) 17.4439 1.09238
\(256\) 13.8778 + 24.0371i 0.867365 + 1.50232i
\(257\) 13.4462 23.2895i 0.838751 1.45276i −0.0521891 0.998637i \(-0.516620\pi\)
0.890940 0.454122i \(-0.150047\pi\)
\(258\) −20.9631 + 36.3092i −1.30511 + 2.26051i
\(259\) 0 0
\(260\) 4.14650 12.4410i 0.257155 0.771556i
\(261\) −18.1005 −1.12040
\(262\) −2.59050 + 4.48688i −0.160042 + 0.277200i
\(263\) 1.90353 3.29701i 0.117377 0.203302i −0.801351 0.598195i \(-0.795885\pi\)
0.918727 + 0.394893i \(0.129218\pi\)
\(264\) 3.28815 + 5.69525i 0.202372 + 0.350518i
\(265\) 0.418000 0.0256775
\(266\) 0 0
\(267\) −2.87958 4.98757i −0.176227 0.305235i
\(268\) 25.9673 1.58620
\(269\) 11.9190 + 20.6444i 0.726716 + 1.25871i 0.958264 + 0.285886i \(0.0922878\pi\)
−0.231548 + 0.972824i \(0.574379\pi\)
\(270\) −5.06859 + 8.77905i −0.308464 + 0.534276i
\(271\) −4.95068 + 8.57482i −0.300732 + 0.520883i −0.976302 0.216413i \(-0.930564\pi\)
0.675570 + 0.737296i \(0.263898\pi\)
\(272\) −14.8750 −0.901931
\(273\) 0 0
\(274\) −19.9715 −1.20653
\(275\) −1.18593 + 2.05409i −0.0715142 + 0.123866i
\(276\) 42.0763 72.8783i 2.53270 4.38676i
\(277\) −5.89289 10.2068i −0.354069 0.613266i 0.632889 0.774243i \(-0.281869\pi\)
−0.986958 + 0.160977i \(0.948536\pi\)
\(278\) 1.37769 0.0826285
\(279\) 6.83017 + 11.8302i 0.408912 + 0.708256i
\(280\) 0 0
\(281\) 12.9976 0.775372 0.387686 0.921791i \(-0.373274\pi\)
0.387686 + 0.921791i \(0.373274\pi\)
\(282\) 14.2602 + 24.6994i 0.849184 + 1.47083i
\(283\) 8.40249 14.5535i 0.499476 0.865118i −0.500524 0.865723i \(-0.666859\pi\)
1.00000 0.000604910i \(0.000192549\pi\)
\(284\) −6.66959 + 11.5521i −0.395767 + 0.685489i
\(285\) 10.3430 0.612668
\(286\) 1.60029 4.80143i 0.0946270 0.283914i
\(287\) 0 0
\(288\) −6.00719 + 10.4048i −0.353977 + 0.613107i
\(289\) −12.3283 + 21.3533i −0.725197 + 1.25608i
\(290\) −4.64474 8.04493i −0.272749 0.472414i
\(291\) −21.1783 −1.24149
\(292\) −9.13512 15.8225i −0.534592 0.925941i
\(293\) 7.04782 + 12.2072i 0.411738 + 0.713151i 0.995080 0.0990757i \(-0.0315886\pi\)
−0.583342 + 0.812227i \(0.698255\pi\)
\(294\) 0 0
\(295\) −2.95108 5.11141i −0.171818 0.297598i
\(296\) 3.56985 6.18316i 0.207493 0.359389i
\(297\) −1.27011 + 2.19990i −0.0736994 + 0.127651i
\(298\) −6.70232 −0.388255
\(299\) −29.1770 + 5.97172i −1.68735 + 0.345353i
\(300\) 41.1097 2.37347
\(301\) 0 0
\(302\) −27.4754 + 47.5888i −1.58103 + 2.73843i
\(303\) −3.62827 6.28434i −0.208439 0.361026i
\(304\) −8.81986 −0.505854
\(305\) −1.08382 1.87723i −0.0620593 0.107490i
\(306\) −35.2233 61.0085i −2.01358 3.48762i
\(307\) 15.8786 0.906240 0.453120 0.891450i \(-0.350311\pi\)
0.453120 + 0.891450i \(0.350311\pi\)
\(308\) 0 0
\(309\) −14.9431 + 25.8823i −0.850086 + 1.47239i
\(310\) −3.50535 + 6.07145i −0.199091 + 0.344835i
\(311\) −28.6034 −1.62195 −0.810975 0.585081i \(-0.801063\pi\)
−0.810975 + 0.585081i \(0.801063\pi\)
\(312\) −39.5195 + 8.08853i −2.23735 + 0.457923i
\(313\) −18.5792 −1.05016 −0.525080 0.851053i \(-0.675965\pi\)
−0.525080 + 0.851053i \(0.675965\pi\)
\(314\) 26.9561 46.6893i 1.52122 2.63483i
\(315\) 0 0
\(316\) −5.15679 8.93182i −0.290092 0.502454i
\(317\) 30.6445 1.72117 0.860584 0.509309i \(-0.170099\pi\)
0.860584 + 0.509309i \(0.170099\pi\)
\(318\) −1.39804 2.42147i −0.0783979 0.135789i
\(319\) −1.16390 2.01594i −0.0651660 0.112871i
\(320\) −10.6937 −0.597796
\(321\) −21.9850 38.0791i −1.22708 2.12537i
\(322\) 0 0
\(323\) −12.3498 + 21.3904i −0.687160 + 1.19020i
\(324\) −6.74346 −0.374637
\(325\) −9.65311 10.8852i −0.535458 0.603800i
\(326\) −19.5273 −1.08152
\(327\) 12.7046 22.0051i 0.702568 1.21688i
\(328\) 7.46483 12.9295i 0.412177 0.713911i
\(329\) 0 0
\(330\) −3.79379 −0.208842
\(331\) −13.6138 23.5799i −0.748284 1.29607i −0.948644 0.316344i \(-0.897545\pi\)
0.200360 0.979722i \(-0.435789\pi\)
\(332\) 5.31005 + 9.19728i 0.291427 + 0.504766i
\(333\) 8.02549 0.439794
\(334\) −2.77933 4.81395i −0.152078 0.263407i
\(335\) −3.44438 + 5.96584i −0.188187 + 0.325949i
\(336\) 0 0
\(337\) −12.3160 −0.670898 −0.335449 0.942058i \(-0.608888\pi\)
−0.335449 + 0.942058i \(0.608888\pi\)
\(338\) 24.8369 + 18.6249i 1.35095 + 1.01306i
\(339\) −28.0107 −1.52133
\(340\) 11.7373 20.3296i 0.636545 1.10253i
\(341\) −0.878389 + 1.52141i −0.0475674 + 0.0823892i
\(342\) −20.8850 36.1738i −1.12933 1.95606i
\(343\) 0 0
\(344\) 12.9728 + 22.4695i 0.699445 + 1.21148i
\(345\) 11.1623 + 19.3336i 0.600956 + 1.04089i
\(346\) 19.4236 1.04422
\(347\) −3.07253 5.32177i −0.164942 0.285688i 0.771693 0.635996i \(-0.219410\pi\)
−0.936635 + 0.350308i \(0.886077\pi\)
\(348\) −20.1731 + 34.9408i −1.08139 + 1.87302i
\(349\) −6.51563 + 11.2854i −0.348774 + 0.604094i −0.986032 0.166557i \(-0.946735\pi\)
