Properties

Label 637.2.f.h.295.1
Level $637$
Weight $2$
Character 637.295
Analytic conductor $5.086$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(295,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.295");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.100088711424.6
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 13x^{6} + 130x^{4} - 507x^{2} + 1521 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 295.1
Root \(-2.49541 + 1.44073i\) of defining polynomial
Character \(\chi\) \(=\) 637.295
Dual form 637.2.f.h.393.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15139 + 1.99426i) q^{2} +(-1.08365 + 1.87694i) q^{3} +(-1.65139 - 2.86029i) q^{4} +2.16731 q^{5} +(-2.49541 - 4.32218i) q^{6} +3.00000 q^{8} +(-0.848612 - 1.46984i) q^{9} +(-2.49541 + 4.32218i) q^{10} +(-2.45416 + 4.25074i) q^{11} +7.15813 q^{12} +(-1.41176 + 3.31767i) q^{13} +(-2.34861 + 4.06792i) q^{15} +(-0.151388 + 0.262211i) q^{16} +(-3.57907 - 6.19912i) q^{17} +3.90833 q^{18} +(-1.08365 - 1.87694i) q^{19} +(-3.57907 - 6.19912i) q^{20} +(-5.65139 - 9.78849i) q^{22} +(0.302776 - 0.524423i) q^{23} +(-3.25096 + 5.63083i) q^{24} -0.302776 q^{25} +(-4.99082 - 6.63534i) q^{26} -2.82352 q^{27} +(1.15139 - 1.99426i) q^{29} +(-5.40833 - 9.36750i) q^{30} -7.15813 q^{31} +(2.65139 + 4.59234i) q^{32} +(-5.31893 - 9.21265i) q^{33} +16.4836 q^{34} +(-2.80278 + 4.85455i) q^{36} +(-4.30278 + 7.45263i) q^{37} +4.99082 q^{38} +(-4.69722 - 6.24500i) q^{39} +6.50192 q^{40} +(4.99082 - 8.64436i) q^{41} +(6.25694 + 10.8373i) q^{43} +16.2111 q^{44} +(-1.83920 - 3.18559i) q^{45} +(0.697224 + 1.20763i) q^{46} -1.51110 q^{47} +(-0.328104 - 0.568293i) q^{48} +(0.348612 - 0.603814i) q^{50} +15.5139 q^{51} +(11.8209 - 1.44073i) q^{52} +2.39445 q^{53} +(3.25096 - 5.63083i) q^{54} +(-5.31893 + 9.21265i) q^{55} +4.69722 q^{57} +(2.65139 + 4.59234i) q^{58} +(1.41176 + 2.44524i) q^{59} +15.5139 q^{60} +(-2.16731 - 3.75389i) q^{61} +(8.24179 - 14.2752i) q^{62} -12.8167 q^{64} +(-3.05971 + 7.19041i) q^{65} +24.4966 q^{66} +(-0.500000 + 0.866025i) q^{67} +(-11.8209 + 20.4743i) q^{68} +(0.656208 + 1.13659i) q^{69} +(-2.00000 - 3.46410i) q^{71} +(-2.54584 - 4.40952i) q^{72} -4.33462 q^{73} +(-9.90833 - 17.1617i) q^{74} +(0.328104 - 0.568293i) q^{75} +(-3.57907 + 6.19912i) q^{76} +(17.8625 - 2.17708i) q^{78} -6.60555 q^{79} +(-0.328104 + 0.568293i) q^{80} +(5.60555 - 9.70910i) q^{81} +(11.4927 + 19.9060i) q^{82} +2.82352 q^{83} +(-7.75694 - 13.4354i) q^{85} -28.8167 q^{86} +(2.49541 + 4.32218i) q^{87} +(-7.36249 + 12.7522i) q^{88} +(-3.25096 + 5.63083i) q^{89} +8.47055 q^{90} -2.00000 q^{92} +(7.75694 - 13.4354i) q^{93} +(1.73986 - 3.01353i) q^{94} +(-2.34861 - 4.06792i) q^{95} -11.4927 q^{96} +(6.83003 + 11.8300i) q^{97} +8.33053 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} - 6 q^{4} + 24 q^{8} - 14 q^{9} + 2 q^{11} - 26 q^{15} + 6 q^{16} - 12 q^{18} - 38 q^{22} - 12 q^{23} + 12 q^{25} + 2 q^{29} + 14 q^{32} - 8 q^{36} - 20 q^{37} - 52 q^{39} + 14 q^{43} + 72 q^{44}+ \cdots - 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15139 + 1.99426i −0.814154 + 1.41016i 0.0957796 + 0.995403i \(0.469466\pi\)
−0.909934 + 0.414754i \(0.863868\pi\)
\(3\) −1.08365 + 1.87694i −0.625648 + 1.08365i 0.362767 + 0.931880i \(0.381832\pi\)
−0.988415 + 0.151774i \(0.951501\pi\)
\(4\) −1.65139 2.86029i −0.825694 1.43014i
\(5\) 2.16731 0.969250 0.484625 0.874722i \(-0.338956\pi\)
0.484625 + 0.874722i \(0.338956\pi\)
\(6\) −2.49541 4.32218i −1.01875 1.76452i
\(7\) 0 0
\(8\) 3.00000 1.06066
\(9\) −0.848612 1.46984i −0.282871 0.489946i
\(10\) −2.49541 + 4.32218i −0.789119 + 1.36679i
\(11\) −2.45416 + 4.25074i −0.739958 + 1.28165i 0.212555 + 0.977149i \(0.431821\pi\)
−0.952514 + 0.304496i \(0.901512\pi\)
\(12\) 7.15813 2.06637
\(13\) −1.41176 + 3.31767i −0.391551 + 0.920156i
\(14\) 0 0
\(15\) −2.34861 + 4.06792i −0.606409 + 1.05033i
\(16\) −0.151388 + 0.262211i −0.0378470 + 0.0655528i
\(17\) −3.57907 6.19912i −0.868051 1.50351i −0.863985 0.503517i \(-0.832039\pi\)
−0.00406561 0.999992i \(-0.501294\pi\)
\(18\) 3.90833 0.921201
\(19\) −1.08365 1.87694i −0.248607 0.430600i 0.714532 0.699602i \(-0.246640\pi\)
−0.963140 + 0.269002i \(0.913306\pi\)
\(20\) −3.57907 6.19912i −0.800304 1.38617i
\(21\) 0 0
\(22\) −5.65139 9.78849i −1.20488 2.08691i
\(23\) 0.302776 0.524423i 0.0631331 0.109350i −0.832731 0.553677i \(-0.813224\pi\)
0.895864 + 0.444328i \(0.146557\pi\)
\(24\) −3.25096 + 5.63083i −0.663600 + 1.14939i
\(25\) −0.302776 −0.0605551
\(26\) −4.99082 6.63534i −0.978781 1.30130i
\(27\) −2.82352 −0.543386
\(28\) 0 0
