Properties

Label 637.2.f.j.295.1
Level $637$
Weight $2$
Character 637.295
Analytic conductor $5.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [637,2,Mod(295,637)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(637, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("637.295"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,-1,-4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 7x^{10} - 2x^{9} + 33x^{8} - 11x^{7} + 55x^{6} + 17x^{5} + 47x^{4} + x^{3} + 8x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 295.1
Root \(0.217953 + 0.377506i\) of defining polynomial
Character \(\chi\) \(=\) 637.295
Dual form 637.2.f.j.393.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.929081 + 1.60921i) q^{2} +(1.14703 - 1.98672i) q^{3} +(-0.726381 - 1.25813i) q^{4} +0.197362 q^{5} +(2.13137 + 3.69165i) q^{6} -1.01686 q^{8} +(-1.13137 - 1.95960i) q^{9} +(-0.183365 + 0.317598i) q^{10} +(2.09137 - 3.62236i) q^{11} -3.33274 q^{12} +(2.72221 + 2.36423i) q^{13} +(0.226381 - 0.392104i) q^{15} +(2.39750 - 4.15260i) q^{16} +(0.420653 + 0.728592i) q^{17} +4.20455 q^{18} +(0.675876 + 1.17065i) q^{19} +(-0.143360 - 0.248307i) q^{20} +(3.88610 + 6.73092i) q^{22} +(2.05760 - 3.56386i) q^{23} +(-1.16637 + 2.02021i) q^{24} -4.96105 q^{25} +(-6.33370 + 2.18406i) q^{26} +1.69131 q^{27} +(4.11931 - 7.13485i) q^{29} +(0.420653 + 0.728592i) q^{30} +1.28070 q^{31} +(3.43809 + 5.95495i) q^{32} +(-4.79774 - 8.30993i) q^{33} -1.56328 q^{34} +(-1.64362 + 2.84683i) q^{36} +(-1.52242 + 2.63692i) q^{37} -2.51177 q^{38} +(7.81953 - 2.69642i) q^{39} -0.200689 q^{40} +(2.69848 - 4.67390i) q^{41} +(-2.66389 - 4.61399i) q^{43} -6.07652 q^{44} +(-0.223290 - 0.386750i) q^{45} +(3.82334 + 6.62223i) q^{46} +11.6641 q^{47} +(-5.50003 - 9.52634i) q^{48} +(4.60921 - 7.98339i) q^{50} +1.93001 q^{51} +(0.997141 - 5.14222i) q^{52} +4.64796 q^{53} +(-1.57136 + 2.72168i) q^{54} +(0.412757 - 0.714916i) q^{55} +3.10101 q^{57} +(7.65434 + 13.2577i) q^{58} +(3.02905 + 5.24648i) q^{59} -0.657756 q^{60} +(-5.68285 - 9.84298i) q^{61} +(-1.18987 + 2.06092i) q^{62} -3.18704 q^{64} +(0.537262 + 0.466609i) q^{65} +17.8300 q^{66} +(-6.69851 + 11.6022i) q^{67} +(0.611109 - 1.05847i) q^{68} +(-4.72026 - 8.17574i) q^{69} +(2.98520 + 5.17051i) q^{71} +(1.15044 + 1.99263i) q^{72} -3.88547 q^{73} +(-2.82891 - 4.89982i) q^{74} +(-5.69049 + 9.85622i) q^{75} +(0.981887 - 1.70068i) q^{76} +(-2.92585 + 15.0885i) q^{78} -10.7334 q^{79} +(0.473177 - 0.819566i) q^{80} +(5.33411 - 9.23895i) q^{81} +(5.01421 + 8.68486i) q^{82} -3.07390 q^{83} +(0.0830210 + 0.143797i) q^{85} +9.89987 q^{86} +(-9.44997 - 16.3678i) q^{87} +(-2.12662 + 3.68341i) q^{88} +(-5.99207 + 10.3786i) q^{89} +0.829819 q^{90} -5.97840 q^{92} +(1.46901 - 2.54439i) q^{93} +(-10.8369 + 18.7700i) q^{94} +(0.133392 + 0.231042i) q^{95} +15.7744 q^{96} +(9.73637 + 16.8639i) q^{97} -9.46448 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} - q^{3} - 4 q^{4} + 2 q^{5} + 9 q^{6} - 6 q^{8} + 3 q^{9} - 4 q^{10} + 4 q^{11} + 10 q^{12} + 2 q^{13} - 2 q^{15} + 8 q^{16} - 5 q^{17} - 6 q^{18} + q^{19} + q^{20} - 5 q^{22} - q^{23}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.929081 + 1.60921i −0.656959 + 1.13789i 0.324440 + 0.945906i \(0.394824\pi\)
−0.981399 + 0.191980i \(0.938509\pi\)
\(3\) 1.14703 1.98672i 0.662240 1.14703i −0.317785 0.948163i \(-0.602939\pi\)
0.980026 0.198871i \(-0.0637276\pi\)
\(4\) −0.726381 1.25813i −0.363191 0.629065i
\(5\) 0.197362 0.0882631 0.0441315 0.999026i \(-0.485948\pi\)
0.0441315 + 0.999026i \(0.485948\pi\)
\(6\) 2.13137 + 3.69165i 0.870130 + 1.50711i
\(7\) 0 0
\(8\) −1.01686 −0.359513
\(9\) −1.13137 1.95960i −0.377125 0.653199i
\(10\) −0.183365 + 0.317598i −0.0579852 + 0.100433i
\(11\) 2.09137 3.62236i 0.630571 1.09218i −0.356864 0.934156i \(-0.616154\pi\)
0.987435 0.158025i \(-0.0505127\pi\)
\(12\) −3.33274 −0.962078
\(13\) 2.72221 + 2.36423i 0.755005 + 0.655719i
\(14\) 0 0
\(15\) 0.226381 0.392104i 0.0584514 0.101241i
\(16\) 2.39750 4.15260i 0.599376 1.03815i
\(17\) 0.420653 + 0.728592i 0.102023 + 0.176709i 0.912518 0.409036i \(-0.134135\pi\)
−0.810495 + 0.585746i \(0.800802\pi\)
\(18\) 4.20455 0.991022
\(19\) 0.675876 + 1.17065i 0.155057 + 0.268566i 0.933080 0.359670i \(-0.117111\pi\)
−0.778023 + 0.628236i \(0.783777\pi\)
\(20\) −0.143360 0.248307i −0.0320563 0.0555232i
\(21\) 0 0
\(22\) 3.88610 + 6.73092i 0.828519 + 1.43504i
\(23\) 2.05760 3.56386i 0.429038 0.743116i −0.567750 0.823201i \(-0.692186\pi\)
0.996788 + 0.0800850i \(0.0255192\pi\)
\(24\) −1.16637 + 2.02021i −0.238084 + 0.412373i
\(25\) −4.96105 −0.992210
\(26\) −6.33370 + 2.18406i −1.24214 + 0.428330i
\(27\) 1.69131 0.325492
\(28\) 0 0
\(29\) 4.11931 7.13485i 0.764936 1.32491i −0.175344 0.984507i \(-0.556104\pi\)
0.940280 0.340401i \(-0.110563\pi\)
\(30\) 0.420653 + 0.728592i 0.0768003 + 0.133022i
\(31\) 1.28070 0.230020 0.115010 0.993364i \(-0.463310\pi\)
0.115010 + 0.993364i \(0.463310\pi\)
\(32\) 3.43809 + 5.95495i 0.607774 + 1.05270i
\(33\) −4.79774 8.30993i −0.835180 1.44657i
\(34\) −1.56328 −0.268100
\(35\) 0 0
\(36\) −1.64362 + 2.84683i −0.273936 + 0.474471i
\(37\) −1.52242 + 2.63692i −0.250285 + 0.433506i −0.963604 0.267333i \(-0.913858\pi\)
0.713319 + 0.700839i \(0.247191\pi\)
\(38\) −2.51177 −0.407463
\(39\) 7.81953 2.69642i 1.25213 0.431773i
\(40\) −0.200689 −0.0317317
\(41\) 2.69848 4.67390i 0.421431 0.729941i −0.574648 0.818400i \(-0.694861\pi\)
0.996080 + 0.0884599i \(0.0281945\pi\)
\(42\) 0 0
\(43\) −2.66389 4.61399i −0.406239 0.703627i 0.588226 0.808697i \(-0.299827\pi\)
−0.994465 + 0.105070i \(0.966493\pi\)
\(44\) −6.07652 −0.916070
\(45\) −0.223290 0.386750i −0.0332862 0.0576534i
\(46\) 3.82334 + 6.62223i 0.563721 + 0.976394i
\(47\) 11.6641 1.70138 0.850690 0.525668i \(-0.176185\pi\)
0.850690 + 0.525668i \(0.176185\pi\)
\(48\) −5.50003 9.52634i −0.793862 1.37501i
\(49\) 0 0
\(50\) 4.60921 7.98339i 0.651841 1.12902i
\(51\) 1.93001 0.270256
\(52\) 0.997141 5.14222i 0.138279 0.713098i
\(53\) 4.64796 0.638447 0.319223 0.947679i \(-0.396578\pi\)
0.319223 + 0.947679i \(0.396578\pi\)
\(54\) −1.57136 + 2.72168i −0.213835 + 0.370373i
\(55\) 0.412757 0.714916i 0.0556562 0.0963993i
\(56\) 0 0
\(57\) 3.10101 0.410739
\(58\) 7.65434 + 13.2577i 1.00506 + 1.74082i
\(59\) 3.02905 + 5.24648i 0.394349 + 0.683033i 0.993018 0.117964i \(-0.0376367\pi\)
−0.598669 + 0.800997i \(0.704303\pi\)
\(60\) −0.657756 −0.0849160
\(61\) −5.68285 9.84298i −0.727614 1.26026i −0.957889 0.287139i \(-0.907296\pi\)
0.230275 0.973126i \(-0.426038\pi\)
\(62\) −1.18987 + 2.06092i −0.151114 + 0.261737i
\(63\) 0 0
\(64\) −3.18704 −0.398380
\(65\) 0.537262 + 0.466609i 0.0666391 + 0.0578758i
\(66\) 17.8300 2.19472
\(67\) −6.69851 + 11.6022i −0.818354 + 1.41743i 0.0885411 + 0.996073i \(0.471780\pi\)