0.637258 + 0.770650i \(0.280068\pi\)
\(350\) 0 0
\(351\) −10.3383 11.6578i −0.551820 0.622249i
\(352\) −1.54510 −0.0823541
\(353\) −15.8332 + 27.4240i −0.842718 + 1.45963i 0.0448710 + 0.998993i \(0.485712\pi\)
−0.887589 + 0.460637i \(0.847621\pi\)
\(354\) −19.7402 + 34.1911i −1.04918 + 1.81724i
\(355\) −1.76935 3.06460i −0.0939072 0.162652i
\(356\) −7.75021 −0.410761
\(357\) 0 0
\(358\) −25.0655 43.4147i −1.32475 2.29454i
\(359\) 19.9322 1.05198 0.525991 0.850490i \(-0.323695\pi\)
0.525991 + 0.850490i \(0.323695\pi\)
\(360\) 9.12780 + 15.8098i 0.481077 + 0.833251i
\(361\) 2.17744 3.77144i 0.114602 0.198497i
\(362\) −1.92007 + 3.32566i −0.100917 + 0.174793i
\(363\) 29.3156 1.53867
\(364\) 0 0
\(365\) 4.84684 0.253695
\(366\) −7.24984 + 12.5571i −0.378955 + 0.656370i
\(367\) −9.85950 + 17.0772i −0.514662 + 0.891420i 0.485194 + 0.874407i \(0.338749\pi\)
−0.999855 + 0.0170133i \(0.994584\pi\)
\(368\) −9.51844 16.4864i −0.496183 0.859414i
\(369\) 16.7819 0.873632
\(370\) 2.05940 + 3.56699i 0.107063 + 0.185439i
\(371\) 0 0
\(372\) 30.4490 1.57870
\(373\) −8.77345 15.1961i −0.454272 0.786823i 0.544374 0.838843i \(-0.316767\pi\)
−0.998646 + 0.0520202i \(0.983434\pi\)
\(374\) 4.52986 7.84595i 0.234234 0.405704i
\(375\) −12.2097 + 21.1478i −0.630507 + 1.09207i
\(376\) 17.6496 0.910207
\(377\) 13.9887 2.86308i 0.720452 0.147456i
\(378\) 0 0
\(379\) 5.85068 10.1337i 0.300529 0.520532i −0.675727 0.737152i \(-0.736170\pi\)
0.976256 + 0.216620i \(0.0695034\pi\)
\(380\) 6.95942 12.0541i 0.357010 0.618360i
\(381\) 5.84725 + 10.1277i 0.299563 + 0.518859i
\(382\) 27.6110 1.41270
\(383\) 10.7644 + 18.6445i 0.550036 + 0.952690i 0.998271 + 0.0587748i \(0.0187194\pi\)
−0.448235 + 0.893916i \(0.647947\pi\)
\(384\) 28.5334 + 49.4213i 1.45609 + 2.52202i
\(385\) 0 0
\(386\) 28.1536 + 48.7634i 1.43298 + 2.48199i
\(387\) −14.5823 + 25.2572i −0.741258 + 1.28390i
\(388\) −14.2500 + 24.6817i −0.723435 + 1.25303i
\(389\) 26.4910 1.34315 0.671574 0.740938i \(-0.265619\pi\)
0.671574 + 0.740938i \(0.265619\pi\)
\(390\) 7.35814 22.0770i 0.372594 1.11791i
\(391\) −53.3118 −2.69609
\(392\) 0 0
\(393\) −2.98476 + 5.16975i −0.150561 + 0.260779i
\(394\) −1.75633 3.04206i −0.0884828 0.153257i
\(395\) 2.73605 0.137665
\(396\) 4.97392 + 8.61508i 0.249949 + 0.432924i
\(397\) 16.8995 + 29.2707i 0.848160 + 1.46906i 0.882849 + 0.469658i \(0.155623\pi\)
−0.0346887 + 0.999398i \(0.511044\pi\)
\(398\) −22.4332 −1.12447
\(399\) 0 0
\(400\) 4.64989 8.05384i 0.232494 0.402692i
\(401\) −10.8059 + 18.7164i −0.539623 + 0.934655i 0.459301 + 0.888281i \(0.348100\pi\)
−0.998924 + 0.0463741i \(0.985233\pi\)
\(402\) 46.0800 2.29826
\(403\) −7.14983 8.06237i −0.356158 0.401615i
\(404\) −9.76527 −0.485840
\(405\) 0.894473 1.54927i 0.0444467 0.0769839i
\(406\) 0 0
\(407\) 0.516056 + 0.893835i 0.0255799 + 0.0443058i
\(408\) −72.2093 −3.57489
\(409\) −3.87109 6.70492i −0.191413 0.331537i 0.754306 0.656523i \(-0.227974\pi\)
−0.945719 + 0.324986i \(0.894640\pi\)
\(410\) 4.30637 + 7.45886i 0.212677 + 0.368367i
\(411\) −23.0111 −1.13505
\(412\) 20.1093 + 34.8303i 0.990714 + 1.71597i
\(413\) 0 0
\(414\) 45.0783 78.0780i 2.21548 3.83732i
\(415\) −2.81736 −0.138299
\(416\) 2.99675 8.99132i 0.146928 0.440836i
\(417\) 1.58737 0.0777337
\(418\) 2.68589 4.65211i 0.131371 0.227542i
\(419\) 4.05097 7.01649i 0.197903 0.342778i −0.749945 0.661500i \(-0.769920\pi\)
0.947848 + 0.318722i \(0.103254\pi\)
\(420\) 0 0
\(421\) −32.1124 −1.56506 −0.782530 0.622612i \(-0.786071\pi\)
−0.782530 + 0.622612i \(0.786071\pi\)
\(422\) −10.6771 18.4933i −0.519755 0.900242i
\(423\) 9.91963 + 17.1813i 0.482309 + 0.835384i
\(424\) −1.73032 −0.0840316
\(425\) −13.0218 22.5543i −0.631648 1.09405i
\(426\) −11.8355 + 20.4996i −0.573430 + 0.993210i
\(427\) 0 0
\(428\) −59.1713 −2.86015
\(429\) 1.84384 5.53217i 0.0890214 0.267096i
\(430\) −14.9677 −0.721806
\(431\) 14.7640 25.5721i 0.711159 1.23176i −0.253263 0.967397i \(-0.581504\pi\)
0.964422 0.264366i \(-0.0851627\pi\)
\(432\) 4.97996 8.62554i 0.239598 0.414997i
\(433\) −11.0455 19.1314i −0.530813 0.919395i −0.999353 0.0359531i \(-0.988553\pi\)
0.468540 0.883442i \(-0.344780\pi\)
\(434\) 0 0
\(435\) −5.35164 9.26931i −0.256591 0.444429i
\(436\) −17.0969 29.6127i −0.818792 1.41819i
\(437\) −31.6102 −1.51212
\(438\) −16.2106 28.0777i −0.774575 1.34160i
\(439\) 3.17790 5.50428i 0.151673 0.262705i −0.780170 0.625568i \(-0.784867\pi\)
0.931843 + 0.362863i \(0.118201\pi\)
\(440\) −1.17387 + 2.03321i −0.0559622 + 0.0969294i
\(441\) 0 0
\(442\) 36.8718 + 41.5777i 1.75381 + 1.97765i
\(443\) −13.5627 −0.644383 −0.322192 0.946675i \(-0.604420\pi\)
−0.322192 + 0.946675i \(0.604420\pi\)
\(444\) 8.94443 15.4922i 0.424484 0.735227i