\(29\) 1.15139 1.99426i 0.213807 0.370325i −0.739096 0.673601i \(-0.764747\pi\)
0.952903 + 0.303275i \(0.0980802\pi\)
\(30\) −5.40833 9.36750i −0.987421 1.71026i
\(31\) −7.15813 −1.28564 −0.642819 0.766018i \(-0.722235\pi\)
−0.642819 + 0.766018i \(0.722235\pi\)
\(32\) 2.65139 + 4.59234i 0.468704 + 0.811818i
\(33\) −5.31893 9.21265i −0.925907 1.60372i
\(34\) 16.4836 2.82691
\(35\) 0 0
\(36\) −2.80278 + 4.85455i −0.467129 + 0.809092i
\(37\) −4.30278 + 7.45263i −0.707372 + 1.22520i 0.258457 + 0.966023i \(0.416786\pi\)
−0.965829 + 0.259181i \(0.916547\pi\)
\(38\) 4.99082 0.809619
\(39\) −4.69722 6.24500i −0.752158 1.00000i
\(40\) 6.50192 1.02804
\(41\) 4.99082 8.64436i 0.779436 1.35002i −0.152832 0.988252i \(-0.548839\pi\)
0.932267 0.361770i \(-0.117827\pi\)
\(42\) 0 0
\(43\) 6.25694 + 10.8373i 0.954174 + 1.65268i 0.736247 + 0.676713i \(0.236596\pi\)
0.217928 + 0.975965i \(0.430070\pi\)
\(44\) 16.2111 2.44392
\(45\) −1.83920 3.18559i −0.274172 0.474880i
\(46\) 0.697224 + 1.20763i 0.102800 + 0.178055i
\(47\) −1.51110 −0.220417 −0.110208 0.993909i \(-0.535152\pi\)
−0.110208 + 0.993909i \(0.535152\pi\)
\(48\) −0.328104 0.568293i −0.0473577 0.0820260i
\(49\) 0 0
\(50\) 0.348612 0.603814i 0.0493012 0.0853922i
\(51\) 15.5139 2.17238
\(52\) 11.8209 1.44073i 1.63926 0.199793i
\(53\) 2.39445 0.328903 0.164451 0.986385i \(-0.447415\pi\)
0.164451 + 0.986385i \(0.447415\pi\)
\(54\) 3.25096 5.63083i 0.442400 0.766259i
\(55\) −5.31893 + 9.21265i −0.717204 + 1.24223i
\(56\) 0 0
\(57\) 4.69722 0.622163
\(58\) 2.65139 + 4.59234i 0.348144 + 0.603004i
\(59\) 1.41176 + 2.44524i 0.183795 + 0.318343i 0.943170 0.332311i \(-0.107828\pi\)
−0.759375 + 0.650654i \(0.774495\pi\)
\(60\) 15.5139 2.00283
\(61\) −2.16731 3.75389i −0.277495 0.480636i 0.693266 0.720682i \(-0.256171\pi\)
−0.970762 + 0.240045i \(0.922838\pi\)
\(62\) 8.24179 14.2752i 1.04671 1.81295i
\(63\) 0 0
\(64\) −12.8167 −1.60208
\(65\) −3.05971 + 7.19041i −0.379511 + 0.891861i
\(66\) 24.4966 3.01532
\(67\) −0.500000 + 0.866025i −0.0610847 + 0.105802i −0.894951 0.446165i \(-0.852789\pi\)
0.833866 + 0.551967i \(0.186123\pi\)
\(68\) −11.8209 + 20.4743i −1.43349 + 2.48288i
\(69\) 0.656208 + 1.13659i 0.0789982 + 0.136829i
\(70\) 0 0
\(71\) −2.00000 3.46410i −0.237356 0.411113i 0.722599 0.691268i \(-0.242948\pi\)
−0.959955 + 0.280155i \(0.909614\pi\)
\(72\) −2.54584 4.40952i −0.300030 0.519667i
\(73\) −4.33462 −0.507328 −0.253664 0.967292i \(-0.581636\pi\)
−0.253664 + 0.967292i \(0.581636\pi\)
\(74\) −9.90833 17.1617i −1.15182 1.99501i
\(75\) 0.328104 0.568293i 0.0378862 0.0656208i
\(76\) −3.57907 + 6.19912i −0.410547 + 0.711088i
\(77\) 0 0
\(78\) 17.8625 2.17708i 2.02253 0.246506i
\(79\) −6.60555 −0.743183 −0.371591 0.928396i \(-0.621188\pi\)
−0.371591 + 0.928396i \(0.621188\pi\)
\(80\) −0.328104 + 0.568293i −0.0366831 + 0.0635371i
\(81\) 5.60555 9.70910i 0.622839 1.07879i
\(82\) 11.4927 + 19.9060i 1.26916 + 2.19825i
\(83\) 2.82352 0.309921 0.154961 0.987921i \(-0.450475\pi\)
0.154961 + 0.987921i \(0.450475\pi\)
\(84\) 0 0
\(85\) −7.75694 13.4354i −0.841358 1.45728i
\(86\) −28.8167 −3.10738
\(87\) 2.49541 + 4.32218i 0.267536 + 0.463386i
\(88\) −7.36249 + 12.7522i −0.784844 + 1.35939i
\(89\) −3.25096 + 5.63083i −0.344601 + 0.596867i −0.985281 0.170941i \(-0.945319\pi\)
0.640680 + 0.767808i \(0.278653\pi\)
\(90\) 8.47055 0.892874
\(91\) 0 0
\(92\) −2.00000 −0.208514
\(93\) 7.75694 13.4354i 0.804357 1.39319i
\(94\) 1.73986 3.01353i 0.179453 0.310822i
\(95\) −2.34861 4.06792i −0.240963 0.417359i
\(96\) −11.4927 −1.17297
\(97\) 6.83003 + 11.8300i 0.693484 + 1.20115i 0.970689 + 0.240339i \(0.0772587\pi\)
−0.277205 + 0.960811i \(0.589408\pi\)
\(98\) 0 0
\(99\) 8.33053 0.837250
\(100\) 0.500000 + 0.866025i 0.0500000 + 0.0866025i
\(101\) 3.25096 5.63083i 0.323483 0.560289i −0.657721 0.753261i \(-0.728480\pi\)
0.981204 + 0.192973i \(0.0618129\pi\)
\(102\) −17.8625 + 30.9387i −1.76865 + 3.06339i
\(103\) 11.4927 1.13241 0.566207 0.824263i \(-0.308410\pi\)
0.566207 + 0.824263i \(0.308410\pi\)
\(104\) −4.23527 + 9.95301i −0.415303 + 0.975973i
\(105\) 0 0
\(106\) −2.75694 + 4.77516i −0.267778 + 0.463804i
\(107\) −2.84861 + 4.93394i −0.275386 + 0.476982i −0.970232 0.242176i \(-0.922139\pi\)
0.694847 + 0.719158i \(0.255472\pi\)
\(108\) 4.66272 + 8.07607i 0.448670 + 0.777120i
\(109\) 8.21110 0.786481 0.393240 0.919436i \(-0.371354\pi\)
0.393240 + 0.919436i \(0.371354\pi\)
\(110\) −12.2483 21.2147i −1.16783 2.02274i
\(111\) −9.32544 16.1521i −0.885132 1.53309i
\(112\) 0 0
\(113\) −3.40833 5.90340i −0.320628 0.555345i 0.659989 0.751275i \(-0.270561\pi\)
−0.980618 + 0.195930i \(0.937227\pi\)