−0.906895 + 0.421357i \(0.861554\pi\)
\(68\) 0.611109 1.05847i 0.0741078 0.128358i
\(69\) −4.72026 8.17574i −0.568253 0.984243i
\(70\) 0 0
\(71\) 2.98520 + 5.17051i 0.354278 + 0.613627i 0.986994 0.160757i \(-0.0513934\pi\)
−0.632716 + 0.774384i \(0.718060\pi\)
\(72\) 1.15044 + 1.99263i 0.135581 + 0.234833i
\(73\) −3.88547 −0.454759 −0.227380 0.973806i \(-0.573016\pi\)
−0.227380 + 0.973806i \(0.573016\pi\)
\(74\) −2.82891 4.89982i −0.328854 0.569592i
\(75\) −5.69049 + 9.85622i −0.657081 + 1.13810i
\(76\) 0.981887 1.70068i 0.112630 0.195081i
\(77\) 0 0
\(78\) −2.92585 + 15.0885i −0.331287 + 1.70844i
\(79\) −10.7334 −1.20760 −0.603799 0.797136i \(-0.706347\pi\)
−0.603799 + 0.797136i \(0.706347\pi\)
\(80\) 0.473177 0.819566i 0.0529028 0.0916303i
\(81\) 5.33411 9.23895i 0.592679 1.02655i
\(82\) 5.01421 + 8.68486i 0.553726 + 0.959082i
\(83\) −3.07390 −0.337404 −0.168702 0.985667i \(-0.553958\pi\)
−0.168702 + 0.985667i \(0.553958\pi\)
\(84\) 0 0
\(85\) 0.0830210 + 0.143797i 0.00900489 + 0.0155969i
\(86\) 9.89987 1.06753
\(87\) −9.44997 16.3678i −1.01314 1.75482i
\(88\) −2.12662 + 3.68341i −0.226698 + 0.392653i
\(89\) −5.99207 + 10.3786i −0.635159 + 1.10013i 0.351323 + 0.936254i \(0.385732\pi\)
−0.986482 + 0.163873i \(0.947601\pi\)
\(90\) 0.829819 0.0874706
\(91\) 0 0
\(92\) −5.97840 −0.623291
\(93\) 1.46901 2.54439i 0.152329 0.263841i
\(94\) −10.8369 + 18.7700i −1.11774 + 1.93598i
\(95\) 0.133392 + 0.231042i 0.0136858 + 0.0237045i
\(96\) 15.7744 1.60997
\(97\) 9.73637 + 16.8639i 0.988578 + 1.71227i 0.624807 + 0.780779i \(0.285178\pi\)
0.363771 + 0.931488i \(0.381489\pi\)
\(98\) 0 0
\(99\) −9.46448 −0.951216
\(100\) 3.60361 + 6.24164i 0.360361 + 0.624164i
\(101\) −8.46697 + 14.6652i −0.842495 + 1.45924i 0.0452843 + 0.998974i \(0.485581\pi\)
−0.887779 + 0.460270i \(0.847753\pi\)
\(102\) −1.79314 + 3.10580i −0.177547 + 0.307520i
\(103\) 7.23425 0.712811 0.356406 0.934331i \(-0.384002\pi\)
0.356406 + 0.934331i \(0.384002\pi\)
\(104\) −2.76809 2.40408i −0.271434 0.235739i
\(105\) 0 0
\(106\) −4.31833 + 7.47957i −0.419434 + 0.726480i
\(107\) 4.92625 8.53251i 0.476238 0.824869i −0.523391 0.852093i \(-0.675333\pi\)
0.999629 + 0.0272237i \(0.00866664\pi\)
\(108\) −1.22853 2.12788i −0.118216 0.204756i
\(109\) −13.8159 −1.32332 −0.661662 0.749802i \(-0.730149\pi\)
−0.661662 + 0.749802i \(0.730149\pi\)
\(110\) 0.766969 + 1.32843i 0.0731277 + 0.126661i
\(111\) 3.49255 + 6.04927i 0.331498 + 0.574171i
\(112\) 0 0
\(113\) 2.13432 + 3.69675i 0.200780 + 0.347761i 0.948780 0.315938i \(-0.102319\pi\)
−0.748000 + 0.663699i \(0.768986\pi\)
\(114\) −2.88109 + 4.99019i −0.269839 + 0.467374i
\(115\) 0.406092 0.703371i 0.0378682 0.0655897i
\(116\) −11.9687 −1.11127
\(117\) 1.55310 8.00926i 0.143584 0.740456i
\(118\) −11.2569 −1.03629
\(119\) 0 0
\(120\) −0.230197 + 0.398713i −0.0210140 + 0.0363973i
\(121\) −3.24765 5.62509i −0.295240 0.511372i
\(122\) 21.1193 1.91205
\(123\) −6.19049 10.7222i −0.558178 0.966792i
\(124\) −0.930276 1.61129i −0.0835412 0.144698i
\(125\) −1.96593 −0.175839
\(126\) 0 0
\(127\) 1.09512 1.89680i 0.0971761 0.168314i −0.813339 0.581791i \(-0.802352\pi\)
0.910515 + 0.413477i \(0.135686\pi\)
\(128\) −3.91516 + 6.78126i −0.346055 + 0.599385i
\(129\) −12.2223 −1.07611
\(130\) −1.25003 + 0.431052i −0.109635 + 0.0378057i
\(131\) −2.27612 −0.198865 −0.0994326 0.995044i \(-0.531703\pi\)
−0.0994326 + 0.995044i \(0.531703\pi\)
\(132\) −6.96998 + 12.0724i −0.606659 + 1.05076i
\(133\) 0 0
\(134\) −12.4469 21.5587i −1.07525 1.86239i
\(135\) 0.333800 0.0287289
\(136\) −0.427743 0.740873i −0.0366787 0.0635293i
\(137\) −6.72399 11.6463i −0.574469 0.995010i −0.996099 0.0882417i \(-0.971875\pi\)
0.421630 0.906768i \(-0.361458\pi\)
\(138\) 17.5420 1.49328
\(139\) 2.02270 + 3.50342i 0.171563 + 0.297156i 0.938966 0.344009i \(-0.111785\pi\)
−0.767403 + 0.641165i \(0.778452\pi\)
\(140\) 0 0
\(141\) 13.3791 23.1733i 1.12672 1.95154i
\(142\) −11.0940 −0.930984
\(143\) 14.2572 4.91634i 1.19225 0.411125i
\(144\) −10.8499 −0.904157
\(145\) 0.812996 1.40815i 0.0675156 0.116940i
\(146\) 3.60991 6.25255i 0.298758 0.517465i
\(147\) 0 0
\(148\) 4.42344 0.363605
\(149\) −7.67596 13.2952i −0.628840 1.08918i −0.987785 0.155823i \(-0.950197\pi\)
0.358945 0.933359i \(-0.383136\pi\)
\(150\) −10.5738 18.3144i −0.863351 1.49537i
\(151\) 6.12108 0.498127 0.249063 0.968487i \(-0.419877\pi\)
0.249063 + 0.968487i \(0.419877\pi\)
\(152\) −0.687268 1.19038i −0.0557448 0.0965528i
\(153\) 0.951831 1.64862i 0.0769510 0.133283i
\(154\) 0 0
\(155\) 0.252762 0.0203023
\(156\) −9.07241 7.87935i −0.726374 0.630853i
\(157\) −4.53668 −0.362067 −0.181033 0.983477i \(-0.557944\pi\)
−0.181033 + 0.983477i \(0.557944\pi\)
\(158\) 9.97217 17.2723i 0.793343 1.37411i
\(159\) 5.33137 9.23421i 0.422805 0.732320i
\(160\) 0.678549 + 1.17528i 0.0536440 + 0.0929142i
\(161\) 0 0
\(162\) 9.91163 + 17.1674i 0.778731 + 1.34880i
\(163\) −0.911271 1.57837i −0.0713762 0.123627i 0.828128 0.560538i \(-0.189406\pi\)
−0.899505 + 0.436911i \(0.856072\pi\)
\(164\) −7.84049 −0.612240
\(165\) −0.946893 1.64007i −0.0737155 0.127679i
\(166\) 2.85590 4.94656i 0.221661 0.383928i
\(167\) −5.35397 + 9.27336i −0.414303 + 0.717594i −0.995355 0.0962726i \(-0.969308\pi\)
0.581052 + 0.813866i \(0.302641\pi\)
\(168\) 0 0
\(169\) 1.82086 + 12.8718i 0.140066 + 0.990142i
\(170\) −0.308533 −0.0236634
\(171\) 1.52934 2.64889i 0.116951 0.202566i
\(172\) −3.87000 + 6.70303i −0.295085 + 0.511102i
\(173\) −6.74634 11.6850i −0.512915 0.888395i −0.999888 0.0149778i \(-0.995232\pi\)
0.486973 0.873417i \(-0.338101\pi\)
\(174\) 35.1191 2.66237
\(175\) 0 0
\(176\) −10.0281 17.3692i −0.755898 1.30925i
\(177\) 13.8977 1.04462
\(178\) −11.1342 19.2851i −0.834547 1.44548i
\(179\) −5.23458 + 9.06657i −0.391251 + 0.677667i −0.992615 0.121309i \(-0.961291\pi\)
0.601364 + 0.798975i \(0.294624\pi\)
\(180\) −0.324388 + 0.561857i −0.0241785 + 0.0418783i
\(181\) −12.5209 −0.930674 −0.465337 0.885133i \(-0.654067\pi\)
−0.465337 + 0.885133i \(0.654067\pi\)
\(182\) 0 0
\(183\) −26.0737 −1.92742
\(184\) −2.09228 + 3.62393i −0.154245 + 0.267160i
\(185\) −0.300469 + 0.520428i −0.0220909 + 0.0382626i
\(186\) 2.72965 + 4.72789i 0.200148 + 0.346666i
\(187\) 3.51896 0.257332
\(188\) −8.47256 14.6749i −0.617925 1.07028i
\(189\) 0 0
\(190\) −0.495729 −0.0359640
\(191\) −6.55685 11.3568i −0.474437 0.821749i 0.525135 0.851019i \(-0.324015\pi\)
−0.999572 + 0.0292704i \(0.990682\pi\)
\(192\) −3.65565 + 6.33176i −0.263823 + 0.456956i
\(193\) −0.520786 + 0.902028i −0.0374870 + 0.0649294i −0.884160 0.467184i \(-0.845269\pi\)
0.846673 + 0.532113i \(0.178602\pi\)
\(194\) −36.1835 −2.59782
\(195\) 1.54328 0.532172i 0.110517 0.0381096i
\(196\) 0 0
\(197\) −0.739167 + 1.28027i −0.0526635 + 0.0912158i −0.891155 0.453698i \(-0.850104\pi\)