\(445\) 1.02801 1.78057i 0.0487324 0.0844070i
\(446\) 26.0530 + 45.1251i 1.23365 + 2.13674i
\(447\) −7.72237 −0.365255
\(448\) 0 0
\(449\) −10.9559 18.9762i −0.517041 0.895541i −0.999804 0.0197900i \(-0.993700\pi\)
0.482763 0.875751i \(-0.339633\pi\)
\(450\) 44.0428 2.07620
\(451\) 1.07911 + 1.86908i 0.0508134 + 0.0880115i
\(452\) −18.8473 + 32.6445i −0.886502 + 1.53547i
\(453\) −31.6570 + 54.8315i −1.48737 + 2.57621i
\(454\) 44.3041 2.07930
\(455\) 0 0
\(456\) −42.8151 −2.00500
\(457\) −7.60732 + 13.1763i −0.355855 + 0.616359i −0.987264 0.159091i \(-0.949144\pi\)
0.631409 + 0.775450i \(0.282477\pi\)
\(458\) 23.1049 40.0188i 1.07962 1.86996i
\(459\) −13.9461 24.1554i −0.650949 1.12748i
\(460\) 30.0426 1.40074
\(461\) 8.10813 + 14.0437i 0.377633 + 0.654080i 0.990717 0.135937i \(-0.0434046\pi\)
−0.613084 + 0.790018i \(0.710071\pi\)
\(462\) 0 0
\(463\) −1.44769 −0.0672799 −0.0336400 0.999434i \(-0.510710\pi\)
−0.0336400 + 0.999434i \(0.510710\pi\)
\(464\) 4.56353 + 7.90426i 0.211856 + 0.366946i
\(465\) −4.03884 + 6.99547i −0.187297 + 0.324407i
\(466\) 19.2994 33.4275i 0.894027 1.54850i
\(467\) 14.0067 0.648155 0.324078 0.946031i \(-0.394946\pi\)
0.324078 + 0.946031i \(0.394946\pi\)
\(468\) −59.7803 + 12.2353i −2.76334 + 0.565579i
\(469\) 0 0
\(470\) −5.09091 + 8.81772i −0.234826 + 0.406731i
\(471\) 31.0586 53.7951i 1.43111 2.47875i
\(472\) 12.2160 + 21.1588i 0.562288 + 0.973912i
\(473\) −3.75068 −0.172456
\(474\) −9.15094 15.8499i −0.420316 0.728009i
\(475\) −7.72100 13.3732i −0.354264 0.613603i
\(476\) 0 0
\(477\) −0.972495 1.68441i −0.0445275 0.0771239i
\(478\) 19.2281 33.3041i 0.879474 1.52329i
\(479\) 15.0122 26.0018i 0.685923 1.18805i −0.287223 0.957864i \(-0.592732\pi\)
0.973146 0.230189i \(-0.0739345\pi\)
\(480\) −7.10439 −0.324270
\(481\) −6.20235 + 1.26945i −0.282803 + 0.0578817i
\(482\) 9.56649 0.435742
\(483\) 0 0
\(484\) 19.7253 34.1652i 0.896605 1.55296i
\(485\) −3.78033 6.54772i −0.171656 0.297317i
\(486\) −42.9267 −1.94719
\(487\) 14.2452 + 24.6733i 0.645510 + 1.11806i 0.984184 + 0.177152i \(0.0566884\pi\)
−0.338674 + 0.940904i \(0.609978\pi\)
\(488\) 4.48649 + 7.77082i 0.203094 + 0.351769i
\(489\) −22.4992 −1.01745
\(490\) 0 0
\(491\) 14.2339 24.6538i 0.642365 1.11261i −0.342539 0.939504i \(-0.611287\pi\)
0.984903 0.173105i \(-0.0553799\pi\)
\(492\) 18.7035 32.3954i 0.843218 1.46050i
\(493\) 25.5598 1.15116
\(494\) 21.8624 + 24.6527i 0.983636 + 1.10918i
\(495\) −2.63902 −0.118615
\(496\) 3.44406 5.96528i 0.154643 0.267849i
\(497\) 0 0
\(498\) 9.42290 + 16.3209i 0.422250 + 0.731359i
\(499\) −26.2329 −1.17434 −0.587172 0.809462i \(-0.699759\pi\)
−0.587172 + 0.809462i \(0.699759\pi\)
\(500\) 16.4309 + 28.4591i 0.734811 + 1.27273i
\(501\) −3.20233 5.54659i −0.143069 0.247803i
\(502\) −7.75367 −0.346063
\(503\) −4.26588 7.38872i −0.190206 0.329447i 0.755112 0.655595i \(-0.227582\pi\)
−0.945318 + 0.326149i \(0.894249\pi\)
\(504\) 0 0
\(505\) 1.29529 2.24352i 0.0576398 0.0998351i
\(506\) 11.5945 0.515440
\(507\) 28.6169 + 21.4595i 1.27092 + 0.953050i
\(508\) 15.7375 0.698240
\(509\) 6.51298 11.2808i 0.288683 0.500014i −0.684813 0.728719i \(-0.740116\pi\)
0.973496 + 0.228706i \(0.0734493\pi\)
\(510\) 20.8283 36.0758i 0.922295 1.59746i
\(511\) 0 0
\(512\) 24.8008 1.09605
\(513\) −8.26908 14.3225i −0.365089 0.632352i
\(514\) −32.1100 55.6162i −1.41631 2.45312i
\(515\) −10.6694 −0.470151
\(516\) 32.5039 + 56.2984i 1.43090 + 2.47840i
\(517\) −1.27571 + 2.20959i −0.0561055 + 0.0971775i
\(518\) 0 0
\(519\) 22.3798 0.982363
\(520\) −9.55499 10.7745i −0.419014 0.472493i
\(521\) 4.46570 0.195646 0.0978230 0.995204i \(-0.468812\pi\)
0.0978230 + 0.995204i \(0.468812\pi\)
\(522\) −21.6124 + 37.4337i −0.945948 + 1.63843i
\(523\) 1.45406 2.51850i 0.0635815 0.110126i −0.832482 0.554051i \(-0.813081\pi\)
0.896064 + 0.443925i \(0.146414\pi\)
\(524\) 4.01665 + 6.95704i 0.175468 + 0.303920i
\(525\) 0 0
\(526\) −4.54570 7.87339i −0.198202 0.343296i
\(527\) −9.64490 16.7055i −0.420138 0.727701i
\(528\) 3.72746 0.162217
\(529\) −22.6139 39.1684i −0.983213 1.70297i
\(530\) 0.499100 0.864466i 0.0216795 0.0375500i
\(531\) −13.7316 + 23.7838i −0.595901 + 1.03213i
\(532\) 0 0
\(533\) −12.9696 + 2.65451i −0.561775 + 0.114980i
\(534\) −13.7531 −0.595154
\(535\) 7.84866 13.5943i 0.339327 0.587732i
\(536\) 14.2581 24.6957i 0.615854 1.06669i
\(537\) −28.8803 50.0221i −1.24628 2.15861i
\(538\) 56.9262 2.45426
\(539\) 0 0
\(540\) 7.85899 + 13.6122i 0.338197 + 0.585775i
\(541\) −18.4639 −0.793824 −0.396912 0.917857i \(-0.629918\pi\)
−0.396912 + 0.917857i \(0.629918\pi\)
\(542\) 11.8224 + 20.4770i 0.507815 + 0.879562i
\(543\) −2.21229 + 3.83180i −0.0949384 + 0.164438i