\(114\) −5.40833 + 9.36750i −0.506536 + 0.877346i
\(115\) 0.656208 1.13659i 0.0611917 0.105987i
\(116\) −7.60555 −0.706158
\(117\) 6.07448 0.740358i 0.561586 0.0684461i
\(118\) −6.50192 −0.598551
\(119\) 0 0
\(120\) −7.04584 + 12.2037i −0.643194 + 1.11404i
\(121\) −6.54584 11.3377i −0.595076 1.03070i
\(122\) 9.98165 0.903696
\(123\) 10.8167 + 18.7350i 0.975305 + 1.68928i
\(124\) 11.8209 + 20.4743i 1.06154 + 1.83865i
\(125\) −11.4927 −1.02794
\(126\) 0 0
\(127\) −3.95416 + 6.84881i −0.350875 + 0.607734i −0.986403 0.164344i \(-0.947449\pi\)
0.635528 + 0.772078i \(0.280783\pi\)
\(128\) 9.45416 16.3751i 0.835638 1.44737i
\(129\) −27.1214 −2.38791
\(130\) −10.8167 14.3808i −0.948683 1.26128i
\(131\) −10.6379 −0.929434 −0.464717 0.885459i \(-0.653844\pi\)
−0.464717 + 0.885459i \(0.653844\pi\)
\(132\) −17.5672 + 30.4273i −1.52903 + 2.64836i
\(133\) 0 0
\(134\) −1.15139 1.99426i −0.0994648 0.172278i
\(135\) −6.11943 −0.526677
\(136\) −10.7372 18.5974i −0.920707 1.59471i
\(137\) −3.15139 5.45836i −0.269241 0.466339i 0.699425 0.714706i \(-0.253440\pi\)
−0.968666 + 0.248367i \(0.920106\pi\)
\(138\) −3.02220 −0.257267
\(139\) 5.31893 + 9.21265i 0.451146 + 0.781407i 0.998457 0.0555216i \(-0.0176822\pi\)
−0.547312 + 0.836929i \(0.684349\pi\)
\(140\) 0 0
\(141\) 1.63751 2.83625i 0.137903 0.238855i
\(142\) 9.21110 0.772979
\(143\) −10.6379 14.1431i −0.889582 1.18271i
\(144\) 0.513878 0.0428232
\(145\) 2.49541 4.32218i 0.207233 0.358938i
\(146\) 4.99082 8.64436i 0.413044 0.715412i
\(147\) 0 0
\(148\) 28.4222 2.33629
\(149\) 8.75694 + 15.1675i 0.717396 + 1.24257i 0.962028 + 0.272951i \(0.0879997\pi\)
−0.244632 + 0.969616i \(0.578667\pi\)
\(150\) 0.755550 + 1.30865i 0.0616904 + 0.106851i
\(151\) 8.21110 0.668210 0.334105 0.942536i \(-0.391566\pi\)
0.334105 + 0.942536i \(0.391566\pi\)
\(152\) −3.25096 5.63083i −0.263688 0.456721i
\(153\) −6.07448 + 10.5213i −0.491092 + 0.850597i
\(154\) 0 0
\(155\) −15.5139 −1.24610
\(156\) −10.1056 + 23.7483i −0.809092 + 1.90139i
\(157\) −0.656208 −0.0523711 −0.0261856 0.999657i \(-0.508336\pi\)
−0.0261856 + 0.999657i \(0.508336\pi\)
\(158\) 7.60555 13.1732i 0.605065 1.04800i
\(159\) −2.59475 + 4.49425i −0.205777 + 0.356417i
\(160\) 5.74637 + 9.95301i 0.454291 + 0.786855i
\(161\) 0 0
\(162\) 12.9083 + 22.3579i 1.01417 + 1.75660i
\(163\) 1.39445 + 2.41526i 0.109222 + 0.189177i 0.915455 0.402420i \(-0.131831\pi\)
−0.806234 + 0.591597i \(0.798498\pi\)
\(164\) −32.9671 −2.57430
\(165\) −11.5278 19.9667i −0.897435 1.55440i
\(166\) −3.25096 + 5.63083i −0.252324 + 0.437037i
\(167\) −5.74637 + 9.95301i −0.444668 + 0.770187i −0.998029 0.0627542i \(-0.980012\pi\)
0.553361 + 0.832941i \(0.313345\pi\)
\(168\) 0 0
\(169\) −9.01388 9.36750i −0.693375 0.720577i
\(170\) 35.7250 2.73998
\(171\) −1.83920 + 3.18559i −0.140647 + 0.243609i
\(172\) 20.6653 35.7933i 1.57571 2.72921i
\(173\) −5.09017 8.81643i −0.386998 0.670300i 0.605046 0.796190i \(-0.293155\pi\)
−0.992044 + 0.125890i \(0.959821\pi\)
\(174\) −11.4927 −0.871263
\(175\) 0 0
\(176\) −0.743061 1.28702i −0.0560103 0.0970127i
\(177\) −6.11943 −0.459964
\(178\) −7.48624 12.9665i −0.561117 0.971883i
\(179\) −10.8028 + 18.7110i −0.807437 + 1.39852i 0.107196 + 0.994238i \(0.465813\pi\)
−0.914633 + 0.404285i \(0.867521\pi\)
\(180\) −6.07448 + 10.5213i −0.452765 + 0.784212i
\(181\) −24.2979 −1.80605 −0.903025 0.429588i \(-0.858659\pi\)
−0.903025 + 0.429588i \(0.858659\pi\)
\(182\) 0 0
\(183\) 9.39445 0.694458
\(184\) 0.908327 1.57327i 0.0669627 0.115983i
\(185\) −9.32544 + 16.1521i −0.685620 + 1.18753i
\(186\) 17.8625 + 30.9387i 1.30974 + 2.26854i
\(187\) 35.1345 2.56929
\(188\) 2.49541 + 4.32218i 0.181997 + 0.315227i
\(189\) 0 0
\(190\) 10.8167 0.784723
\(191\) −7.84861 13.5942i −0.567906 0.983641i −0.996773 0.0802739i \(-0.974421\pi\)
0.428867 0.903368i \(-0.358913\pi\)
\(192\) 13.8888 24.0561i 1.00234 1.73610i
\(193\) −9.90833 + 17.1617i −0.713217 + 1.23533i 0.250426 + 0.968136i \(0.419429\pi\)
−0.963643 + 0.267192i \(0.913904\pi\)
\(194\) −31.4560 −2.25841
\(195\) −10.1803 13.5348i −0.729029 0.969250i
\(196\) 0 0
\(197\) 0.545837 0.945417i 0.0388892 0.0673581i −0.845926 0.533301i \(-0.820951\pi\)
0.884815 + 0.465943i \(0.154285\pi\)
\(198\) −9.59167 + 16.6133i −0.681651 + 1.18065i
\(199\) 3.57907 + 6.19912i 0.253713 + 0.439444i 0.964545 0.263918i \(-0.0850147\pi\)
−0.710832 + 0.703362i \(0.751681\pi\)
\(200\) −0.908327 −0.0642284
\(201\) −1.08365 1.87694i −0.0764351 0.132389i
\(202\) 7.48624 + 12.9665i 0.526730 + 0.912323i
\(203\) 0 0
\(204\) −25.6194 44.3742i −1.79372 3.10681i
\(205\) 10.8167 18.7350i 0.755468 1.30851i
\(206\) −13.2326 + 22.9196i −0.921960 + 1.59688i