0.838492 + 0.544914i \(0.183438\pi\)
\(198\) 8.79326 15.2304i 0.624910 1.08238i
\(199\) 7.04993 + 12.2108i 0.499756 + 0.865603i 1.00000 0.000281618i \(-8.96419e-5\pi\)
−0.500244 + 0.865885i \(0.666756\pi\)
\(200\) 5.04467 0.356712
\(201\) 15.3668 + 26.6162i 1.08389 + 1.87736i
\(202\) −15.7330 27.2503i −1.10697 1.91733i
\(203\) 0 0
\(204\) −1.40192 2.42820i −0.0981543 0.170008i
\(205\) 0.532578 0.922451i 0.0371968 0.0644268i
\(206\) −6.72120 + 11.6415i −0.468288 + 0.811099i
\(207\) −9.31164 −0.647204
\(208\) 16.3442 5.63600i 1.13327 0.390786i
\(209\) 5.65402 0.391097
\(210\) 0 0
\(211\) −13.2346 + 22.9230i −0.911108 + 1.57809i −0.0986067 + 0.995126i \(0.531439\pi\)
−0.812501 + 0.582959i \(0.801895\pi\)
\(212\) −3.37619 5.84774i −0.231878 0.401624i
\(213\) 13.6965 0.938468
\(214\) 9.15376 + 15.8548i 0.625738 + 1.08381i
\(215\) −0.525751 0.910628i −0.0358559 0.0621043i
\(216\) −1.71981 −0.117019
\(217\) 0 0
\(218\) 12.8361 22.2328i 0.869370 1.50579i
\(219\) −4.45676 + 7.71934i −0.301160 + 0.521625i
\(220\) −1.19928 −0.0808552
\(221\) −0.577452 + 2.97790i −0.0388436 + 0.200315i
\(222\) −12.9794 −0.871122
\(223\) −0.364024 + 0.630508i −0.0243769 + 0.0422219i −0.877956 0.478740i \(-0.841093\pi\)
0.853580 + 0.520962i \(0.174427\pi\)
\(224\) 0 0
\(225\) 5.61280 + 9.72165i 0.374187 + 0.648110i
\(226\) −7.93182 −0.527617
\(227\) −1.42598 2.46986i −0.0946454 0.163931i 0.814815 0.579721i \(-0.196838\pi\)
−0.909461 + 0.415790i \(0.863505\pi\)
\(228\) −2.25252 3.90147i −0.149177 0.258381i
\(229\) −3.17352 −0.209712 −0.104856 0.994487i \(-0.533438\pi\)
−0.104856 + 0.994487i \(0.533438\pi\)
\(230\) 0.754584 + 1.30698i 0.0497558 + 0.0861795i
\(231\) 0 0
\(232\) −4.18874 + 7.25511i −0.275004 + 0.476321i
\(233\) 13.4071 0.878327 0.439163 0.898407i \(-0.355275\pi\)
0.439163 + 0.898407i \(0.355275\pi\)
\(234\) 11.4457 + 9.94051i 0.748227 + 0.649832i
\(235\) 2.30205 0.150169
\(236\) 4.40050 7.62188i 0.286448 0.496142i
\(237\) −12.3115 + 21.3242i −0.799721 + 1.38516i
\(238\) 0 0
\(239\) −15.5538 −1.00609 −0.503046 0.864259i \(-0.667788\pi\)
−0.503046 + 0.864259i \(0.667788\pi\)
\(240\) −1.08550 1.88014i −0.0700687 0.121363i
\(241\) −3.78787 6.56078i −0.243998 0.422617i 0.717851 0.696196i \(-0.245126\pi\)
−0.961849 + 0.273579i \(0.911792\pi\)
\(242\) 12.0693 0.775844
\(243\) −9.69985 16.8006i −0.622245 1.07776i
\(244\) −8.25583 + 14.2995i −0.528525 + 0.915433i
\(245\) 0 0
\(246\) 23.0059 1.46680
\(247\) −0.927810 + 4.78468i −0.0590351 + 0.304442i
\(248\) −1.30229 −0.0826953
\(249\) −3.52587 + 6.10698i −0.223443 + 0.387014i
\(250\) 1.82651 3.16361i 0.115519 0.200084i
\(251\) 0.637382 + 1.10398i 0.0402312 + 0.0696825i 0.885440 0.464754i \(-0.153857\pi\)
−0.845209 + 0.534436i \(0.820524\pi\)
\(252\) 0 0
\(253\) −8.60638 14.9067i −0.541079 0.937176i
\(254\) 2.03491 + 3.52456i 0.127682 + 0.221151i
\(255\) 0.380912 0.0238536
\(256\) −10.4620 18.1208i −0.653878 1.13255i
\(257\) −4.24010 + 7.34406i −0.264490 + 0.458110i −0.967430 0.253139i \(-0.918537\pi\)
0.702940 + 0.711249i \(0.251870\pi\)
\(258\) 11.3555 19.6683i 0.706962 1.22449i
\(259\) 0 0
\(260\) 0.196798 1.01488i 0.0122049 0.0629402i
\(261\) −18.6419 −1.15390
\(262\) 2.11470 3.66276i 0.130646 0.226286i
\(263\) −6.39415 + 11.0750i −0.394280 + 0.682913i −0.993009 0.118038i \(-0.962339\pi\)
0.598729 + 0.800952i \(0.295673\pi\)
\(264\) 4.87861 + 8.45000i 0.300258 + 0.520062i
\(265\) 0.917333 0.0563513
\(266\) 0 0
\(267\) 13.7462 + 23.8092i 0.841255 + 1.45710i
\(268\) 19.4627 1.18887
\(269\) −2.35586 4.08047i −0.143639 0.248790i 0.785225 0.619210i \(-0.212547\pi\)
−0.928864 + 0.370420i \(0.879214\pi\)
\(270\) −0.310127 + 0.537156i −0.0188737 + 0.0326903i
\(271\) −9.00562 + 15.5982i −0.547052 + 0.947522i 0.451422 + 0.892310i \(0.350917\pi\)
−0.998475 + 0.0552119i \(0.982417\pi\)
\(272\) 4.03407 0.244601
\(273\) 0 0
\(274\) 24.9885 1.50961
\(275\) −10.3754 + 17.9707i −0.625659 + 1.08367i
\(276\) −6.85742 + 11.8774i −0.412768 + 0.714936i
\(277\) 13.0604 + 22.6213i 0.784725 + 1.35918i 0.929163 + 0.369670i \(0.120529\pi\)
−0.144438 + 0.989514i \(0.546137\pi\)
\(278\) −7.51700 −0.450840
\(279\) −1.44895 2.50965i −0.0867463 0.150249i
\(280\) 0 0
\(281\) −3.66197 −0.218455 −0.109227 0.994017i \(-0.534838\pi\)
−0.109227 + 0.994017i \(0.534838\pi\)
\(282\) 24.8605 + 43.0596i 1.48042 + 2.56416i
\(283\) 3.82263 6.62099i 0.227232 0.393577i −0.729755 0.683709i \(-0.760366\pi\)
0.956987 + 0.290132i \(0.0936991\pi\)
\(284\) 4.33678 7.51153i 0.257341 0.445727i
\(285\) 0.612022 0.0362531
\(286\) −5.33465 + 27.5106i −0.315445 + 1.62674i
\(287\) 0 0
\(288\) 7.77953 13.4745i 0.458413 0.793995i
\(289\) 8.14610 14.1095i 0.479183 0.829968i
\(290\) 1.51068 + 2.61657i 0.0887100 + 0.153650i
\(291\) 44.6718 2.61871
\(292\) 2.82233 + 4.88842i 0.165164 + 0.286073i
\(293\) −8.57670 14.8553i −0.501056 0.867855i −0.999999 0.00122001i \(-0.999612\pi\)
0.498943 0.866635i \(-0.333722\pi\)
\(294\) 0 0
\(295\) 0.597821 + 1.03546i 0.0348065 + 0.0602866i
\(296\) 1.54809 2.68136i 0.0899807 0.155851i
\(297\) 3.53715 6.12652i 0.205246 0.355497i
\(298\) 28.5264 1.65249
\(299\) 14.0270 4.83695i 0.811201 0.279728i
\(300\) 16.5339 0.954583
\(301\) 0 0
\(302\) −5.68698 + 9.85014i −0.327249 + 0.566812i
\(303\) 19.4238 + 33.6430i 1.11587 + 1.93274i
\(304\) 6.48166 0.371749
\(305\) −1.12158 1.94263i −0.0642215 0.111235i
\(306\) 1.76866 + 3.06340i 0.101107 + 0.175123i
\(307\) 28.0696 1.60201 0.801007 0.598655i \(-0.204298\pi\)
0.801007 + 0.598655i \(0.204298\pi\)
\(308\) 0 0
\(309\) 8.29793 14.3724i 0.472052 0.817619i
\(310\) −0.234836 + 0.406748i −0.0133378 + 0.0231017i
\(311\) 23.5341 1.33450 0.667248 0.744836i \(-0.267472\pi\)
0.667248 + 0.744836i \(0.267472\pi\)
\(312\) −7.95133 + 2.74187i −0.450155 + 0.155228i
\(313\) 3.34860 0.189274 0.0946370 0.995512i \(-0.469831\pi\)
0.0946370 + 0.995512i \(0.469831\pi\)
\(314\) 4.21494 7.30050i 0.237863 0.411991i
\(315\) 0 0
\(316\) 7.79652 + 13.5040i 0.438588 + 0.759658i
\(317\) −7.27834 −0.408793 −0.204396 0.978888i \(-0.565523\pi\)
−0.204396 + 0.978888i \(0.565523\pi\)
\(318\) 9.90655 + 17.1586i 0.555532 + 0.962209i
\(319\) −17.2300 29.8432i −0.964694 1.67090i
\(320\) −0.629002 −0.0351623
\(321\) −11.3011 19.5742i −0.630768 1.09252i
\(322\) 0 0
\(323\) −0.568618 + 0.984875i −0.0316388 + 0.0547999i
\(324\) −15.4984 −0.861021
\(325\) −13.5050 11.7290i −0.749123 0.650610i
\(326\) 3.38658 0.187565
\(327\) −15.8473 + 27.4484i −0.876359 + 1.51790i
\(328\) −2.74396 + 4.75268i −0.151510 + 0.262423i
\(329\) 0 0
\(330\) 3.51896 0.193712
\(331\) 7.16168 + 12.4044i 0.393642 + 0.681807i 0.992927 0.118728i \(-0.0378818\pi\)
−0.599285 + 0.800536i \(0.704548\pi\)
\(332\) 2.23282 + 3.86736i 0.122542 + 0.212249i
\(333\) 6.88973 0.377555
\(334\) −9.94855 17.2314i −0.544360 0.942860i