\(544\) 8.48277 14.6926i 0.363696 0.629940i
\(545\) 9.07112 0.388564
\(546\) 0 0
\(547\) 34.9817 1.49571 0.747856 0.663861i \(-0.231083\pi\)
0.747856 + 0.663861i \(0.231083\pi\)
\(548\) −15.4832 + 26.8177i −0.661411 + 1.14560i
\(549\) −5.04310 + 8.73491i −0.215234 + 0.372797i
\(550\) 2.83204 + 4.90524i 0.120759 + 0.209160i
\(551\) 15.1552 0.645633
\(552\) −46.2063 80.0317i −1.96667 3.40638i
\(553\) 0 0
\(554\) −28.1449 −1.19576
\(555\) 2.37283 + 4.10986i 0.100721 + 0.174454i
\(556\) 1.06808 1.84996i 0.0452965 0.0784559i
\(557\) −0.0265706 + 0.0460217i −0.00112583 + 0.00195000i −0.866588 0.499025i \(-0.833692\pi\)
0.865462 + 0.500975i \(0.167025\pi\)
\(558\) 32.6214 1.38097
\(559\) 7.27451 21.8261i 0.307679 0.923146i
\(560\) 0 0
\(561\) 5.21927 9.04004i 0.220358 0.381671i
\(562\) 15.5194 26.8804i 0.654646 1.13388i
\(563\) −3.99253 6.91527i −0.168265 0.291444i 0.769545 0.638593i \(-0.220483\pi\)
−0.937810 + 0.347149i \(0.887150\pi\)
\(564\) 44.2218 1.86207
\(565\) −4.99992 8.66012i −0.210348 0.364334i
\(566\) −20.0655 34.7544i −0.843414 1.46084i
\(567\) 0 0
\(568\) 7.32424 + 12.6860i 0.307318 + 0.532291i
\(569\) 13.3621 23.1438i 0.560167 0.970237i −0.437315 0.899308i \(-0.644070\pi\)
0.997481 0.0709285i \(-0.0225962\pi\)
\(570\) 12.3498 21.3904i 0.517275 0.895946i
\(571\) 13.4929 0.564662 0.282331 0.959317i \(-0.408892\pi\)
0.282331 + 0.959317i \(0.408892\pi\)
\(572\) −5.20670 5.87124i −0.217703 0.245489i
\(573\) 31.8132 1.32902
\(574\) 0 0
\(575\) 16.6651 28.8648i 0.694982 1.20374i
\(576\) 24.8794 + 43.0923i 1.03664 + 1.79551i
\(577\) 12.0132 0.500118 0.250059 0.968231i \(-0.419550\pi\)
0.250059 + 0.968231i \(0.419550\pi\)
\(578\) 29.4406 + 50.9925i 1.22457 + 2.12101i
\(579\) 32.4383 + 56.1848i 1.34809 + 2.33496i
\(580\) −14.4036 −0.598078
\(581\) 0 0
\(582\) −25.2872 + 43.7988i −1.04819 + 1.81552i
\(583\) 0.125067 0.216622i 0.00517974 0.00897158i
\(584\) −20.0636 −0.830236
\(585\) 5.11843 15.3571i 0.211621 0.634939i
\(586\) 33.6609 1.39052
\(587\) −5.21177 + 9.02705i −0.215113 + 0.372586i −0.953307 0.302002i \(-0.902345\pi\)
0.738195 + 0.674588i \(0.235679\pi\)
\(588\) 0 0
\(589\) −5.71876 9.90518i −0.235637 0.408136i
\(590\) −14.0946 −0.580264
\(591\) −2.02364 3.50504i −0.0832412 0.144178i
\(592\) −2.02339 3.50462i −0.0831610 0.144039i
\(593\) −22.3501 −0.917810 −0.458905 0.888485i \(-0.651758\pi\)
−0.458905 + 0.888485i \(0.651758\pi\)
\(594\) 3.03307 + 5.25344i 0.124449 + 0.215551i
\(595\) 0 0
\(596\) −5.19607 + 8.99986i −0.212839 + 0.368649i
\(597\) −25.8474 −1.05786
\(598\) −22.4878 + 67.4714i −0.919595 + 2.75911i
\(599\) 1.15893 0.0473524 0.0236762 0.999720i \(-0.492463\pi\)
0.0236762 + 0.999720i \(0.492463\pi\)
\(600\) 22.5724 39.0966i 0.921515 1.59611i
\(601\) −21.0907 + 36.5301i −0.860306 + 1.49009i 0.0113271 + 0.999936i \(0.496394\pi\)
−0.871633 + 0.490158i \(0.836939\pi\)
\(602\) 0 0
\(603\) 32.0540 1.30534
\(604\) 42.6014 + 73.7879i 1.73343 + 3.00239i
\(605\) 5.23284 + 9.06355i 0.212745 + 0.368486i
\(606\) −17.3289 −0.703937
\(607\) 9.07844 + 15.7243i 0.368482 + 0.638230i 0.989328 0.145702i \(-0.0465441\pi\)
−0.620846 + 0.783932i \(0.713211\pi\)
\(608\) 5.02970 8.71169i 0.203981 0.353306i
\(609\) 0 0
\(610\) −5.17640 −0.209586
\(611\) −10.3839 11.7092i −0.420087 0.473703i
\(612\) −109.229 −4.41534
\(613\) 0.451323 0.781714i 0.0182288 0.0315731i −0.856767 0.515703i \(-0.827531\pi\)
0.874996 + 0.484130i \(0.160864\pi\)
\(614\) 18.9594 32.8386i 0.765137 1.32526i
\(615\) 4.96177 + 8.59404i 0.200078 + 0.346545i
\(616\) 0 0
\(617\) 13.0218 + 22.5544i 0.524238 + 0.908008i 0.999602 + 0.0282180i \(0.00898327\pi\)
−0.475363 + 0.879790i \(0.657683\pi\)
\(618\) 35.6848 + 61.8079i 1.43545 + 2.48628i
\(619\) 26.8341 1.07855 0.539277 0.842128i \(-0.318697\pi\)
0.539277 + 0.842128i \(0.318697\pi\)
\(620\) 5.43515 + 9.41396i 0.218281 + 0.378074i
\(621\) 17.8481 30.9138i 0.716218 1.24053i
\(622\) −34.1530 + 59.1547i −1.36941 + 2.37189i
\(623\) 0 0
\(624\) −7.22948 + 21.6910i −0.289411 + 0.868335i
\(625\) 11.4579 0.458315
\(626\) −22.1839 + 38.4237i −0.886649 + 1.53572i
\(627\) 3.09467 5.36012i 0.123589 0.214063i
\(628\) −41.7962 72.3932i −1.66785 2.88880i
\(629\) −11.3328 −0.451869
\(630\) 0 0
\(631\) 16.8061 + 29.1089i 0.669039 + 1.15881i 0.978173 + 0.207791i \(0.0666273\pi\)
−0.309135 + 0.951018i \(0.600039\pi\)
\(632\) −11.3259 −0.450521
\(633\) −12.3021 21.3079i −0.488965 0.846913i
\(634\) 36.5901 63.3760i 1.45318 2.51698i
\(635\) −2.08747 + 3.61561i −0.0828388 + 0.143481i
\(636\) −4.33539 −0.171909
\(637\) 0 0
\(638\) −5.55889 −0.220078
\(639\) −8.23293 + 14.2598i −0.325690 + 0.564111i
\(640\) −10.1865 + 17.6435i −0.402655 + 0.697419i