\(207\) −1.02776 −0.0714340
\(208\) −0.656208 0.872434i −0.0454998 0.0604924i
\(209\) 10.6379 0.735836
\(210\) 0 0
\(211\) −7.50000 + 12.9904i −0.516321 + 0.894295i 0.483499 + 0.875345i \(0.339366\pi\)
−0.999820 + 0.0189499i \(0.993968\pi\)
\(212\) −3.95416 6.84881i −0.271573 0.470378i
\(213\) 8.66923 0.594006
\(214\) −6.55971 11.3618i −0.448413 0.776674i
\(215\) 13.5607 + 23.4878i 0.924833 + 1.60186i
\(216\) −8.47055 −0.576348
\(217\) 0 0
\(218\) −9.45416 + 16.3751i −0.640317 + 1.10906i
\(219\) 4.69722 8.13583i 0.317409 0.549769i
\(220\) 35.1345 2.36876
\(221\) 25.6194 3.12250i 1.72335 0.210042i
\(222\) 42.9488 2.88253
\(223\) 8.99734 15.5838i 0.602506 1.04357i −0.389934 0.920843i \(-0.627502\pi\)
0.992440 0.122729i \(-0.0391645\pi\)
\(224\) 0 0
\(225\) 0.256939 + 0.445032i 0.0171293 + 0.0296688i
\(226\) 15.6972 1.04416
\(227\) 9.22610 + 15.9801i 0.612358 + 1.06063i 0.990842 + 0.135027i \(0.0431121\pi\)
−0.378484 + 0.925608i \(0.623555\pi\)
\(228\) −7.75694 13.4354i −0.513716 0.889782i
\(229\) −15.6287 −1.03277 −0.516386 0.856356i \(-0.672723\pi\)
−0.516386 + 0.856356i \(0.672723\pi\)
\(230\) 1.51110 + 2.61730i 0.0996390 + 0.172580i
\(231\) 0 0
\(232\) 3.45416 5.98279i 0.226777 0.392789i
\(233\) −13.0917 −0.857664 −0.428832 0.903384i \(-0.641075\pi\)
−0.428832 + 0.903384i \(0.641075\pi\)
\(234\) −5.51761 + 12.9665i −0.360698 + 0.847649i
\(235\) −3.27502 −0.213639
\(236\) 4.66272 8.07607i 0.303517 0.525707i
\(237\) 7.15813 12.3982i 0.464971 0.805353i
\(238\) 0 0
\(239\) 4.39445 0.284253 0.142127 0.989848i \(-0.454606\pi\)
0.142127 + 0.989848i \(0.454606\pi\)
\(240\) −0.711103 1.23167i −0.0459015 0.0795037i
\(241\) 4.66272 + 8.07607i 0.300352 + 0.520225i 0.976216 0.216802i \(-0.0695624\pi\)
−0.675863 + 0.737027i \(0.736229\pi\)
\(242\) 30.1472 1.93793
\(243\) 7.91368 + 13.7069i 0.507663 + 0.879298i
\(244\) −7.15813 + 12.3982i −0.458252 + 0.793717i
\(245\) 0 0
\(246\) −49.8167 −3.17619
\(247\) 7.75694 0.945417i 0.493562 0.0601554i
\(248\) −21.4744 −1.36363
\(249\) −3.05971 + 5.29958i −0.193902 + 0.335847i
\(250\) 13.2326 22.9196i 0.836904 1.44956i
\(251\) −14.9725 25.9331i −0.945054 1.63688i −0.755643 0.654984i \(-0.772675\pi\)
−0.189411 0.981898i \(-0.560658\pi\)
\(252\) 0 0
\(253\) 1.48612 + 2.57404i 0.0934317 + 0.161828i
\(254\) −9.10555 15.7713i −0.571333 0.989578i
\(255\) 33.6234 2.10558
\(256\) 8.95416 + 15.5091i 0.559635 + 0.969317i
\(257\) −3.15162 + 5.45877i −0.196593 + 0.340508i −0.947421 0.319988i \(-0.896321\pi\)
0.750829 + 0.660497i \(0.229654\pi\)
\(258\) 31.2273 54.0872i 1.94413 3.36732i
\(259\) 0 0
\(260\) 25.6194 3.12250i 1.58885 0.193649i
\(261\) −3.90833 −0.241919
\(262\) 12.2483 21.2147i 0.756702 1.31065i
\(263\) −7.71110 + 13.3560i −0.475487 + 0.823568i −0.999606 0.0280776i \(-0.991061\pi\)
0.524119 + 0.851645i \(0.324395\pi\)
\(264\) −15.9568 27.6380i −0.982072 1.70100i
\(265\) 5.18951 0.318789
\(266\) 0 0
\(267\) −7.04584 12.2037i −0.431198 0.746857i
\(268\) 3.30278 0.201749
\(269\) 0.328104 + 0.568293i 0.0200049 + 0.0346494i 0.875855 0.482575i \(-0.160298\pi\)
−0.855850 + 0.517225i \(0.826965\pi\)
\(270\) 7.04584 12.2037i 0.428796 0.742696i
\(271\) −7.25747 + 12.5703i −0.440860 + 0.763592i −0.997754 0.0669918i \(-0.978660\pi\)
0.556893 + 0.830584i \(0.311993\pi\)
\(272\) 2.16731 0.131412
\(273\) 0 0
\(274\) 14.5139 0.876815
\(275\) 0.743061 1.28702i 0.0448083 0.0776102i
\(276\) 2.16731 3.75389i 0.130457 0.225957i
\(277\) 0.105551 + 0.182820i 0.00634196 + 0.0109846i 0.869179 0.494498i \(-0.164648\pi\)
−0.862837 + 0.505482i \(0.831315\pi\)
\(278\) −24.4966 −1.46921
\(279\) 6.07448 + 10.5213i 0.363670 + 0.629894i
\(280\) 0 0
\(281\) 23.8167 1.42078 0.710391 0.703807i \(-0.248518\pi\)
0.710391 + 0.703807i \(0.248518\pi\)
\(282\) 3.77082 + 6.53125i 0.224549 + 0.388930i
\(283\) −9.32544 + 16.1521i −0.554340 + 0.960145i 0.443615 + 0.896218i \(0.353696\pi\)
−0.997955 + 0.0639272i \(0.979637\pi\)
\(284\) −6.60555 + 11.4412i −0.391967 + 0.678907i
\(285\) 10.1803 0.603031
\(286\) 40.4534 4.93046i 2.39206 0.291544i
\(287\) 0 0
\(288\) 4.50000 7.79423i 0.265165 0.459279i
\(289\) −17.1194 + 29.6517i −1.00703 + 1.74422i
\(290\) 5.74637 + 9.95301i 0.337439 + 0.584461i
\(291\) −29.6056 −1.73551
\(292\) 7.15813 + 12.3982i 0.418898 + 0.725553i
\(293\) 14.3163 + 24.7965i 0.836365 + 1.44863i 0.892914 + 0.450227i \(0.148657\pi\)
−0.0565490 + 0.998400i \(0.518010\pi\)
\(294\) 0 0
\(295\) 3.05971 + 5.29958i 0.178143 + 0.308554i
\(296\) −12.9083 + 22.3579i −0.750281 + 1.29953i
\(297\) 6.92937 12.0020i 0.402083 0.696428i
\(298\) −40.3305 −2.33628