\(335\) −1.32203 + 2.28983i −0.0722304 + 0.125107i
\(336\) 0 0
\(337\) 17.1802 0.935868 0.467934 0.883764i \(-0.344999\pi\)
0.467934 + 0.883764i \(0.344999\pi\)
\(338\) −22.4053 9.02883i −1.21869 0.491104i
\(339\) 9.79255 0.531858
\(340\) 0.120610 0.208902i 0.00654098 0.0113293i
\(341\) 2.67841 4.63915i 0.145044 0.251224i
\(342\) 2.84175 + 4.92206i 0.153664 + 0.266155i
\(343\) 0 0
\(344\) 2.70879 + 4.69176i 0.146048 + 0.252963i
\(345\) −0.931602 1.61358i −0.0501558 0.0868723i
\(346\) 25.0716 1.34786
\(347\) 3.85139 + 6.67080i 0.206753 + 0.358107i 0.950690 0.310143i \(-0.100377\pi\)
−0.743937 + 0.668250i \(0.767044\pi\)
\(348\) −13.7286 + 23.7786i −0.735928 + 1.27466i
\(349\) 11.1850 19.3730i 0.598721 1.03702i −0.394289 0.918986i \(-0.629009\pi\)
0.993010 0.118029i \(-0.0376575\pi\)
\(350\) 0 0
\(351\) 4.60409 + 3.99863i 0.245748 + 0.213431i
\(352\) 28.7613 1.53298
\(353\) −11.1311 + 19.2797i −0.592451 + 1.02616i 0.401450 + 0.915881i \(0.368506\pi\)
−0.993901 + 0.110275i \(0.964827\pi\)
\(354\) −12.9121 + 22.3644i −0.686270 + 1.18865i
\(355\) 0.589165 + 1.02046i 0.0312697 + 0.0541606i
\(356\) 17.4101 0.922735
\(357\) 0 0
\(358\) −9.72670 16.8471i −0.514072 0.890399i
\(359\) −2.75842 −0.145584 −0.0727920 0.997347i \(-0.523191\pi\)
−0.0727920 + 0.997347i \(0.523191\pi\)
\(360\) 0.227054 + 0.393269i 0.0119668 + 0.0207271i
\(361\) 8.58638 14.8721i 0.451915 0.782740i
\(362\) 11.6330 20.1489i 0.611415 1.05900i
\(363\) −14.9006 −0.782081
\(364\) 0 0
\(365\) −0.766844 −0.0401385
\(366\) 24.2246 41.9582i 1.26624 2.19319i
\(367\) −7.07485 + 12.2540i −0.369304 + 0.639654i −0.989457 0.144827i \(-0.953737\pi\)
0.620153 + 0.784481i \(0.287071\pi\)
\(368\) −9.86618 17.0887i −0.514310 0.890812i
\(369\) −12.2119 −0.635729
\(370\) −0.558320 0.967039i −0.0290257 0.0502740i
\(371\) 0 0
\(372\) −4.26823 −0.221298
\(373\) 2.52142 + 4.36723i 0.130554 + 0.226127i 0.923890 0.382657i \(-0.124991\pi\)
−0.793336 + 0.608784i \(0.791658\pi\)
\(374\) −3.26940 + 5.66276i −0.169056 + 0.292814i
\(375\) −2.25499 + 3.90576i −0.116447 + 0.201693i
\(376\) −11.8607 −0.611668
\(377\) 28.0820 9.68358i 1.44630 0.498730i
\(378\) 0 0
\(379\) 3.02982 5.24780i 0.155631 0.269561i −0.777657 0.628688i \(-0.783592\pi\)
0.933289 + 0.359127i \(0.116925\pi\)
\(380\) 0.193787 0.335650i 0.00994109 0.0172185i
\(381\) −2.51228 4.35139i −0.128708 0.222929i
\(382\) 24.3674 1.24674
\(383\) −2.27052 3.93266i −0.116018 0.200950i 0.802168 0.597098i \(-0.203680\pi\)
−0.918186 + 0.396149i \(0.870346\pi\)
\(384\) 8.98165 + 15.5567i 0.458343 + 0.793873i
\(385\) 0 0
\(386\) −0.967705 1.67611i −0.0492549 0.0853120i
\(387\) −6.02771 + 10.4403i −0.306406 + 0.530710i
\(388\) 14.1446 24.4992i 0.718085 1.24376i
\(389\) 4.50765 0.228547 0.114273 0.993449i \(-0.463546\pi\)
0.114273 + 0.993449i \(0.463546\pi\)
\(390\) −0.577452 + 2.97790i −0.0292404 + 0.150792i
\(391\) 3.46213 0.175088
\(392\) 0 0
\(393\) −2.61078 + 4.52201i −0.131697 + 0.228105i
\(394\) −1.37349 2.37896i −0.0691955 0.119850i
\(395\) −2.11836 −0.106586
\(396\) 6.87482 + 11.9075i 0.345473 + 0.598376i
\(397\) 2.00174 + 3.46712i 0.100465 + 0.174010i 0.911876 0.410465i \(-0.134634\pi\)
−0.811412 + 0.584475i \(0.801300\pi\)
\(398\) −26.1998 −1.31328
\(399\) 0 0
\(400\) −11.8941 + 20.6012i −0.594706 + 1.03006i
\(401\) −6.30674 + 10.9236i −0.314944 + 0.545498i −0.979426 0.201806i \(-0.935319\pi\)
0.664482 + 0.747304i \(0.268652\pi\)
\(402\) −57.1081 −2.84829
\(403\) 3.48633 + 3.02786i 0.173667 + 0.150829i
\(404\) 24.6010 1.22394
\(405\) 1.05275 1.82342i 0.0523116 0.0906064i
\(406\) 0 0
\(407\) 6.36790 + 11.0295i 0.315645 + 0.546713i
\(408\) −1.96254 −0.0971604
\(409\) 10.3476 + 17.9226i 0.511657 + 0.886216i 0.999909 + 0.0135128i \(0.00430140\pi\)
−0.488252 + 0.872703i \(0.662365\pi\)
\(410\) 0.989615 + 1.71406i 0.0488736 + 0.0846516i
\(411\) −30.8506 −1.52175
\(412\) −5.25482 9.10162i −0.258886 0.448404i
\(413\) 0 0
\(414\) 8.65126 14.9844i 0.425186 0.736444i
\(415\) −0.606672 −0.0297803
\(416\) −4.71965 + 24.3391i −0.231400 + 1.19332i
\(417\) 9.28042 0.454464
\(418\) −5.25304 + 9.09854i −0.256935 + 0.445024i
\(419\) −10.9088 + 18.8945i −0.532928 + 0.923058i 0.466333 + 0.884609i \(0.345575\pi\)
−0.999261 + 0.0384484i \(0.987758\pi\)
\(420\) 0 0
\(421\) 9.42727 0.459457 0.229728 0.973255i \(-0.426216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(422\) −24.5920 42.5947i −1.19712 2.07348i
\(423\) −13.1964 22.8569i −0.641632 1.11134i
\(424\) −4.72631 −0.229530
\(425\) −2.08688 3.61458i −0.101228 0.175333i
\(426\) −12.7251 + 22.0406i −0.616535 + 1.06787i
\(427\) 0 0
\(428\) −14.3133 −0.691861
\(429\) 6.58611 33.9643i 0.317980 1.63981i
\(430\) 1.95386 0.0942235
\(431\) −10.2138 + 17.6908i −0.491980 + 0.852134i −0.999957 0.00923613i \(-0.997060\pi\)
0.507977 + 0.861370i \(0.330393\pi\)
\(432\) 4.05491 7.02332i 0.195092 0.337909i
\(433\) 13.1743 + 22.8186i 0.633117 + 1.09659i 0.986911 + 0.161267i \(0.0515581\pi\)
−0.353794 + 0.935323i \(0.615109\pi\)
\(434\) 0 0
\(435\) −1.86507 3.23039i −0.0894231 0.154885i
\(436\) 10.0356 + 17.3822i 0.480619 + 0.832457i
\(437\) 5.56272 0.266101
\(438\) −8.28138 14.3438i −0.395700 0.685372i
\(439\) 12.5655 21.7641i 0.599720 1.03875i −0.393142 0.919478i \(-0.628612\pi\)
0.992862 0.119267i \(-0.0380546\pi\)
\(440\) −0.419714 + 0.726967i −0.0200091 + 0.0346568i
\(441\) 0 0
\(442\) −4.25558 3.69595i −0.202417 0.175799i
\(443\) 18.5199 0.879907 0.439953 0.898021i \(-0.354995\pi\)
0.439953 + 0.898021i \(0.354995\pi\)
\(444\) 5.07384 8.78815i 0.240794 0.417067i
\(445\) −1.18261 + 2.04834i −0.0560611 + 0.0971006i
\(446\) −0.676415 1.17159i −0.0320292 0.0554762i
\(447\) −35.2184 −1.66577
\(448\) 0 0
\(449\) −5.82155 10.0832i −0.274736 0.475856i 0.695333 0.718688i \(-0.255257\pi\)
−0.970068 + 0.242832i \(0.921924\pi\)
\(450\) −20.8590 −0.983301
\(451\) −11.2870 19.5497i −0.531485 0.920559i
\(452\) 3.10066 5.37050i 0.145843 0.252607i
\(453\) 7.02109 12.1609i 0.329880 0.571368i
\(454\) 5.29939 0.248713
\(455\) 0 0
\(456\) −3.15328 −0.147666
\(457\) −10.2592 + 17.7695i −0.479906 + 0.831222i −0.999734 0.0230490i \(-0.992663\pi\)
0.519828 + 0.854271i \(0.325996\pi\)
\(458\) 2.94845 5.10687i 0.137772 0.238629i
\(459\) 0.711453 + 1.23227i 0.0332078 + 0.0575176i
\(460\) −1.17991 −0.0550136
\(461\) 1.02038 + 1.76734i 0.0475236 + 0.0823134i 0.888809 0.458278i \(-0.151534\pi\)
−0.841285 + 0.540592i \(0.818200\pi\)
\(462\) 0 0
\(463\) 3.03155 0.140888 0.0704441 0.997516i \(-0.477558\pi\)
0.0704441 + 0.997516i \(0.477558\pi\)
\(464\) −19.7521 34.2116i −0.916968 1.58824i
\(465\) 0.289926 0.502167i 0.0134450 0.0232874i
\(466\) −12.4563 + 21.5749i −0.577025 + 0.999436i
\(467\) 12.9274 0.598210 0.299105 0.954220i \(-0.403312\pi\)
0.299105 + 0.954220i \(0.403312\pi\)
\(468\) −11.2048 + 3.86378i −0.517943 + 0.178603i