\(641\) −10.5921 18.3460i −0.418361 0.724622i 0.577414 0.816452i \(-0.304062\pi\)
−0.995775 + 0.0918294i \(0.970729\pi\)
\(642\) −105.002 −4.14410
\(643\) −0.330770 0.572910i −0.0130443 0.0225933i 0.859430 0.511254i \(-0.170819\pi\)
−0.872474 + 0.488661i \(0.837486\pi\)
\(644\) 0 0
\(645\) −17.2457 −0.679047
\(646\) 29.4917 + 51.0811i 1.16034 + 2.00976i
\(647\) 20.0162 34.6690i 0.786916 1.36298i −0.140931 0.990019i \(-0.545010\pi\)
0.927848 0.372960i \(-0.121657\pi\)
\(648\) −3.70268 + 6.41323i −0.145455 + 0.251936i
\(649\) −3.53188 −0.138639
\(650\) −34.0376 + 6.96654i −1.33506 + 0.273250i
\(651\) 0 0
\(652\) −15.1388 + 26.2212i −0.592883 + 1.02690i
\(653\) −6.35602 + 11.0089i −0.248730 + 0.430813i −0.963174 0.268880i \(-0.913347\pi\)
0.714444 + 0.699693i \(0.246680\pi\)
\(654\) −30.3391 52.5489i −1.18635 2.05482i
\(655\) −2.13112 −0.0832698
\(656\) −4.23107 7.32844i −0.165196 0.286127i
\(657\) −11.2764 19.5313i −0.439933 0.761987i
\(658\) 0 0
\(659\) 7.09522 + 12.2893i 0.276391 + 0.478723i 0.970485 0.241161i \(-0.0775283\pi\)
−0.694094 + 0.719884i \(0.744195\pi\)
\(660\) −2.94119 + 5.09430i −0.114486 + 0.198295i
\(661\) −25.0890 + 43.4554i −0.975848 + 1.69022i −0.298742 + 0.954334i \(0.596567\pi\)
−0.677106 + 0.735885i \(0.736766\pi\)
\(662\) −65.0207 −2.52710
\(663\) 42.4834 + 47.9056i 1.64992 + 1.86050i
\(664\) 11.6625 0.452594
\(665\) 0 0
\(666\) 9.58259 16.5975i 0.371318 0.643141i
\(667\) 16.3556 + 28.3287i 0.633290 + 1.09689i
\(668\) −8.61888 −0.333474
\(669\) 30.0181 + 51.9928i 1.16057 + 2.01016i
\(670\) 8.22530 + 14.2466i 0.317771 + 0.550396i
\(671\) −1.29713 −0.0500751
\(672\) 0 0
\(673\) 0.937137 1.62317i 0.0361240 0.0625685i −0.847398 0.530958i \(-0.821832\pi\)
0.883522 + 0.468389i \(0.155166\pi\)
\(674\) −14.7056 + 25.4708i −0.566438 + 0.981100i
\(675\) 17.4380 0.671191
\(676\) 44.2647 18.9117i 1.70249 0.727373i
\(677\) −2.00879 −0.0772041 −0.0386020 0.999255i \(-0.512290\pi\)
−0.0386020 + 0.999255i \(0.512290\pi\)
\(678\) −33.4453 + 57.9290i −1.28446 + 2.22475i
\(679\) 0 0
\(680\) −12.8894 22.3251i −0.494286 0.856128i
\(681\) 51.0469 1.95612
\(682\) 2.09762 + 3.63319i 0.0803222 + 0.139122i
\(683\) 7.05061 + 12.2120i 0.269784 + 0.467280i 0.968806 0.247820i \(-0.0797143\pi\)
−0.699022 + 0.715100i \(0.746381\pi\)
\(684\) −64.7655 −2.47637
\(685\) −4.10748 7.11437i −0.156939 0.271826i
\(686\) 0 0
\(687\) 26.6212 46.1094i 1.01566 1.75918i
\(688\) 14.7060 0.560660
\(689\) 1.01801 + 1.14794i 0.0387830 + 0.0437330i
\(690\) 53.3118 2.02954
\(691\) 17.8460 30.9102i 0.678895 1.17588i −0.296419 0.955058i \(-0.595793\pi\)
0.975314 0.220822i \(-0.0708741\pi\)
\(692\) 15.0585 26.0820i 0.572437 0.991489i
\(693\) 0 0
\(694\) −14.6746 −0.557041
\(695\) 0.283346 + 0.490769i 0.0107479 + 0.0186159i
\(696\) 22.1532 + 38.3704i 0.839714 + 1.45443i
\(697\) −23.6978 −0.897618
\(698\) 15.5596 + 26.9500i 0.588938 + 1.02007i
\(699\) 22.2366 38.5150i 0.841066 1.45677i
\(700\) 0 0
\(701\) −6.15865 −0.232609 −0.116305 0.993214i \(-0.537105\pi\)
−0.116305 + 0.993214i \(0.537105\pi\)
\(702\) −36.4538 + 7.46106i −1.37586 + 0.281600i
\(703\) −6.71957 −0.253434
\(704\) −3.19959 + 5.54185i −0.120589 + 0.208866i
\(705\) −5.86571 + 10.1597i −0.220915 + 0.382637i
\(706\) 37.8103 + 65.4894i 1.42301 + 2.46473i
\(707\) 0 0
\(708\) 30.6078 + 53.0143i 1.15031 + 1.99240i
\(709\) −17.0185 29.4770i −0.639144 1.10703i −0.985621 0.168972i \(-0.945955\pi\)
0.346477 0.938059i \(-0.387378\pi\)
\(710\) −8.45054 −0.317143
\(711\) −6.36553 11.0254i −0.238726 0.413486i
\(712\) −4.25547 + 7.37069i −0.159480 + 0.276228i
\(713\) 12.3434 21.3794i 0.462265 0.800667i
\(714\) 0 0
\(715\) 2.03952 0.417432i 0.0762736 0.0156111i
\(716\) −77.7295 −2.90489
\(717\) 22.1545 38.3727i 0.827375 1.43306i
\(718\) 23.7994 41.2218i 0.888187 1.53838i
\(719\) 11.4824 + 19.8881i 0.428222 + 0.741702i 0.996715 0.0809859i \(-0.0258069\pi\)
−0.568493 + 0.822688i \(0.692474\pi\)
\(720\) 10.3473 0.385621
\(721\) 0 0
\(722\) −5.19981 9.00633i −0.193517 0.335181i
\(723\) 11.0224 0.409929
\(724\) 2.97712 + 5.15653i 0.110644 + 0.191641i
\(725\) −7.98992 + 13.8389i −0.296738 + 0.513966i
\(726\) 35.0034 60.6276i 1.29910 2.25010i
\(727\) 1.06558 0.0395203 0.0197601 0.999805i \(-0.493710\pi\)
0.0197601 + 0.999805i \(0.493710\pi\)
\(728\) 0 0
\(729\) −43.9962 −1.62949
\(730\) 5.78721 10.0237i 0.214194 0.370996i
\(731\) 20.5916 35.6658i 0.761609 1.31915i
\(732\) 11.2411 + 19.4702i 0.415483 + 0.719637i
\(733\) −26.3378 −0.972808 −0.486404 0.873734i \(-0.661692\pi\)
−0.486404 + 0.873734i \(0.661692\pi\)
\(734\) 23.5448 + 40.7809i 0.869056 + 1.50525i
\(735\) 0 0
\(736\) 21.7123 0.800326
\(737\) 2.06114 + 3.57000i 0.0759230 + 0.131502i
\(738\) 20.0379 34.7067i 0.737606 1.27757i