\(299\) 1.31242 + 1.74487i 0.0758990 + 0.100908i
\(300\) −2.16731 −0.125130
\(301\) 0 0
\(302\) −9.45416 + 16.3751i −0.544026 + 0.942281i
\(303\) 7.04584 + 12.2037i 0.404773 + 0.701087i
\(304\) 0.656208 0.0376361
\(305\) −4.69722 8.13583i −0.268962 0.465856i
\(306\) −13.9882 24.2282i −0.799650 1.38503i
\(307\) 3.67841 0.209938 0.104969 0.994476i \(-0.466526\pi\)
0.104969 + 0.994476i \(0.466526\pi\)
\(308\) 0 0
\(309\) −12.4542 + 21.5712i −0.708493 + 1.22715i
\(310\) 17.8625 30.9387i 1.01452 1.75720i
\(311\) 10.6379 0.603218 0.301609 0.953432i \(-0.402476\pi\)
0.301609 + 0.953432i \(0.402476\pi\)
\(312\) −14.0917 18.7350i −0.797784 1.06066i
\(313\) −5.64703 −0.319189 −0.159595 0.987183i \(-0.551019\pi\)
−0.159595 + 0.987183i \(0.551019\pi\)
\(314\) 0.755550 1.30865i 0.0426382 0.0738514i
\(315\) 0 0
\(316\) 10.9083 + 18.8938i 0.613641 + 1.06286i
\(317\) −6.21110 −0.348850 −0.174425 0.984670i \(-0.555807\pi\)
−0.174425 + 0.984670i \(0.555807\pi\)
\(318\) −5.97514 10.3492i −0.335069 0.580357i
\(319\) 5.65139 + 9.78849i 0.316417 + 0.548050i
\(320\) −27.7776 −1.55282
\(321\) −6.17382 10.6934i −0.344589 0.596846i
\(322\) 0 0
\(323\) −7.75694 + 13.4354i −0.431608 + 0.747566i
\(324\) −37.0278 −2.05710
\(325\) 0.427446 1.00451i 0.0237104 0.0557202i
\(326\) −6.42221 −0.355693
\(327\) −8.89799 + 15.4118i −0.492060 + 0.852273i
\(328\) 14.9725 25.9331i 0.826717 1.43192i
\(329\) 0 0
\(330\) 53.0917 2.92260
\(331\) −2.15139 3.72631i −0.118251 0.204817i 0.800824 0.598900i \(-0.204395\pi\)
−0.919075 + 0.394084i \(0.871062\pi\)
\(332\) −4.66272 8.07607i −0.255900 0.443232i
\(333\) 14.6056 0.800379
\(334\) −13.2326 22.9196i −0.724056 1.25410i
\(335\) −1.08365 + 1.87694i −0.0592063 + 0.102548i
\(336\) 0 0
\(337\) 18.1194 0.987028 0.493514 0.869738i \(-0.335712\pi\)
0.493514 + 0.869738i \(0.335712\pi\)
\(338\) 29.0597 7.19041i 1.58064 0.391107i
\(339\) 14.7738 0.802402
\(340\) −25.6194 + 44.3742i −1.38941 + 2.40653i
\(341\) 17.5672 30.4273i 0.951319 1.64773i
\(342\) −4.23527 7.33571i −0.229017 0.396670i
\(343\) 0 0
\(344\) 18.7708 + 32.5120i 1.01205 + 1.75293i
\(345\) 1.42221 + 2.46333i 0.0765689 + 0.132621i
\(346\) 23.4430 1.26030
\(347\) −7.60555 13.1732i −0.408287 0.707174i 0.586411 0.810014i \(-0.300541\pi\)
−0.994698 + 0.102839i \(0.967207\pi\)
\(348\) 8.24179 14.2752i 0.441806 0.765231i
\(349\) −5.09017 + 8.81643i −0.272470 + 0.471932i −0.969494 0.245116i \(-0.921174\pi\)
0.697023 + 0.717048i \(0.254507\pi\)
\(350\) 0 0
\(351\) 3.98612 9.36750i 0.212763 0.500000i
\(352\) −26.0278 −1.38728
\(353\) 13.2326 22.9196i 0.704301 1.21988i −0.262642 0.964893i \(-0.584594\pi\)
0.966943 0.254992i \(-0.0820727\pi\)
\(354\) 7.04584 12.2037i 0.374482 0.648622i
\(355\) −4.33462 7.50778i −0.230058 0.398471i
\(356\) 21.4744 1.13814
\(357\) 0 0
\(358\) −24.8764 43.0871i −1.31476 2.27723i
\(359\) −12.0917 −0.638174 −0.319087 0.947725i \(-0.603376\pi\)
−0.319087 + 0.947725i \(0.603376\pi\)
\(360\) −5.51761 9.55678i −0.290804 0.503687i
\(361\) 7.15139 12.3866i 0.376389 0.651925i
\(362\) 27.9763 48.4564i 1.47040 2.54681i
\(363\) 28.3737 1.48923
\(364\) 0 0
\(365\) −9.39445 −0.491728
\(366\) −10.8167 + 18.7350i −0.565396 + 0.979294i
\(367\) −12.8052 + 22.1792i −0.668424 + 1.15774i 0.309921 + 0.950762i \(0.399698\pi\)
−0.978345 + 0.206982i \(0.933636\pi\)
\(368\) 0.0916731 + 0.158782i 0.00477879 + 0.00827711i
\(369\) −16.9411 −0.881918
\(370\) −21.4744 37.1947i −1.11640 1.93366i
\(371\) 0 0
\(372\) −51.2389 −2.65661
\(373\) 6.34861 + 10.9961i 0.328719 + 0.569357i 0.982258 0.187535i \(-0.0600499\pi\)
−0.653539 + 0.756893i \(0.726717\pi\)
\(374\) −40.4534 + 70.0673i −2.09179 + 3.62309i
\(375\) 12.4542 21.5712i 0.643130 1.11393i
\(376\) −4.53330 −0.233787
\(377\) 4.99082 + 6.63534i 0.257041 + 0.341737i
\(378\) 0 0
\(379\) 6.05971 10.4957i 0.311267 0.539130i −0.667370 0.744726i \(-0.732580\pi\)
0.978637 + 0.205596i \(0.0659134\pi\)
\(380\) −7.75694 + 13.4354i −0.397923 + 0.689222i
\(381\) −8.56989 14.8435i −0.439049 0.760455i
\(382\) 36.1472 1.84945
\(383\) 11.1646 + 19.3377i 0.570487 + 0.988112i 0.996516 + 0.0834025i \(0.0265787\pi\)
−0.426029 + 0.904709i \(0.640088\pi\)
\(384\) 20.4901 + 35.4899i 1.04563 + 1.81108i
\(385\) 0 0
\(386\) −22.8167 39.5196i −1.16134 2.01149i
\(387\) 10.6194 18.3934i 0.539816 0.934989i
\(388\) 22.5581 39.0717i 1.14521 1.98356i
\(389\) 29.0278 1.47177 0.735883 0.677109i \(-0.236767\pi\)
0.735883 + 0.677109i \(0.236767\pi\)
\(390\) 38.7135 4.71841i 1.96034 0.238926i
\(391\) −4.33462 −0.219211
\(392\) 0 0
\(393\) 11.5278 19.9667i 0.581498 1.00718i
\(394\) 1.25694 + 2.17708i 0.0633237 + 0.109680i
\(395\) −14.3163 −0.720329