\(469\) 0 0
\(470\) −2.13879 + 3.70449i −0.0986549 + 0.170875i
\(471\) −5.20373 + 9.01312i −0.239775 + 0.415303i
\(472\) −3.08011 5.33491i −0.141774 0.245559i
\(473\) −22.2847 −1.02465
\(474\) −22.8768 39.6238i −1.05077 1.81998i
\(475\) −3.35305 5.80766i −0.153849 0.266474i
\(476\) 0 0
\(477\) −5.25858 9.10814i −0.240774 0.417033i
\(478\) 14.4507 25.0294i 0.660962 1.14482i
\(479\) 18.2911 31.6810i 0.835740 1.44754i −0.0576873 0.998335i \(-0.518373\pi\)
0.893427 0.449209i \(-0.148294\pi\)
\(480\) 3.11328 0.142101
\(481\) −10.3786 + 3.57888i −0.473225 + 0.163183i
\(482\) 14.0769 0.641187
\(483\) 0 0
\(484\) −4.71806 + 8.17191i −0.214457 + 0.371451i
\(485\) 1.92159 + 3.32829i 0.0872550 + 0.151130i
\(486\) 36.0478 1.63516
\(487\) −18.3748 31.8261i −0.832642 1.44218i −0.895936 0.444183i \(-0.853494\pi\)
0.0632939 0.997995i \(-0.479839\pi\)
\(488\) 5.77864 + 10.0089i 0.261587 + 0.453081i
\(489\) −4.18103 −0.189073
\(490\) 0 0
\(491\) 4.09899 7.09965i 0.184985 0.320403i −0.758587 0.651572i \(-0.774110\pi\)
0.943571 + 0.331169i \(0.107443\pi\)
\(492\) −8.99331 + 15.5769i −0.405450 + 0.702260i
\(493\) 6.93119 0.312165
\(494\) −6.83757 5.93840i −0.307637 0.267181i
\(495\) −1.86793 −0.0839572
\(496\) 3.07048 5.31823i 0.137869 0.238795i
\(497\) 0 0
\(498\) −6.55163 11.3478i −0.293585 0.508505i
\(499\) −43.2532 −1.93628 −0.968141 0.250407i \(-0.919436\pi\)
−0.968141 + 0.250407i \(0.919436\pi\)
\(500\) 1.42802 + 2.47340i 0.0638629 + 0.110614i
\(501\) 12.2824 + 21.2737i 0.548736 + 0.950439i
\(502\) −2.36872 −0.105721
\(503\) 0.00909609 + 0.0157549i 0.000405575 + 0.000702476i 0.866228 0.499649i \(-0.166538\pi\)
−0.865823 + 0.500351i \(0.833204\pi\)
\(504\) 0 0
\(505\) −1.67106 + 2.89436i −0.0743612 + 0.128797i
\(506\) 31.9841 1.42187
\(507\) 27.6614 + 11.1469i 1.22848 + 0.495052i
\(508\) −3.18190 −0.141174
\(509\) 21.5503 37.3262i 0.955200 1.65446i 0.221292 0.975208i \(-0.428973\pi\)
0.733909 0.679248i \(-0.237694\pi\)
\(510\) −0.353897 + 0.612968i −0.0156708 + 0.0271427i
\(511\) 0 0
\(512\) 23.2197 1.02617
\(513\) 1.14311 + 1.97993i 0.0504697 + 0.0874161i
\(514\) −7.87878 13.6464i −0.347518 0.601919i
\(515\) 1.42777 0.0629149
\(516\) 8.87804 + 15.3772i 0.390834 + 0.676944i
\(517\) 24.3939 42.2514i 1.07284 1.85822i
\(518\) 0 0
\(519\) −30.9531 −1.35869
\(520\) −0.546317 0.474474i −0.0239576 0.0208071i
\(521\) −20.9540 −0.918012 −0.459006 0.888433i \(-0.651794\pi\)
−0.459006 + 0.888433i \(0.651794\pi\)
\(522\) 17.3198 29.9988i 0.758068 1.31301i
\(523\) −17.3701 + 30.0860i −0.759543 + 1.31557i 0.183541 + 0.983012i \(0.441244\pi\)
−0.943084 + 0.332555i \(0.892089\pi\)
\(524\) 1.65333 + 2.86365i 0.0722260 + 0.125099i
\(525\) 0 0
\(526\) −11.8814 20.5791i −0.518052 0.897292i
\(527\) 0.538730 + 0.933107i 0.0234674 + 0.0406468i
\(528\) −46.0104 −2.00235
\(529\) 3.03260 + 5.25262i 0.131852 + 0.228375i
\(530\) −0.852276 + 1.47619i −0.0370205 + 0.0641214i
\(531\) 6.85398 11.8714i 0.297438 0.515177i
\(532\) 0 0
\(533\) 18.3960 6.34352i 0.796819 0.274769i
\(534\) −51.0854 −2.21068
\(535\) 0.972255 1.68400i 0.0420343 0.0728055i
\(536\) 6.81142 11.7977i 0.294209 0.509584i
\(537\) 12.0085 + 20.7993i 0.518205 + 0.897557i
\(538\) 8.75513 0.377460
\(539\) 0 0
\(540\) −0.242466 0.419964i −0.0104341 0.0180724i
\(541\) −3.29846 −0.141812 −0.0709059 0.997483i \(-0.522589\pi\)
−0.0709059 + 0.997483i \(0.522589\pi\)
\(542\) −16.7339 28.9839i −0.718782 1.24497i
\(543\) −14.3619 + 24.8756i −0.616330 + 1.06752i
\(544\) −2.89249 + 5.00993i −0.124014 + 0.214799i
\(545\) −2.72674 −0.116801
\(546\) 0 0
\(547\) 21.9417 0.938161 0.469080 0.883155i \(-0.344585\pi\)
0.469080 + 0.883155i \(0.344585\pi\)
\(548\) −9.76836 + 16.9193i −0.417284 + 0.722756i
\(549\) −12.8589 + 22.2722i −0.548803 + 0.950554i
\(550\) −19.2791 33.3924i −0.822065 1.42386i
\(551\) 11.1366 0.474434
\(552\) 4.79983 + 8.31354i 0.204294 + 0.353848i
\(553\) 0 0
\(554\) −48.5368 −2.06213
\(555\) 0.689297 + 1.19390i 0.0292590 + 0.0506781i
\(556\) 2.93850 5.08963i 0.124620 0.215848i
\(557\) 7.14329 12.3725i 0.302671 0.524241i −0.674069 0.738668i \(-0.735455\pi\)
0.976740 + 0.214427i \(0.0687884\pi\)
\(558\) 5.38476 0.227955
\(559\) 3.65686 18.8583i 0.154669 0.797621i
\(560\) 0 0
\(561\) 4.03637 6.99119i 0.170416 0.295168i
\(562\) 3.40226 5.89289i 0.143516 0.248577i
\(563\) 3.39392 + 5.87844i 0.143037 + 0.247747i 0.928639 0.370985i \(-0.120980\pi\)
−0.785602 + 0.618732i \(0.787647\pi\)
\(564\) −38.8733 −1.63686
\(565\) 0.421234 + 0.729599i 0.0177215 + 0.0306945i
\(566\) 7.10307 + 12.3029i 0.298564 + 0.517128i
\(567\) 0 0
\(568\) −3.03552 5.25767i −0.127367 0.220607i
\(569\) 8.66061 15.0006i 0.363072 0.628859i −0.625393 0.780310i \(-0.715061\pi\)
0.988465 + 0.151451i \(0.0483947\pi\)
\(570\) −0.568618 + 0.984875i −0.0238168 + 0.0412519i
\(571\) −13.0116 −0.544520 −0.272260 0.962224i \(-0.587771\pi\)
−0.272260 + 0.962224i \(0.587771\pi\)
\(572\) −16.5416 14.3663i −0.691638 0.600685i
\(573\) −30.0837 −1.25676
\(574\) 0 0
\(575\) −10.2078 + 17.6805i −0.425696 + 0.737327i
\(576\) 3.60574 + 6.24532i 0.150239 + 0.260222i
\(577\) 0.731535 0.0304542 0.0152271 0.999884i \(-0.495153\pi\)
0.0152271 + 0.999884i \(0.495153\pi\)
\(578\) 15.1368 + 26.2177i 0.629607 + 1.09051i
\(579\) 1.19472 + 2.06931i 0.0496508 + 0.0859978i
\(580\) −2.36218 −0.0980842
\(581\) 0 0
\(582\) −41.5037 + 71.8865i −1.72038 + 2.97979i
\(583\) 9.72061 16.8366i 0.402586 0.697300i
\(584\) 3.95096 0.163492
\(585\) 0.306522 1.58073i 0.0126731 0.0653550i
\(586\) 31.8738 1.31669
\(587\) −4.26142 + 7.38099i −0.175888 + 0.304646i −0.940468 0.339882i \(-0.889613\pi\)
0.764581 + 0.644528i \(0.222946\pi\)
\(588\) 0 0
\(589\) 0.865594 + 1.49925i 0.0356662 + 0.0617756i
\(590\) −2.22170 −0.0914657
\(591\) 1.69570 + 2.93704i 0.0697517 + 0.120814i
\(592\) 7.30004 + 12.6440i 0.300030 + 0.519667i
\(593\) 31.3093 1.28572 0.642860 0.765984i \(-0.277748\pi\)
0.642860 + 0.765984i \(0.277748\pi\)
\(594\) 6.57259 + 11.3841i 0.269677 + 0.467093i
\(595\) 0 0
\(596\) −11.1514 + 19.3147i −0.456777 + 0.791161i
\(597\) 32.3460 1.32383
\(598\) −5.24850 + 27.0663i −0.214627 + 1.10683i
\(599\) −0.750232 −0.0306537 −0.0153268 0.999883i \(-0.504879\pi\)
−0.0153268 + 0.999883i \(0.504879\pi\)
\(600\) 5.78641 10.0224i 0.236229 0.409161i
\(601\) −4.77652 + 8.27318i −0.194838 + 0.337470i −0.946848 0.321683i \(-0.895752\pi\)
0.752009 + 0.659153i \(0.229085\pi\)
\(602\) 0 0
\(603\) 30.3141 1.23449
\(604\) −4.44624 7.70111i −0.180915 0.313354i
\(605\) −0.640963 1.11018i −0.0260588 0.0451352i
\(606\) −72.1851 −2.93232
\(607\) 11.1197 + 19.2599i 0.451336 + 0.781737i 0.998469 0.0553087i \(-0.0176143\pi\)
−0.547133 + 0.837045i \(0.684281\pi\)
\(608\) −4.64745 + 8.04961i −0.188479 + 0.326455i
\(609\) 0 0
\(610\) 4.16815 0.168764