\(739\) −17.1075 + 29.6310i −0.629308 + 1.08999i 0.358383 + 0.933575i \(0.383328\pi\)
−0.987691 + 0.156419i \(0.950005\pi\)
\(740\) 6.38633 0.234766
\(741\) 25.1897 + 28.4047i 0.925366 + 1.04347i
\(742\) 0 0
\(743\) −11.2391 + 19.4667i −0.412322 + 0.714163i −0.995143 0.0984379i \(-0.968615\pi\)
0.582821 + 0.812600i \(0.301949\pi\)
\(744\) 16.7188 28.9579i 0.612942 1.06165i
\(745\) −1.37845 2.38754i −0.0505023 0.0874726i
\(746\) −41.9027 −1.53417
\(747\) 6.55472 + 11.3531i 0.239825 + 0.415388i
\(748\) −7.02368 12.1654i −0.256811 0.444810i
\(749\) 0 0
\(750\) 29.1573 + 50.5018i 1.06467 + 1.84407i
\(751\) 21.2712 36.8428i 0.776197 1.34441i −0.157923 0.987451i \(-0.550480\pi\)
0.934119 0.356961i \(-0.116187\pi\)
\(752\) 5.00189 8.66353i 0.182400 0.315927i
\(753\) −8.93372 −0.325563
\(754\) 10.7816 32.3485i 0.392641 1.17806i
\(755\) −22.6031 −0.822612
\(756\) 0 0
\(757\) 5.61902 9.73243i 0.204227 0.353731i −0.745659 0.666327i \(-0.767865\pi\)
0.949886 + 0.312596i \(0.101199\pi\)
\(758\) −13.9716 24.1996i −0.507473 0.878969i
\(759\) 13.3591 0.484906
\(760\) −7.64252 13.2372i −0.277223 0.480165i
\(761\) −6.40422 11.0924i −0.232153 0.402101i 0.726289 0.687390i \(-0.241244\pi\)
−0.958441 + 0.285289i \(0.907910\pi\)
\(762\) 27.9269 1.01168
\(763\) 0 0
\(764\) 21.4059 37.0760i 0.774437 1.34136i
\(765\) 14.4885 25.0948i 0.523833 0.907306i
\(766\) 51.4117 1.85758
\(767\) 6.85016 20.5529i 0.247345 0.742122i
\(768\) 76.3692 2.75574
\(769\) 25.6759 44.4719i 0.925895 1.60370i 0.135780 0.990739i \(-0.456646\pi\)
0.790115 0.612958i \(-0.210021\pi\)
\(770\) 0 0
\(771\) −36.9969 64.0805i −1.33241 2.30780i
\(772\) 87.3059 3.14221
\(773\) −10.0023 17.3245i −0.359759 0.623120i 0.628162 0.778083i \(-0.283808\pi\)
−0.987920 + 0.154963i \(0.950474\pi\)
\(774\) 34.8230 + 60.3151i 1.25169 + 2.16798i
\(775\) 12.0599 0.433203
\(776\) 15.6487 + 27.1044i 0.561756 + 0.972990i
\(777\) 0 0
\(778\) 31.6308 54.7861i 1.13402 1.96418i
\(779\) −14.0512 −0.503435
\(780\) −23.9405 26.9960i −0.857206 0.966613i
\(781\) −2.11758 −0.0757729
\(782\) −63.6552 + 110.254i −2.27631 + 3.94268i
\(783\) −8.55708 + 14.8213i −0.305805 + 0.529670i
\(784\) 0 0
\(785\) 22.1759 0.791492
\(786\) 7.12771 + 12.3456i 0.254237 + 0.440351i
\(787\) −14.6596 25.3911i −0.522558 0.905096i −0.999656 0.0262462i \(-0.991645\pi\)
0.477098 0.878850i \(-0.341689\pi\)
\(788\) −5.44650 −0.194023
\(789\) −5.23752 9.07166i −0.186461 0.322959i
\(790\) 3.26689 5.65842i 0.116231 0.201318i
\(791\) 0 0
\(792\) 10.9243 0.388177
\(793\) 2.51581 7.54831i 0.0893389 0.268048i
\(794\) 80.7131 2.86440
\(795\) 0.575059 0.996031i 0.0203952 0.0353256i
\(796\) −17.3917 + 30.1232i −0.616431 + 1.06769i
\(797\) −1.55050 2.68554i −0.0549215 0.0951269i 0.837258 0.546809i \(-0.184158\pi\)
−0.892179 + 0.451682i \(0.850824\pi\)
\(798\) 0 0
\(799\) −14.0075 24.2618i −0.495551 0.858319i
\(800\) 5.30338 + 9.18572i 0.187503 + 0.324764i
\(801\) −9.56685 −0.338028
\(802\) 25.8050 + 44.6956i 0.911206 + 1.57826i
\(803\) 1.45019 2.51180i 0.0511761 0.0886395i
\(804\) 35.7242 61.8762i 1.25990 2.18220i
\(805\) 0 0
\(806\) −25.2108 + 5.15995i −0.888013 + 0.181751i
\(807\) 65.5899 2.30887
\(808\) −5.36189 + 9.28707i −0.188631 + 0.326718i
\(809\) −3.99501 + 6.91957i −0.140457 + 0.243279i −0.927669 0.373404i \(-0.878191\pi\)
0.787212 + 0.616683i \(0.211524\pi\)
\(810\) −2.13603 3.69972i −0.0750526 0.129995i
\(811\) −48.2554 −1.69448 −0.847239 0.531213i \(-0.821737\pi\)
−0.847239 + 0.531213i \(0.821737\pi\)
\(812\) 0 0
\(813\) 13.6217 + 23.5934i 0.477733 + 0.827458i
\(814\) 2.46472 0.0863884
\(815\) −4.01612 6.95612i −0.140679 0.243662i
\(816\) −20.4642 + 35.4449i −0.716389 + 1.24082i
\(817\) 12.2094 21.1473i 0.427153 0.739851i
\(818\) −18.4886 −0.646439
\(819\) 0 0
\(820\) 13.3543 0.466353
\(821\) 13.7760 23.8607i 0.480785 0.832743i −0.518972 0.854791i \(-0.673685\pi\)
0.999757 + 0.0220477i \(0.00701856\pi\)
\(822\) −27.4756 + 47.5892i −0.958323 + 1.65986i
\(823\) −10.2137 17.6907i −0.356028 0.616659i 0.631265 0.775567i \(-0.282536\pi\)
−0.987293 + 0.158908i \(0.949203\pi\)
\(824\) 44.1663 1.53861
\(825\) 3.26306 + 5.65178i 0.113605 + 0.196770i
\(826\) 0 0
\(827\) −27.7142 −0.963719 −0.481859 0.876249i \(-0.660038\pi\)
−0.481859 + 0.876249i \(0.660038\pi\)
\(828\) −69.8953 121.062i −2.42903 4.20720i
\(829\) −4.62832 + 8.01648i −0.160748 + 0.278424i −0.935137 0.354286i \(-0.884724\pi\)
0.774389 + 0.632710i \(0.218057\pi\)
\(830\) −3.36398 + 5.82659i −0.116766 + 0.202244i
\(831\) −32.4283 −1.12493
\(832\) −26.0437 29.3677i −0.902904 1.01814i
\(833\) 0 0
\(834\) 1.89535 3.28283i 0.0656304 0.113675i
\(835\) 1.14323 1.98014i 0.0395632 0.0685255i