\(396\) −13.7569 23.8277i −0.691312 1.19739i
\(397\) −2.16731 3.75389i −0.108774 0.188402i 0.806500 0.591234i \(-0.201359\pi\)
−0.915274 + 0.402832i \(0.868026\pi\)
\(398\) −16.4836 −0.826247
\(399\) 0 0
\(400\) 0.0458365 0.0793912i 0.00229183 0.00396956i
\(401\) 5.05971 8.76368i 0.252670 0.437637i −0.711590 0.702595i \(-0.752025\pi\)
0.964260 + 0.264958i \(0.0853579\pi\)
\(402\) 4.99082 0.248920
\(403\) 10.1056 23.7483i 0.503393 1.18299i
\(404\) −21.4744 −1.06839
\(405\) 12.1490 21.0426i 0.603687 1.04562i
\(406\) 0 0
\(407\) −21.1194 36.5799i −1.04685 1.81320i
\(408\) 46.5416 2.30415
\(409\) −1.73986 3.01353i −0.0860306 0.149009i 0.819799 0.572651i \(-0.194085\pi\)
−0.905830 + 0.423642i \(0.860752\pi\)
\(410\) 24.9083 + 43.1425i 1.23013 + 2.13066i
\(411\) 13.6601 0.673801
\(412\) −18.9790 32.8726i −0.935027 1.61952i
\(413\) 0 0
\(414\) 1.18335 2.04962i 0.0581583 0.100733i
\(415\) 6.11943 0.300391
\(416\) −18.9790 + 2.31316i −0.930521 + 0.113412i
\(417\) −23.0555 −1.12903
\(418\) −12.2483 + 21.2147i −0.599084 + 1.03764i
\(419\) 8.56989 14.8435i 0.418667 0.725152i −0.577139 0.816646i \(-0.695831\pi\)
0.995806 + 0.0914942i \(0.0291643\pi\)
\(420\) 0 0
\(421\) 5.02776 0.245038 0.122519 0.992466i \(-0.460903\pi\)
0.122519 + 0.992466i \(0.460903\pi\)
\(422\) −17.2708 29.9139i −0.840730 1.45619i
\(423\) 1.28234 + 2.22107i 0.0623494 + 0.107992i
\(424\) 7.18335 0.348854
\(425\) 1.08365 + 1.87694i 0.0525649 + 0.0910452i
\(426\) −9.98165 + 17.2887i −0.483612 + 0.837641i
\(427\) 0 0
\(428\) 18.8167 0.909537
\(429\) 38.0736 4.64041i 1.83821 0.224041i
\(430\) −62.4546 −3.01183
\(431\) 10.4680 18.1312i 0.504228 0.873348i −0.495760 0.868459i \(-0.665111\pi\)
0.999988 0.00488877i \(-0.00155615\pi\)
\(432\) 0.427446 0.740358i 0.0205655 0.0356205i
\(433\) −8.56989 14.8435i −0.411843 0.713332i 0.583249 0.812294i \(-0.301781\pi\)
−0.995091 + 0.0989613i \(0.968448\pi\)
\(434\) 0 0
\(435\) 5.40833 + 9.36750i 0.259309 + 0.449137i
\(436\) −13.5597 23.4861i −0.649393 1.12478i
\(437\) −1.31242 −0.0627814
\(438\) 10.8167 + 18.7350i 0.516840 + 0.895193i
\(439\) 1.83920 3.18559i 0.0877804 0.152040i −0.818792 0.574090i \(-0.805356\pi\)
0.906573 + 0.422050i \(0.138689\pi\)
\(440\) −15.9568 + 27.6380i −0.760710 + 1.31759i
\(441\) 0 0
\(442\) −23.2708 + 54.6871i −1.10688 + 2.60120i
\(443\) −20.2389 −0.961577 −0.480789 0.876837i \(-0.659650\pi\)
−0.480789 + 0.876837i \(0.659650\pi\)
\(444\) −30.7998 + 53.3469i −1.46170 + 2.53173i
\(445\) −7.04584 + 12.2037i −0.334005 + 0.578513i
\(446\) 20.7188 + 35.8861i 0.981066 + 1.69926i
\(447\) −37.9580 −1.79535
\(448\) 0 0
\(449\) 10.2111 + 17.6861i 0.481892 + 0.834661i 0.999784 0.0207849i \(-0.00661652\pi\)
−0.517892 + 0.855446i \(0.673283\pi\)
\(450\) −1.18335 −0.0557835
\(451\) 24.4966 + 42.4294i 1.15350 + 1.99792i
\(452\) −11.2569 + 19.4976i −0.529482 + 0.917090i
\(453\) −8.89799 + 15.4118i −0.418064 + 0.724109i
\(454\) −42.4913 −1.99421
\(455\) 0 0
\(456\) 14.0917 0.659903
\(457\) −10.3028 + 17.8449i −0.481944 + 0.834751i −0.999785 0.0207258i \(-0.993402\pi\)
0.517842 + 0.855476i \(0.326736\pi\)
\(458\) 17.9947 31.1677i 0.840836 1.45637i
\(459\) 10.1056 + 17.5033i 0.471687 + 0.816985i
\(460\) −4.33462 −0.202103
\(461\) 12.5764 + 21.7830i 0.585741 + 1.01453i 0.994783 + 0.102018i \(0.0325299\pi\)
−0.409041 + 0.912516i \(0.634137\pi\)
\(462\) 0 0
\(463\) −13.7889 −0.640824 −0.320412 0.947278i \(-0.603821\pi\)
−0.320412 + 0.947278i \(0.603821\pi\)
\(464\) 0.348612 + 0.603814i 0.0161839 + 0.0280314i
\(465\) 16.8117 29.1187i 0.779623 1.35035i
\(466\) 15.0736 26.1082i 0.698271 1.20944i
\(467\) 12.8052 0.592552 0.296276 0.955102i \(-0.404255\pi\)
0.296276 + 0.955102i \(0.404255\pi\)
\(468\) −12.1490 16.1521i −0.561586 0.746633i
\(469\) 0 0
\(470\) 3.77082 6.53125i 0.173935 0.301264i
\(471\) 0.711103 1.23167i 0.0327659 0.0567522i
\(472\) 4.23527 + 7.33571i 0.194944 + 0.337653i
\(473\) −61.4222 −2.82420
\(474\) 16.4836 + 28.5504i 0.757116 + 1.31136i
\(475\) 0.328104 + 0.568293i 0.0150544 + 0.0260751i
\(476\) 0 0
\(477\) −2.03196 3.51946i −0.0930370 0.161145i
\(478\) −5.05971 + 8.76368i −0.231426 + 0.400842i
\(479\) 8.24179 14.2752i 0.376577 0.652250i −0.613985 0.789318i \(-0.710434\pi\)
0.990562 + 0.137068i \(0.0437678\pi\)
\(480\) −24.9083 −1.13690
\(481\) −18.6509 24.7965i −0.850407 1.13062i
\(482\) −21.4744 −0.978132
\(483\) 0 0
\(484\) −21.6194 + 37.4460i −0.982701 + 1.70209i
\(485\) 14.8028 + 25.6392i 0.672159 + 1.16421i
\(486\) −36.4469 −1.65326
\(487\) 15.6514 + 27.1090i 0.709232 + 1.22843i 0.965142 + 0.261725i \(0.0842915\pi\)
−0.255910 + 0.966701i \(0.582375\pi\)