\(611\) 31.7521 + 27.5765i 1.28455 + 1.11563i
\(612\) −2.76557 −0.111791
\(613\) 4.13993 7.17057i 0.167210 0.289617i −0.770228 0.637769i \(-0.779857\pi\)
0.937438 + 0.348152i \(0.113191\pi\)
\(614\) −26.0789 + 45.1699i −1.05246 + 1.82291i
\(615\) −1.22177 2.11617i −0.0492665 0.0853321i
\(616\) 0 0
\(617\) −10.1656 17.6073i −0.409252 0.708845i 0.585554 0.810633i \(-0.300877\pi\)
−0.994806 + 0.101789i \(0.967543\pi\)
\(618\) 15.4189 + 26.7063i 0.620238 + 1.07428i
\(619\) −5.34097 −0.214672 −0.107336 0.994223i \(-0.534232\pi\)
−0.107336 + 0.994223i \(0.534232\pi\)
\(620\) −0.183601 0.318007i −0.00737361 0.0127715i
\(621\) 3.48003 6.02758i 0.139649 0.241879i
\(622\) −21.8651 + 37.8714i −0.876709 + 1.51850i
\(623\) 0 0
\(624\) 7.55018 38.9360i 0.302249 1.55869i
\(625\) 24.4172 0.976690
\(626\) −3.11112 + 5.38862i −0.124345 + 0.215372i
\(627\) 6.48536 11.2330i 0.259000 0.448601i
\(628\) 3.29536 + 5.70773i 0.131499 + 0.227763i
\(629\) −2.56165 −0.102140
\(630\) 0 0
\(631\) −3.23331 5.60026i −0.128716 0.222943i 0.794463 0.607312i \(-0.207752\pi\)
−0.923179 + 0.384369i \(0.874419\pi\)
\(632\) 10.9143 0.434147
\(633\) 30.3611 + 52.5870i 1.20675 + 2.09014i
\(634\) 6.76217 11.7124i 0.268560 0.465160i
\(635\) 0.216135 0.374357i 0.00857707 0.0148559i
\(636\) −15.4904 −0.614236
\(637\) 0 0
\(638\) 64.0322 2.53506
\(639\) 6.75475 11.6996i 0.267214 0.462828i
\(640\) −0.772706 + 1.33837i −0.0305439 + 0.0529035i
\(641\) −11.6644 20.2034i −0.460717 0.797985i 0.538280 0.842766i \(-0.319074\pi\)
−0.998997 + 0.0447808i \(0.985741\pi\)
\(642\) 41.9987 1.65756
\(643\) −1.79439 3.10797i −0.0707637 0.122566i 0.828472 0.560030i \(-0.189210\pi\)
−0.899236 + 0.437463i \(0.855877\pi\)
\(644\) 0 0
\(645\) −2.41222 −0.0949810
\(646\) −1.05658 1.83006i −0.0415707 0.0720026i
\(647\) −19.8262 + 34.3400i −0.779448 + 1.35004i 0.152812 + 0.988255i \(0.451167\pi\)
−0.932260 + 0.361788i \(0.882166\pi\)
\(648\) −5.42402 + 9.39467i −0.213076 + 0.369058i
\(649\) 25.3395 0.994661
\(650\) 31.4218 10.8352i 1.23246 0.424993i
\(651\) 0 0
\(652\) −1.32386 + 2.29299i −0.0518464 + 0.0898005i
\(653\) −9.06777 + 15.7058i −0.354849 + 0.614617i −0.987092 0.160153i \(-0.948801\pi\)
0.632243 + 0.774770i \(0.282135\pi\)
\(654\) −29.4469 51.0035i −1.15146 1.99439i
\(655\) −0.449219 −0.0175525
\(656\) −12.9392 22.4114i −0.505192 0.875017i
\(657\) 4.39592 + 7.61395i 0.171501 + 0.297048i
\(658\) 0 0
\(659\) −6.74052 11.6749i −0.262573 0.454791i 0.704352 0.709851i \(-0.251238\pi\)
−0.966925 + 0.255061i \(0.917905\pi\)
\(660\) −1.37561 + 2.38263i −0.0535456 + 0.0927437i
\(661\) 5.15611 8.93064i 0.200549 0.347362i −0.748156 0.663523i \(-0.769061\pi\)
0.948706 + 0.316161i \(0.102394\pi\)
\(662\) −26.6151 −1.03443
\(663\) 5.25390 + 4.56299i 0.204044 + 0.177212i
\(664\) 3.12571 0.121301
\(665\) 0 0
\(666\) −6.40111 + 11.0870i −0.248038 + 0.429614i
\(667\) −16.9517 29.3613i −0.656374 1.13687i
\(668\) 15.5561 0.601884
\(669\) 0.835096 + 1.44643i 0.0322867 + 0.0559222i
\(670\) −2.45655 4.25487i −0.0949049 0.164380i
\(671\) −47.5397 −1.83525
\(672\) 0 0
\(673\) 4.61528 7.99390i 0.177906 0.308142i −0.763257 0.646095i \(-0.776401\pi\)
0.941163 + 0.337953i \(0.109734\pi\)
\(674\) −15.9618 + 27.6467i −0.614827 + 1.06491i
\(675\) −8.39066 −0.322956
\(676\) 14.8718 11.6407i 0.571993 0.447721i
\(677\) 21.0934 0.810687 0.405343 0.914165i \(-0.367152\pi\)
0.405343 + 0.914165i \(0.367152\pi\)
\(678\) −9.09807 + 15.7583i −0.349409 + 0.605194i
\(679\) 0 0
\(680\) −0.0844203 0.146220i −0.00323737 0.00560729i
\(681\) −6.54258 −0.250712
\(682\) 4.97693 + 8.62029i 0.190576 + 0.330088i
\(683\) 19.1106 + 33.1005i 0.731246 + 1.26656i 0.956351 + 0.292221i \(0.0943944\pi\)
−0.225104 + 0.974335i \(0.572272\pi\)
\(684\) −4.44353 −0.169902
\(685\) −1.32706 2.29854i −0.0507044 0.0878226i
\(686\) 0 0
\(687\) −3.64013 + 6.30490i −0.138880 + 0.240547i
\(688\) −25.5467 −0.973960
\(689\) 12.6527 + 10.9888i 0.482031 + 0.418642i
\(690\) 3.46213 0.131801
\(691\) −13.1161 + 22.7178i −0.498960 + 0.864224i −0.999999 0.00120019i \(-0.999618\pi\)
0.501039 + 0.865425i \(0.332951\pi\)
\(692\) −9.80084 + 16.9755i −0.372572 + 0.645313i
\(693\) 0 0
\(694\) −14.3130 −0.543314
\(695\) 0.399204 + 0.691442i 0.0151427 + 0.0262279i
\(696\) 9.60925 + 16.6437i 0.364238 + 0.630878i
\(697\) 4.54049 0.171983
\(698\) 20.7836 + 35.9982i 0.786670 + 1.36255i
\(699\) 15.3784 26.6361i 0.581664 1.00747i
\(700\) 0 0
\(701\) −46.7346 −1.76514 −0.882570 0.470180i \(-0.844189\pi\)
−0.882570 + 0.470180i \(0.844189\pi\)
\(702\) −10.7122 + 3.69392i −0.404307 + 0.139418i
\(703\) −4.11588 −0.155233
\(704\) −6.66528 + 11.5446i −0.251207 + 0.435104i
\(705\) 2.64053 4.57353i 0.0994480 0.172249i
\(706\) −20.6835 35.8248i −0.778433 1.34828i
\(707\) 0 0
\(708\) −10.0950 17.4851i −0.379395 0.657131i
\(709\) 23.7232 + 41.0898i 0.890944 + 1.54316i 0.838745 + 0.544524i \(0.183290\pi\)
0.0521988 + 0.998637i \(0.483377\pi\)
\(710\) −2.18953 −0.0821715
\(711\) 12.1435 + 21.0331i 0.455415 + 0.788802i
\(712\) 6.09307 10.5535i 0.228348 0.395510i
\(713\) 2.63516 4.56423i 0.0986876 0.170932i
\(714\) 0 0
\(715\) 2.81384 0.970301i 0.105232 0.0362872i
\(716\) 15.2092 0.568395
\(717\) −17.8408 + 30.9011i −0.666275 + 1.15402i
\(718\) 2.56280 4.43890i 0.0956428 0.165658i
\(719\) −24.6190 42.6413i −0.918133 1.59025i −0.802249 0.596990i \(-0.796363\pi\)
−0.115884 0.993263i \(-0.536970\pi\)
\(720\) −2.14136 −0.0798037
\(721\) 0 0
\(722\) 15.9549 + 27.6347i 0.593779 + 1.02846i
\(723\) −17.3793 −0.646342
\(724\) 9.09498 + 15.7530i 0.338012 + 0.585454i
\(725\) −20.4361 + 35.3963i −0.758977 + 1.31459i
\(726\) 13.8439 23.9783i 0.513795 0.889919i
\(727\) 32.0495 1.18865 0.594325 0.804225i \(-0.297419\pi\)
0.594325 + 0.804225i \(0.297419\pi\)
\(728\) 0 0
\(729\) −12.4996 −0.462947
\(730\) 0.712460 1.23402i 0.0263693 0.0456730i
\(731\) 2.24114 3.88178i 0.0828917 0.143573i
\(732\) 18.9394 + 32.8041i 0.700022 + 1.21247i
\(733\) −28.2010 −1.04163 −0.520813 0.853670i \(-0.674371\pi\)
−0.520813 + 0.853670i \(0.674371\pi\)
\(734\) −13.1462 22.7699i −0.485236 0.840453i
\(735\) 0 0
\(736\) 28.2968 1.04303
\(737\) 28.0181 + 48.5288i 1.03206 + 1.78758i
\(738\) 11.3459 19.6516i 0.417648 0.723387i
\(739\) 21.2685 36.8381i 0.782375 1.35511i −0.148180 0.988960i \(-0.547342\pi\)
0.930555 0.366153i \(-0.119325\pi\)
\(740\) 0.873021 0.0320929
\(741\) 8.44160 + 7.33149i 0.310110 + 0.269329i
\(742\) 0 0
\(743\) −7.95711 + 13.7821i −0.291918 + 0.505617i −0.974263 0.225413i \(-0.927627\pi\)
0.682345 + 0.731030i \(0.260960\pi\)
\(744\) −1.49377 + 2.58728i −0.0547641 + 0.0948543i
\(745\) −1.51495 2.62396i −0.0555033 0.0961346i
\(746\) −9.37042 −0.343075
\(747\) 3.47773 + 6.02360i 0.127243 + 0.220392i
\(748\) −2.55611 4.42731i −0.0934605 0.161878i
\(749\) 0 0
\(750\) −4.19014 7.25754i −0.153002 0.265008i