\(836\) −4.16456 7.21323i −0.144034 0.249475i
\(837\) 12.9159 0.446440
\(838\) −9.67387 16.7556i −0.334178 0.578814i
\(839\) 15.1870 + 26.3046i 0.524312 + 0.908135i 0.999599 + 0.0283045i \(0.00901080\pi\)
−0.475287 + 0.879831i \(0.657656\pi\)
\(840\) 0 0
\(841\) 6.65848 + 11.5328i 0.229603 + 0.397683i
\(842\) −38.3428 + 66.4116i −1.32138 + 2.28869i
\(843\) 17.8813 30.9713i 0.615865 1.06671i
\(844\) −33.1104 −1.13971
\(845\) −1.52654 + 12.6781i −0.0525147 + 0.436139i
\(846\) 47.3769 1.62885
\(847\) 0 0
\(848\) −0.490373 + 0.849350i −0.0168395 + 0.0291668i
\(849\) −23.1193 40.0437i −0.793451 1.37430i
\(850\) −62.1929 −2.13320
\(851\) −7.25180 12.5605i −0.248589 0.430568i
\(852\) 18.3512 + 31.7853i 0.628703 + 1.08894i
\(853\) −5.30773 −0.181733 −0.0908666 0.995863i \(-0.528964\pi\)
−0.0908666 + 0.995863i \(0.528964\pi\)
\(854\) 0 0
\(855\) 8.59069 14.8795i 0.293795 0.508868i
\(856\) −32.4896 + 56.2737i −1.11047 + 1.92340i
\(857\) −16.6371 −0.568314 −0.284157 0.958778i \(-0.591714\pi\)
−0.284157 + 0.958778i \(0.591714\pi\)
\(858\) −9.23951 10.4188i −0.315432 0.355691i
\(859\) −10.5885 −0.361276 −0.180638 0.983550i \(-0.557816\pi\)
−0.180638 + 0.983550i \(0.557816\pi\)
\(860\) −11.6039 + 20.0986i −0.395690 + 0.685356i
\(861\) 0 0
\(862\) −35.2571 61.0671i −1.20086 2.07995i
\(863\) −56.0632 −1.90841 −0.954207 0.299148i \(-0.903298\pi\)
−0.954207 + 0.299148i \(0.903298\pi\)
\(864\) 5.67984 + 9.83777i 0.193232 + 0.334688i
\(865\) 3.99480 + 6.91919i 0.135827 + 0.235260i
\(866\) −52.7541 −1.79266
\(867\) 33.9212 + 58.7532i 1.15202 + 1.99536i
\(868\) 0 0
\(869\) 0.818634 1.41792i 0.0277703 0.0480995i
\(870\) −25.5598 −0.866559
\(871\) −24.7723 + 5.07019i −0.839377 + 0.171797i
\(872\) −37.5501 −1.27161
\(873\) −17.5902 + 30.4671i −0.595337 + 1.03115i
\(874\) −37.7432 + 65.3731i −1.27668 + 2.21128i
\(875\) 0 0
\(876\) −50.2702 −1.69847
\(877\) 1.83026 + 3.17010i 0.0618033 + 0.107047i 0.895272 0.445521i \(-0.146982\pi\)
−0.833468 + 0.552567i \(0.813648\pi\)
\(878\) −7.58894 13.1444i −0.256114 0.443603i
\(879\) 38.7838 1.30815
\(880\) 0.665353 + 1.15242i 0.0224290 + 0.0388482i
\(881\) −5.11493 + 8.85932i −0.172326 + 0.298478i −0.939233 0.343281i \(-0.888462\pi\)
0.766906 + 0.641759i \(0.221795\pi\)
\(882\) 0 0
\(883\) −3.98979 −0.134267 −0.0671335 0.997744i \(-0.521385\pi\)
−0.0671335 + 0.997744i \(0.521385\pi\)
\(884\) 84.4159 17.2776i 2.83921 0.581107i
\(885\) −16.2396 −0.545890
\(886\) −16.1941 + 28.0490i −0.544052 + 0.942325i
\(887\) 7.11039 12.3155i 0.238743 0.413516i −0.721611 0.692299i \(-0.756598\pi\)
0.960354 + 0.278784i \(0.0899312\pi\)
\(888\) −9.82237 17.0128i −0.329617 0.570913i
\(889\) 0 0
\(890\) −2.45493 4.25206i −0.0822894 0.142529i
\(891\) −0.535258 0.927094i −0.0179318 0.0310588i
\(892\) 80.7919 2.70511
\(893\) −8.30550 14.3855i −0.277933 0.481394i
\(894\) −9.22065 + 15.9706i −0.308385 + 0.534138i
\(895\) 10.3103 17.8579i 0.344635 0.596924i
\(896\) 0 0
\(897\) −25.9103 + 77.7400i −0.865119 + 2.59566i
\(898\) −52.3262 −1.74615
\(899\) −5.91794 + 10.2502i −0.197374 + 0.341862i
\(900\) 34.1448 59.1405i 1.13816 1.97135i
\(901\) 1.37326 + 2.37856i 0.0457500 + 0.0792413i
\(902\) 5.15392 0.171607
\(903\) 0 0
\(904\) 20.6973 + 35.8487i 0.688381 + 1.19231i
\(905\) −1.57958 −0.0525069
\(906\) 75.5980 + 130.940i 2.51158 + 4.35018i
\(907\) −21.7126 + 37.6074i −0.720956 + 1.24873i 0.239661 + 0.970857i \(0.422964\pi\)
−0.960617 + 0.277876i \(0.910370\pi\)
\(908\) 34.3474 59.4915i 1.13986 1.97429i
\(909\) −12.0542 −0.399814
\(910\) 0 0
\(911\) 24.8617 0.823706 0.411853 0.911250i \(-0.364882\pi\)
0.411853 + 0.911250i \(0.364882\pi\)
\(912\) −12.1338 + 21.0164i −0.401791 + 0.695923i
\(913\) −0.842964 + 1.46006i −0.0278980 + 0.0483208i
\(914\) 18.1666 + 31.4654i 0.600896 + 1.04078i
\(915\) −5.96421 −0.197171
\(916\) −35.8248 62.0503i −1.18368 2.05020i
\(917\) 0 0
\(918\) −66.6076 −2.19838
\(919\) 0.831637 + 1.44044i 0.0274332 + 0.0475157i 0.879416 0.476054i \(-0.157933\pi\)
−0.851983 + 0.523570i \(0.824600\pi\)
\(920\) 16.4957 28.5714i 0.543847 0.941971i
\(921\) 21.8448 37.8363i 0.719811 1.24675i
\(922\) 38.7250 1.27534
\(923\) 4.10708 12.3227i 0.135186 0.405607i
\(924\) 0 0
\(925\) 3.54260 6.13597i 0.116480 0.201749i
\(926\) −1.72857 + 2.99397i −0.0568044 + 0.0983880i
\(927\) 24.8229 + 42.9945i 0.815291 + 1.41212i
\(928\) −10.4098 −0.341717
\(929\) −4.74761 8.22310i −0.155764 0.269791i 0.777573 0.628793i \(-0.216451\pi\)
−0.933337 + 0.359002i \(0.883117\pi\)
\(930\) 9.64490 + 16.7055i 0.316269 + 0.547793i
\(931\) 0 0
\(932\) −29.9243 51.8304i −0.980202 1.69776i
\(933\) −39.3508 + 68.1576i −1.28829 + 2.23138i
\(934\) 16.7243 28.9674i 0.547236 0.947841i
\(935\) 3.72657 0.121872