\(488\) −6.50192 11.2617i −0.294328 0.509792i
\(489\) −6.04440 −0.273337
\(490\) 0 0
\(491\) −9.86249 + 17.0823i −0.445088 + 0.770915i −0.998058 0.0622859i \(-0.980161\pi\)
0.552970 + 0.833201i \(0.313494\pi\)
\(492\) 35.7250 61.8775i 1.61061 2.78965i
\(493\) −16.4836 −0.742383
\(494\) −7.04584 + 16.5579i −0.317007 + 0.744976i
\(495\) 18.0548 0.811504
\(496\) 1.08365 1.87694i 0.0486575 0.0842773i
\(497\) 0 0
\(498\) −7.04584 12.2037i −0.315731 0.546863i
\(499\) −8.33053 −0.372926 −0.186463 0.982462i \(-0.559702\pi\)
−0.186463 + 0.982462i \(0.559702\pi\)
\(500\) 18.9790 + 32.8726i 0.848766 + 1.47011i
\(501\) −12.4542 21.5712i −0.556411 0.963732i
\(502\) 68.9565 3.07768
\(503\) 9.75289 + 16.8925i 0.434860 + 0.753199i 0.997284 0.0736495i \(-0.0234646\pi\)
−0.562424 + 0.826849i \(0.690131\pi\)
\(504\) 0 0
\(505\) 7.04584 12.2037i 0.313536 0.543060i
\(506\) −6.84441 −0.304271
\(507\) 27.3502 6.76742i 1.21466 0.300552i
\(508\) 26.1194 1.15886
\(509\) −10.7372 + 18.5974i −0.475918 + 0.824314i −0.999619 0.0275878i \(-0.991217\pi\)
0.523701 + 0.851902i \(0.324551\pi\)
\(510\) −38.7135 + 67.0538i −1.71426 + 2.96919i
\(511\) 0 0
\(512\) −3.42221 −0.151242
\(513\) 3.05971 + 5.29958i 0.135090 + 0.233982i
\(514\) −7.25747 12.5703i −0.320113 0.554453i
\(515\) 24.9083 1.09759
\(516\) 44.7880 + 77.5751i 1.97168 + 3.41505i
\(517\) 3.70849 6.42329i 0.163099 0.282496i
\(518\) 0 0
\(519\) 22.0639 0.968498
\(520\) −9.17914 + 21.5712i −0.402532 + 0.945962i
\(521\) −21.6731 −0.949515 −0.474757 0.880117i \(-0.657464\pi\)
−0.474757 + 0.880117i \(0.657464\pi\)
\(522\) 4.50000 7.79423i 0.196960 0.341144i
\(523\) −12.1490 + 21.0426i −0.531237 + 0.920129i 0.468099 + 0.883676i \(0.344939\pi\)
−0.999335 + 0.0364529i \(0.988394\pi\)
\(524\) 17.5672 + 30.4273i 0.767428 + 1.32922i
\(525\) 0 0
\(526\) −17.7569 30.7559i −0.774239 1.34102i
\(527\) 25.6194 + 44.3742i 1.11600 + 1.93297i
\(528\) 3.22088 0.140171
\(529\) 11.3167 + 19.6010i 0.492028 + 0.852218i
\(530\) −5.97514 + 10.3492i −0.259543 + 0.449542i
\(531\) 2.39607 4.15012i 0.103981 0.180100i
\(532\) 0 0
\(533\) 21.6333 + 28.7617i 0.937043 + 1.24581i
\(534\) 32.4500 1.40425
\(535\) −6.17382 + 10.6934i −0.266918 + 0.462315i
\(536\) −1.50000 + 2.59808i −0.0647901 + 0.112220i
\(537\) −23.4129 40.5524i −1.01034 1.74997i
\(538\) −1.51110 −0.0651481
\(539\) 0 0
\(540\) 10.1056 + 17.5033i 0.434874 + 0.753223i
\(541\) 27.9361 1.20107 0.600533 0.799600i \(-0.294955\pi\)
0.600533 + 0.799600i \(0.294955\pi\)
\(542\) −16.7123 28.9466i −0.717856 1.24336i
\(543\) 26.3305 45.6058i 1.12995 1.95713i
\(544\) 18.9790 32.8726i 0.813717 1.40940i
\(545\) 17.7960 0.762296
\(546\) 0 0
\(547\) 29.0000 1.23995 0.619975 0.784621i \(-0.287143\pi\)
0.619975 + 0.784621i \(0.287143\pi\)
\(548\) −10.4083 + 18.0278i −0.444622 + 0.770107i
\(549\) −3.67841 + 6.37119i −0.156991 + 0.271916i
\(550\) 1.71110 + 2.96372i 0.0729617 + 0.126373i
\(551\) −4.99082 −0.212616
\(552\) 1.96862 + 3.40976i 0.0837902 + 0.145129i
\(553\) 0 0
\(554\) −0.486122 −0.0206533
\(555\) −20.2111 35.0067i −0.857914 1.48595i
\(556\) 17.5672 30.4273i 0.745016 1.29041i
\(557\) −3.04584 + 5.27554i −0.129056 + 0.223532i −0.923311 0.384053i \(-0.874528\pi\)
0.794255 + 0.607585i \(0.207861\pi\)
\(558\) −27.9763 −1.18433
\(559\) −44.7880 + 5.45877i −1.89433 + 0.230881i
\(560\) 0 0
\(561\) −38.0736 + 65.9454i −1.60747 + 2.78422i
\(562\) −27.4222 + 47.4967i −1.15674 + 2.00353i
\(563\) −0.656208 1.13659i −0.0276559 0.0479014i 0.851866 0.523759i \(-0.175471\pi\)
−0.879522 + 0.475858i \(0.842138\pi\)
\(564\) −10.8167 −0.455463
\(565\) −7.38689 12.7945i −0.310769 0.538268i
\(566\) −21.4744 37.1947i −0.902636 1.56341i
\(567\) 0 0
\(568\) −6.00000 10.3923i −0.251754 0.436051i
\(569\) 17.3028 29.9693i 0.725370 1.25638i −0.233451 0.972368i \(-0.575002\pi\)
0.958822 0.284009i \(-0.0916647\pi\)
\(570\) −11.7215 + 20.3023i −0.490960 + 0.850368i
\(571\) −10.7250 −0.448826 −0.224413 0.974494i \(-0.572047\pi\)
−0.224413 + 0.974494i \(0.572047\pi\)
\(572\) −22.8862 + 53.7831i −0.956918 + 2.24878i
\(573\) 34.0207 1.42124
\(574\) 0 0
\(575\) −0.0916731 + 0.158782i −0.00382303 + 0.00662169i
\(576\) 10.8764 + 18.8384i 0.453182 + 0.784934i
\(577\) 33.1658 1.38071 0.690356 0.723470i \(-0.257454\pi\)
0.690356 + 0.723470i \(0.257454\pi\)
\(578\) −39.4222 68.2813i −1.63975 2.84013i
\(579\) −21.4744 37.1947i −0.892445 1.54576i
\(580\) −16.4836 −0.684443
\(581\) 0 0
\(582\) 34.0875 59.0412i 1.41297 2.44734i
\(583\) −5.87637 + 10.1782i −0.243374 + 0.421537i
\(584\) −13.0038 −0.538103
\(585\) 13.1653 1.60458i 0.544317 0.0663414i
\(586\) −65.9343 −2.72372