\(751\) −9.09981 + 15.7613i −0.332057 + 0.575139i −0.982915 0.184060i \(-0.941076\pi\)
0.650858 + 0.759199i \(0.274409\pi\)
\(752\) 27.9646 48.4362i 1.01977 1.76629i
\(753\) 2.92440 0.106571
\(754\) −10.5075 + 54.1868i −0.382661 + 1.97337i
\(755\) 1.20807 0.0439662
\(756\) 0 0
\(757\) 22.4502 38.8849i 0.815967 1.41330i −0.0926649 0.995697i \(-0.529539\pi\)
0.908632 0.417598i \(-0.137128\pi\)
\(758\) 5.62989 + 9.75126i 0.204487 + 0.354182i
\(759\) −39.4872 −1.43330
\(760\) −0.135641 0.234937i −0.00492021 0.00852205i
\(761\) −13.2444 22.9399i −0.480108 0.831572i 0.519631 0.854391i \(-0.326069\pi\)
−0.999740 + 0.0228184i \(0.992736\pi\)
\(762\) 9.33644 0.338223
\(763\) 0 0
\(764\) −9.52554 + 16.4987i −0.344622 + 0.596903i
\(765\) 0.187856 0.325375i 0.00679193 0.0117640i
\(766\) 8.43800 0.304877
\(767\) −4.15814 + 21.4434i −0.150142 + 0.774276i
\(768\) −48.0013 −1.73210
\(769\) 6.98127 12.0919i 0.251751 0.436045i −0.712257 0.701919i \(-0.752327\pi\)
0.964008 + 0.265873i \(0.0856603\pi\)
\(770\) 0 0
\(771\) 9.72707 + 16.8478i 0.350312 + 0.606758i
\(772\) 1.51316 0.0544597
\(773\) 6.40564 + 11.0949i 0.230395 + 0.399056i 0.957924 0.287021i \(-0.0926648\pi\)
−0.727529 + 0.686077i \(0.759332\pi\)
\(774\) −11.2005 19.3998i −0.402592 0.697310i
\(775\) −6.35361 −0.228228
\(776\) −9.90048 17.1481i −0.355406 0.615582i
\(777\) 0 0
\(778\) −4.18797 + 7.25378i −0.150146 + 0.260061i
\(779\) 7.29534 0.261383
\(780\) −1.79055 1.55509i −0.0641120 0.0556810i
\(781\) 24.9726 0.893590
\(782\) −3.21660 + 5.57132i −0.115025 + 0.199230i
\(783\) 6.96701 12.0672i 0.248981 0.431247i
\(784\) 0 0
\(785\) −0.895370 −0.0319571
\(786\) −4.85125 8.40262i −0.173039 0.299712i
\(787\) −13.6599 23.6597i −0.486924 0.843377i 0.512963 0.858411i \(-0.328548\pi\)
−0.999887 + 0.0150334i \(0.995215\pi\)
\(788\) 2.14767 0.0765075
\(789\) 14.6686 + 25.4068i 0.522217 + 0.904506i
\(790\) 1.96813 3.40890i 0.0700229 0.121283i
\(791\) 0 0
\(792\) 9.62401 0.341974
\(793\) 7.80114 40.2302i 0.277027 1.42862i
\(794\) −7.43912 −0.264005
\(795\) 1.05221 1.82248i 0.0373181 0.0646369i
\(796\) 10.2419 17.7394i 0.363013 0.628758i
\(797\) −14.7002 25.4614i −0.520707 0.901891i −0.999710 0.0240775i \(-0.992335\pi\)
0.479003 0.877813i \(-0.340998\pi\)
\(798\) 0 0
\(799\) 4.90652 + 8.49835i 0.173580 + 0.300650i
\(800\) −17.0565 29.5428i −0.603040 1.04450i
\(801\) 27.1171 0.958136
\(802\) −11.7189 20.2978i −0.413810 0.716740i
\(803\) −8.12594 + 14.0745i −0.286758 + 0.496680i
\(804\) 22.3244 38.6669i 0.787320 1.36368i
\(805\) 0 0
\(806\) −8.11157 + 2.79713i −0.285718 + 0.0985246i
\(807\) −10.8090 −0.380495
\(808\) 8.60968 14.9124i 0.302888 0.524617i
\(809\) 3.00617 5.20683i 0.105691 0.183063i −0.808329 0.588731i \(-0.799628\pi\)
0.914020 + 0.405668i \(0.132961\pi\)
\(810\) 1.95618 + 3.38821i 0.0687332 + 0.119049i
\(811\) −8.44807 −0.296652 −0.148326 0.988939i \(-0.547388\pi\)
−0.148326 + 0.988939i \(0.547388\pi\)
\(812\) 0 0
\(813\) 20.6595 + 35.7833i 0.724560 + 1.25497i
\(814\) −23.6652 −0.829464
\(815\) −0.179850 0.311510i −0.00629989 0.0109117i
\(816\) 4.62721 8.01456i 0.161985 0.280566i
\(817\) 3.60092 6.23697i 0.125980 0.218204i
\(818\) −38.4551 −1.34455
\(819\) 0 0
\(820\) −1.54742 −0.0540382
\(821\) 17.1318 29.6731i 0.597903 1.03560i −0.395228 0.918583i \(-0.629334\pi\)
0.993130 0.117014i \(-0.0373324\pi\)
\(822\) 28.6627 49.6452i 0.999725 1.73157i
\(823\) 3.11866 + 5.40168i 0.108710 + 0.188291i 0.915248 0.402891i \(-0.131995\pi\)
−0.806538 + 0.591182i \(0.798661\pi\)
\(824\) −7.35618 −0.256265
\(825\) 23.8018 + 41.2260i 0.828673 + 1.43530i
\(826\) 0 0
\(827\) 19.5232 0.678889 0.339445 0.940626i \(-0.389761\pi\)
0.339445 + 0.940626i \(0.389761\pi\)
\(828\) 6.76380 + 11.7152i 0.235058 + 0.407133i
\(829\) 16.3383 28.2988i 0.567453 0.982857i −0.429364 0.903131i \(-0.641262\pi\)
0.996817 0.0797254i \(-0.0254043\pi\)
\(830\) 0.563647 0.976265i 0.0195645 0.0338866i
\(831\) 59.9230 2.07871
\(832\) −8.67580 7.53489i −0.300779 0.261225i
\(833\) 0 0
\(834\) −8.62225 + 14.9342i −0.298564 + 0.517128i
\(835\) −1.05667 + 1.83021i −0.0365677 + 0.0633370i
\(836\) −4.10698 7.11349i −0.142043 0.246025i
\(837\) 2.16606 0.0748698
\(838\) −20.2702 35.1091i −0.700223 1.21282i
\(839\) 12.3713 + 21.4278i 0.427106 + 0.739769i 0.996615 0.0822161i \(-0.0261998\pi\)
−0.569508 + 0.821985i \(0.692866\pi\)
\(840\) 0 0
\(841\) −19.4374 33.6665i −0.670255 1.16092i
\(842\) −8.75869 + 15.1705i −0.301844 + 0.522810i
\(843\) −4.20040 + 7.27531i −0.144669 + 0.250575i
\(844\) 38.4535 1.32362
\(845\) 0.359368 + 2.54042i 0.0123626 + 0.0873930i
\(846\) 49.0422 1.68610
\(847\) 0 0
\(848\) 11.1435 19.3011i 0.382670 0.662803i
\(849\) −8.76938 15.1890i −0.300964 0.521285i
\(850\) 7.75551 0.266012
\(851\) 6.26507 + 10.8514i 0.214764 + 0.371982i
\(852\) −9.94888 17.2320i −0.340843 0.590357i
\(853\) −18.2245 −0.623994 −0.311997 0.950083i \(-0.600998\pi\)
−0.311997 + 0.950083i \(0.600998\pi\)
\(854\) 0 0
\(855\) 0.301833 0.522791i 0.0103225 0.0178791i
\(856\) −5.00928 + 8.67633i −0.171214 + 0.296551i
\(857\) −2.54679 −0.0869967 −0.0434984 0.999053i \(-0.513850\pi\)
−0.0434984 + 0.999053i \(0.513850\pi\)
\(858\) 48.5369 + 42.1541i 1.65702 + 1.43912i
\(859\) −54.0090 −1.84276 −0.921382 0.388657i \(-0.872939\pi\)
−0.921382 + 0.388657i \(0.872939\pi\)
\(860\) −0.763792 + 1.32293i −0.0260451 + 0.0451114i
\(861\) 0 0
\(862\) −18.9788 32.8723i −0.646421 1.11963i
\(863\) 1.24309 0.0423153 0.0211576 0.999776i \(-0.493265\pi\)
0.0211576 + 0.999776i \(0.493265\pi\)
\(864\) 5.81487 + 10.0716i 0.197826 + 0.342644i
\(865\) −1.33147 2.30618i −0.0452715 0.0784125i
\(866\) −48.9600 −1.66373
\(867\) −18.6877 32.3681i −0.634668 1.09928i
\(868\) 0 0
\(869\) −22.4474 + 38.8801i −0.761477 + 1.31892i
\(870\) 6.93119 0.234989
\(871\) −45.6649 + 15.7467i −1.54730 + 0.533557i
\(872\) 14.0488 0.475752
\(873\) 22.0309 38.1587i 0.745634 1.29148i
\(874\) −5.16821 + 8.95161i −0.174817 + 0.302793i
\(875\) 0 0
\(876\) 12.9492 0.437514
\(877\) −0.401330 0.695125i −0.0135520 0.0234727i 0.859170 0.511690i \(-0.170981\pi\)
−0.872722 + 0.488218i \(0.837647\pi\)
\(878\) 23.3488 + 40.4412i 0.787983 + 1.36483i
\(879\) −39.3511 −1.32728
\(880\) −1.97917 3.42803i −0.0667179 0.115559i
\(881\) −18.5318 + 32.0980i −0.624352 + 1.08141i 0.364314 + 0.931276i \(0.381304\pi\)
−0.988666 + 0.150133i \(0.952030\pi\)
\(882\) 0 0
\(883\) −22.8671 −0.769539 −0.384770 0.923013i \(-0.625719\pi\)
−0.384770 + 0.923013i \(0.625719\pi\)
\(884\) 4.16603 1.43658i 0.140119 0.0483174i
\(885\) 2.74288 0.0922010
\(886\) −17.2065 + 29.8025i −0.578063 + 1.00123i
\(887\) −24.6287 + 42.6581i −0.826950 + 1.43232i 0.0734699 + 0.997297i \(0.476593\pi\)
−0.900420 + 0.435022i \(0.856741\pi\)
\(888\) −3.55141 6.15123i −0.119178 0.206422i
\(889\) 0 0