\(936\) −21.1878 + 63.5710i −0.692546 + 2.07788i
\(937\) −6.41678 −0.209627 −0.104813 0.994492i \(-0.533425\pi\)
−0.104813 + 0.994492i \(0.533425\pi\)
\(938\) 0 0
\(939\) −25.5602 + 44.2715i −0.834125 + 1.44475i
\(940\) 7.89361 + 13.6721i 0.257461 + 0.445936i
\(941\) −51.5186 −1.67946 −0.839730 0.543005i \(-0.817287\pi\)
−0.839730 + 0.543005i \(0.817287\pi\)
\(942\) −74.1691 128.465i −2.41656 4.18561i
\(943\) −15.1641 26.2650i −0.493810 0.855305i
\(944\) 13.8481 0.450717
\(945\) 0 0
\(946\) −4.47838 + 7.75678i −0.145605 + 0.252195i
\(947\) 4.20109 7.27651i 0.136517 0.236455i −0.789659 0.613546i \(-0.789742\pi\)
0.926176 + 0.377091i \(0.123076\pi\)
\(948\) −28.3776 −0.921661
\(949\) 11.8041 + 13.3107i 0.383178 + 0.432083i
\(950\) −36.8761 −1.19642
\(951\) 42.1589 73.0213i 1.36709 2.36788i
\(952\) 0 0
\(953\) 18.0455 + 31.2558i 0.584552 + 1.01247i 0.994931 + 0.100559i \(0.0320631\pi\)
−0.410379 + 0.911915i \(0.634604\pi\)
\(954\) −4.64471 −0.150378
\(955\) 5.67867 + 9.83575i 0.183758 + 0.318277i
\(956\) −29.8138 51.6390i −0.964246 1.67012i
\(957\) −6.40491 −0.207041
\(958\) −35.8496 62.0933i −1.15825 2.00614i
\(959\) 0 0
\(960\) −14.7117 + 25.4815i −0.474820 + 0.822412i
\(961\) −22.0676 −0.711857
\(962\) −4.78037 + 14.3428i −0.154125 + 0.462431i
\(963\) −73.0409 −2.35371
\(964\) 7.41656 12.8459i 0.238871 0.413737i
\(965\) −11.5805 + 20.0580i −0.372790 + 0.645691i
\(966\) 0 0
\(967\) 3.18338 0.102371 0.0511853 0.998689i \(-0.483700\pi\)
0.0511853 + 0.998689i \(0.483700\pi\)
\(968\) −21.6614 37.5187i −0.696225 1.20590i
\(969\) 33.9801 + 58.8553i 1.09160 + 1.89070i
\(970\) −18.0551 −0.579715
\(971\) −18.8738 32.6904i −0.605690 1.04909i −0.991942 0.126692i \(-0.959564\pi\)
0.386253 0.922393i \(-0.373769\pi\)
\(972\) −33.2795 + 57.6419i −1.06744 + 1.84886i
\(973\) 0 0
\(974\) 68.0359 2.18001
\(975\) −39.2179 + 8.02679i −1.25598 + 0.257063i
\(976\) 5.08589 0.162795
\(977\) 10.6538 18.4530i 0.340846 0.590363i −0.643744 0.765241i \(-0.722620\pi\)
0.984590 + 0.174878i \(0.0559532\pi\)
\(978\) −26.8645 + 46.5307i −0.859032 + 1.48789i
\(979\) −0.615168 1.06550i −0.0196609 0.0340536i
\(980\) 0 0
\(981\) −21.1044 36.5538i −0.673810 1.16707i
\(982\) −33.9910 58.8741i −1.08470 1.87875i
\(983\) −22.0316 −0.702700 −0.351350 0.936244i \(-0.614277\pi\)
−0.351350 + 0.936244i \(0.614277\pi\)
\(984\) −20.5393 35.5752i −0.654770 1.13409i
\(985\) 0.722439 1.25130i 0.0230188 0.0398698i
\(986\) 30.5189 52.8603i 0.971919 1.68341i
\(987\) 0 0
\(988\) 50.0528 10.2444i 1.59239 0.325918i
\(989\) 52.7059 1.67595
\(990\) −3.15104 + 5.45776i −0.100147 + 0.173459i
\(991\) 11.0129 19.0750i 0.349838 0.605937i −0.636383 0.771374i \(-0.719570\pi\)
0.986220 + 0.165437i \(0.0529033\pi\)
\(992\) 3.92808 + 6.80364i 0.124717 + 0.216016i
\(993\) −74.9164 −2.37740
\(994\) 0 0
\(995\) −4.61376 7.99127i −0.146266 0.253340i
\(996\) 29.2210 0.925902
\(997\) −5.04102 8.73130i −0.159651 0.276523i 0.775092 0.631848i \(-0.217703\pi\)
−0.934743 + 0.355325i \(0.884370\pi\)
\(998\) −31.3225 + 54.2522i −0.991497 + 1.71732i
\(999\) 3.79408 6.57153i 0.120039 0.207914i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.f.k.295.6 12
7.2 even 3 91.2.h.b.74.1 yes 12
7.3 odd 6 637.2.g.l.373.6 12
7.4 even 3 91.2.g.b.9.6 12
7.5 odd 6 637.2.h.l.165.1 12
7.6 odd 2 637.2.f.j.295.6 12
13.3 even 3 inner 637.2.f.k.393.6 12
13.4 even 6 8281.2.a.ce.1.6 6
13.9 even 3 8281.2.a.bz.1.1 6
21.2 odd 6 819.2.s.d.802.6 12
21.11 odd 6 819.2.n.d.100.1 12
91.3 odd 6 637.2.h.l.471.1 12
91.4 even 6 1183.2.e.g.170.1 12
91.9 even 3 1183.2.e.h.508.6 12
91.16 even 3 91.2.g.b.81.6 yes 12
91.30 even 6 1183.2.e.g.508.1 12
91.48 odd 6 8281.2.a.ca.1.1 6
91.55 odd 6 637.2.f.j.393.6 12
91.68 odd 6 637.2.g.l.263.6 12
91.69 odd 6 8281.2.a.cf.1.6 6
91.74 even 3 1183.2.e.h.170.6 12
91.81 even 3 91.2.h.b.16.1 yes 12
273.107 odd 6 819.2.n.d.172.1 12
273.263 odd 6 819.2.s.d.289.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.6 12 7.4 even 3
91.2.g.b.81.6 yes 12 91.16 even 3
91.2.h.b.16.1 yes 12 91.81 even 3
91.2.h.b.74.1 yes 12 7.2 even 3
637.2.f.j.295.6 12 7.6 odd 2
637.2.f.j.393.6 12 91.55 odd 6
637.2.f.k.295.6 12 1.1 even 1 trivial
637.2.f.k.393.6 12 13.3 even 3 inner
637.2.g.l.263.6 12 91.68 odd 6
637.2.g.l.373.6 12 7.3 odd 6
637.2.h.l.165.1 12 7.5 odd 6
637.2.h.l.471.1 12 91.3 odd 6
819.2.n.d.100.1 12 21.11 odd 6
819.2.n.d.172.1 12 273.107 odd 6
819.2.s.d.289.6 12 273.263 odd 6
819.2.s.d.802.6 12 21.2 odd 6
1183.2.e.g.170.1 12 91.4 even 6
1183.2.e.g.508.1 12 91.30 even 6
1183.2.e.h.170.6 12 91.74 even 3
1183.2.e.h.508.6 12 91.9 even 3
8281.2.a.bz.1.1 6 13.9 even 3
8281.2.a.ca.1.1 6 91.48 odd 6
8281.2.a.ce.1.6 6 13.4 even 6
8281.2.a.cf.1.6 6 91.69 odd 6