\(890\) −2.19748 3.80614i −0.0736597 0.127582i
\(891\) −22.3112 38.6441i −0.747452 1.29463i
\(892\) 1.05768 0.0354138
\(893\) 7.88347 + 13.6546i 0.263810 + 0.456932i
\(894\) 32.7207 56.6739i 1.09434 1.89546i
\(895\) −1.03311 + 1.78940i −0.0345330 + 0.0598130i
\(896\) 0 0
\(897\) 6.47975 33.4159i 0.216353 1.11572i
\(898\) 21.6347 0.721961
\(899\) 5.27559 9.13760i 0.175951 0.304756i
\(900\) 8.15406 14.1233i 0.271802 0.470775i
\(901\) 1.95518 + 3.38647i 0.0651365 + 0.112820i
\(902\) 41.9462 1.39666
\(903\) 0 0
\(904\) −2.17029 3.75906i −0.0721829 0.125024i
\(905\) −2.47116 −0.0821442
\(906\) 13.0463 + 22.5969i 0.433435 + 0.750731i
\(907\) 2.50228 4.33407i 0.0830867 0.143910i −0.821488 0.570226i \(-0.806855\pi\)
0.904574 + 0.426316i \(0.140189\pi\)
\(908\) −2.07161 + 3.58813i −0.0687487 + 0.119076i
\(909\) 38.3172 1.27090
\(910\) 0 0
\(911\) 49.0582 1.62537 0.812685 0.582703i \(-0.198005\pi\)
0.812685 + 0.582703i \(0.198005\pi\)
\(912\) 7.43468 12.8772i 0.246187 0.426408i
\(913\) −6.42866 + 11.1348i −0.212757 + 0.368507i
\(914\) −19.0633 33.0186i −0.630557 1.09216i
\(915\) −5.14596 −0.170120
\(916\) 2.30518 + 3.99270i 0.0761654 + 0.131922i
\(917\) 0 0
\(918\) −2.64399 −0.0872646
\(919\) −14.8028 25.6392i −0.488299 0.845758i 0.511611 0.859217i \(-0.329049\pi\)
−0.999909 + 0.0134590i \(0.995716\pi\)
\(920\) −0.412937 + 0.715227i −0.0136141 + 0.0235803i
\(921\) 32.1967 55.7664i 1.06092 1.83756i
\(922\) −3.79205 −0.124884
\(923\) −4.09794 + 21.1329i −0.134885 + 0.695598i
\(924\) 0 0
\(925\) 7.55282 13.0819i 0.248335 0.430129i
\(926\) −2.81656 + 4.87842i −0.0925578 + 0.160315i
\(927\) −8.18464 14.1762i −0.268819 0.465608i
\(928\) 56.6502 1.85963
\(929\) 8.41525 + 14.5756i 0.276095 + 0.478211i 0.970411 0.241460i \(-0.0776261\pi\)
−0.694316 + 0.719671i \(0.744293\pi\)
\(930\) 0.538730 + 0.933107i 0.0176656 + 0.0305978i
\(931\) 0 0
\(932\) −9.73865 16.8678i −0.319000 0.552524i
\(933\) 26.9944 46.7557i 0.883757 1.53071i
\(934\) −12.0106 + 20.8030i −0.392999 + 0.680695i
\(935\) 0.694510 0.0227129
\(936\) −1.57927 + 8.14426i −0.0516202 + 0.266203i
\(937\) −44.0131 −1.43784 −0.718922 0.695091i \(-0.755364\pi\)
−0.718922 + 0.695091i \(0.755364\pi\)
\(938\) 0 0
\(939\) 3.84096 6.65273i 0.125345 0.217104i
\(940\) −1.67216 2.89627i −0.0545400 0.0944660i
\(941\) −53.0675 −1.72995 −0.864976 0.501814i \(-0.832666\pi\)
−0.864976 + 0.501814i \(0.832666\pi\)
\(942\) −9.66937 16.7478i −0.315045 0.545674i
\(943\) −11.1048 19.2340i −0.361620 0.626345i
\(944\) 29.0487 0.945453
\(945\) 0 0
\(946\) 20.7043 35.8609i 0.673154 1.16594i
\(947\) 13.9409 24.1463i 0.453017 0.784649i −0.545555 0.838075i \(-0.683681\pi\)
0.998572 + 0.0534265i \(0.0170143\pi\)
\(948\) 35.7715 1.16180
\(949\) −10.5771 9.18613i −0.343346 0.298194i
\(950\) 12.4610 0.404289
\(951\) −8.34851 + 14.4600i −0.270719 + 0.468899i
\(952\) 0 0
\(953\) 18.1784 + 31.4859i 0.588856 + 1.01993i 0.994383 + 0.105845i \(0.0337548\pi\)
−0.405527 + 0.914083i \(0.632912\pi\)
\(954\) 19.5426 0.632715
\(955\) −1.29407 2.24140i −0.0418753 0.0725301i
\(956\) 11.2980 + 19.5687i 0.365403 + 0.632897i
\(957\) −79.0535 −2.55544
\(958\) 33.9877 + 58.8685i 1.09809 + 1.90195i
\(959\) 0 0
\(960\) −0.721486 + 1.24965i −0.0232859 + 0.0403323i
\(961\) −29.3598 −0.947091
\(962\) 3.88339 20.0265i 0.125206 0.645681i
\(963\) −22.2937 −0.718405
\(964\) −5.50287 + 9.53126i −0.177236 + 0.306981i
\(965\) −0.102784 + 0.178026i −0.00330872 + 0.00573087i
\(966\) 0 0
\(967\) −15.2681 −0.490988 −0.245494 0.969398i \(-0.578950\pi\)
−0.245494 + 0.969398i \(0.578950\pi\)
\(968\) 3.30239 + 5.71990i 0.106143 + 0.183845i
\(969\) 1.30445 + 2.25937i 0.0419049 + 0.0725815i
\(970\) −7.14125 −0.229292
\(971\) −18.4460 31.9494i −0.591961 1.02531i −0.993968 0.109669i \(-0.965021\pi\)
0.402008 0.915636i \(-0.368313\pi\)
\(972\) −14.0916 + 24.4073i −0.451987 + 0.782865i
\(973\) 0 0
\(974\) 68.2867 2.18805
\(975\) −38.7931 + 13.3771i −1.24237 + 0.428410i
\(976\) −54.4986 −1.74446
\(977\) 0.221957 0.384441i 0.00710104 0.0122994i −0.862453 0.506137i \(-0.831073\pi\)
0.869554 + 0.493838i \(0.164406\pi\)
\(978\) 3.88452 6.72818i 0.124213 0.215144i
\(979\) 25.0633 + 43.4109i 0.801026 + 1.38742i
\(980\) 0 0
\(981\) 15.6310 + 27.0736i 0.499058 + 0.864394i
\(982\) 7.61658 + 13.1923i 0.243055 + 0.420983i
\(983\) −45.5603 −1.45315 −0.726575 0.687088i \(-0.758889\pi\)
−0.726575 + 0.687088i \(0.758889\pi\)
\(984\) 6.29483 + 10.9030i 0.200672 + 0.347574i
\(985\) −0.145884 + 0.252678i −0.00464824 + 0.00805099i
\(986\) −6.43964 + 11.1538i −0.205080 + 0.355209i
\(987\) 0 0
\(988\) 6.69369 2.30820i 0.212955 0.0734336i
\(989\) −21.9248 −0.697169
\(990\) 1.73546 3.00590i 0.0551565 0.0955338i
\(991\) −26.8148 + 46.4445i −0.851799 + 1.47536i 0.0277842 + 0.999614i \(0.491155\pi\)
−0.879583 + 0.475745i \(0.842178\pi\)
\(992\) 4.40316 + 7.62650i 0.139801 + 0.242142i
\(993\) 32.8588 1.04274
\(994\) 0 0
\(995\) 1.39139 + 2.40996i 0.0441100 + 0.0764008i
\(996\) 10.2445 0.324609
\(997\) 14.5426 + 25.1886i 0.460569 + 0.797730i 0.998989 0.0449470i \(-0.0143119\pi\)
−0.538420 + 0.842677i \(0.680979\pi\)
\(998\) 40.1857 69.6038i 1.27206 2.20327i
\(999\) −2.57489 + 4.45984i −0.0814658 + 0.141103i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.f.j.295.1 12
7.2 even 3 637.2.h.l.165.6 12
7.3 odd 6 91.2.g.b.9.1 12
7.4 even 3 637.2.g.l.373.1 12
7.5 odd 6 91.2.h.b.74.6 yes 12
7.6 odd 2 637.2.f.k.295.1 12
13.3 even 3 inner 637.2.f.j.393.1 12
13.4 even 6 8281.2.a.cf.1.1 6
13.9 even 3 8281.2.a.ca.1.6 6
21.5 even 6 819.2.s.d.802.1 12
21.17 even 6 819.2.n.d.100.6 12
91.3 odd 6 91.2.h.b.16.6 yes 12
91.16 even 3 637.2.g.l.263.1 12
91.17 odd 6 1183.2.e.g.170.6 12
91.48 odd 6 8281.2.a.bz.1.6 6
91.55 odd 6 637.2.f.k.393.1 12
91.61 odd 6 1183.2.e.h.508.1 12
91.68 odd 6 91.2.g.b.81.1 yes 12
91.69 odd 6 8281.2.a.ce.1.1 6
91.81 even 3 637.2.h.l.471.6 12
91.82 odd 6 1183.2.e.g.508.6 12
91.87 odd 6 1183.2.e.h.170.1 12
273.68 even 6 819.2.n.d.172.6 12
273.185 even 6 819.2.s.d.289.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.1 12 7.3 odd 6
91.2.g.b.81.1 yes 12 91.68 odd 6
91.2.h.b.16.6 yes 12 91.3 odd 6
91.2.h.b.74.6 yes 12 7.5 odd 6
637.2.f.j.295.1 12 1.1 even 1 trivial
637.2.f.j.393.1 12 13.3 even 3 inner
637.2.f.k.295.1 12 7.6 odd 2
637.2.f.k.393.1 12 91.55 odd 6
637.2.g.l.263.1 12 91.16 even 3
637.2.g.l.373.1 12 7.4 even 3
637.2.h.l.165.6 12 7.2 even 3
637.2.h.l.471.6 12 91.81 even 3
819.2.n.d.100.6 12 21.17 even 6
819.2.n.d.172.6 12 273.68 even 6
819.2.s.d.289.1 12 273.185 even 6
819.2.s.d.802.1 12 21.5 even 6
1183.2.e.g.170.6 12 91.17 odd 6
1183.2.e.g.508.6 12 91.82 odd 6
1183.2.e.h.170.1 12 91.87 odd 6
1183.2.e.h.508.1 12 91.61 odd 6
8281.2.a.bz.1.6 6 91.48 odd 6
8281.2.a.ca.1.6 6 13.9 even 3
8281.2.a.ce.1.1 6 91.69 odd 6
8281.2.a.cf.1.1 6 13.4 even 6