\(587\) −0.984312 + 1.70488i −0.0406269 + 0.0703679i −0.885624 0.464403i \(-0.846269\pi\)
0.844997 + 0.534771i \(0.179602\pi\)
\(588\) 0 0
\(589\) 7.75694 + 13.4354i 0.319619 + 0.553597i
\(590\) −14.0917 −0.580145
\(591\) 1.18300 + 2.04901i 0.0486620 + 0.0842850i
\(592\) −1.30278 2.25647i −0.0535437 0.0927405i
\(593\) 6.30324 0.258843 0.129422 0.991590i \(-0.458688\pi\)
0.129422 + 0.991590i \(0.458688\pi\)
\(594\) 15.9568 + 27.6380i 0.654715 + 1.13400i
\(595\) 0 0
\(596\) 28.9222 50.0947i 1.18470 2.05196i
\(597\) −15.5139 −0.634941
\(598\) −4.99082 + 0.608282i −0.204090 + 0.0248745i
\(599\) −10.5139 −0.429585 −0.214793 0.976660i \(-0.568908\pi\)
−0.214793 + 0.976660i \(0.568908\pi\)
\(600\) 0.984312 1.70488i 0.0401844 0.0696014i
\(601\) −4.56338 + 7.90400i −0.186144 + 0.322411i −0.943961 0.330056i \(-0.892932\pi\)
0.757817 + 0.652467i \(0.226266\pi\)
\(602\) 0 0
\(603\) 1.69722 0.0691163
\(604\) −13.5597 23.4861i −0.551737 0.955636i
\(605\) −14.1868 24.5723i −0.576777 0.999008i
\(606\) −32.4500 −1.31819
\(607\) −19.4064 33.6129i −0.787683 1.36431i −0.927383 0.374113i \(-0.877947\pi\)
0.139701 0.990194i \(-0.455386\pi\)
\(608\) 5.74637 9.95301i 0.233046 0.403648i
\(609\) 0 0
\(610\) 21.6333 0.875907
\(611\) 2.13331 5.01333i 0.0863044 0.202818i
\(612\) 40.1253 1.62197
\(613\) −15.9542 + 27.6334i −0.644383 + 1.11610i 0.340061 + 0.940403i \(0.389552\pi\)
−0.984444 + 0.175700i \(0.943781\pi\)
\(614\) −4.23527 + 7.33571i −0.170922 + 0.296045i
\(615\) 23.4430 + 40.6045i 0.945314 + 1.63733i
\(616\) 0 0
\(617\) −7.92221 13.7217i −0.318936 0.552413i 0.661330 0.750095i \(-0.269992\pi\)
−0.980266 + 0.197681i \(0.936659\pi\)
\(618\) −28.6791 49.6737i −1.15364 1.99817i
\(619\) −29.9449 −1.20359 −0.601794 0.798651i \(-0.705547\pi\)
−0.601794 + 0.798651i \(0.705547\pi\)
\(620\) 25.6194 + 44.3742i 1.02890 + 1.78211i
\(621\) −0.854892 + 1.48072i −0.0343056 + 0.0594191i
\(622\) −12.2483 + 21.2147i −0.491112 + 0.850631i
\(623\) 0 0
\(624\) 2.34861 0.286249i 0.0940197 0.0114591i
\(625\) −23.3944 −0.935778
\(626\) 6.50192 11.2617i 0.259869 0.450107i
\(627\) −11.5278 + 19.9667i −0.460374 + 0.797392i
\(628\) 1.08365 + 1.87694i 0.0432425 + 0.0748982i
\(629\) 61.5997 2.45614
\(630\) 0 0
\(631\) −11.4542 19.8392i −0.455983 0.789786i 0.542761 0.839887i \(-0.317379\pi\)
−0.998744 + 0.0501013i \(0.984046\pi\)
\(632\) −19.8167 −0.788264
\(633\) −16.2548 28.1542i −0.646071 1.11903i
\(634\) 7.15139 12.3866i 0.284018 0.491933i
\(635\) −8.56989 + 14.8435i −0.340086 + 0.589046i
\(636\) 17.1398 0.679637
\(637\) 0 0
\(638\) −26.0278 −1.03045
\(639\) −3.39445 + 5.87936i −0.134282 + 0.232584i
\(640\) 20.4901 35.4899i 0.809942 1.40286i
\(641\) 7.25694 + 12.5694i 0.286632 + 0.496461i 0.973004 0.230790i \(-0.0741310\pi\)
−0.686372 + 0.727251i \(0.740798\pi\)
\(642\) 28.4338 1.12219
\(643\) −8.56989 14.8435i −0.337963 0.585370i 0.646086 0.763265i \(-0.276405\pi\)
−0.984050 + 0.177895i \(0.943071\pi\)
\(644\) 0 0
\(645\) −58.7805 −2.31448
\(646\) −17.8625 30.9387i −0.702790 1.21727i
\(647\) 16.4836 28.5504i 0.648036 1.12243i −0.335555 0.942021i \(-0.608924\pi\)
0.983591 0.180411i \(-0.0577428\pi\)
\(648\) 16.8167 29.1273i 0.660621 1.14423i
\(649\) −13.8587 −0.544003
\(650\) 1.51110 + 2.00902i 0.0592702 + 0.0788002i
\(651\) 0 0
\(652\) 4.60555 7.97705i 0.180367 0.312405i
\(653\) 23.3764 40.4891i 0.914788 1.58446i 0.107577 0.994197i \(-0.465691\pi\)
0.807211 0.590262i \(-0.200976\pi\)
\(654\) −20.4901 35.4899i −0.801226 1.38776i
\(655\) −23.0555 −0.900853
\(656\) 1.51110 + 2.61730i 0.0589985 + 0.102188i
\(657\) 3.67841 + 6.37119i 0.143508 + 0.248564i
\(658\) 0 0
\(659\) 9.81665 + 17.0029i 0.382403 + 0.662341i 0.991405 0.130828i \(-0.0417634\pi\)
−0.609003 + 0.793168i \(0.708430\pi\)
\(660\) −38.0736 + 65.9454i −1.48201 + 2.56692i
\(661\) 11.4927 19.9060i 0.447016 0.774255i −0.551174 0.834390i \(-0.685820\pi\)
0.998190 + 0.0601356i \(0.0191533\pi\)
\(662\) 9.90833 0.385098
\(663\) −21.9018 + 51.4699i −0.850597 + 1.99893i
\(664\) 8.47055 0.328721
\(665\) 0 0
\(666\) −16.8167 + 29.1273i −0.651632 + 1.12866i
\(667\) −0.697224 1.20763i −0.0269966 0.0467595i
\(668\) 37.9580 1.46864
\(669\) 19.5000 + 33.7750i 0.753914 + 1.30582i
\(670\) −2.49541 4.32218i −0.0964062 0.166980i
\(671\) 21.2757 0.821340
\(672\) 0 0
\(673\) 1.10555 1.91487i 0.0426159 0.0738129i −0.843931 0.536452i \(-0.819764\pi\)
0.886547 + 0.462639i \(0.153098\pi\)
\(674\) −20.8625 + 36.1349i −0.803593 + 1.39186i
\(675\) 0.854892 0.0329048
\(676\) −11.9083 + 41.2517i −0.458013 + 1.58660i
\(677\) −26.4652 −1.01714 −0.508571 0.861020i \(-0.669826\pi\)
−0.508571 + 0.861020i \(0.669826\pi\)
\(678\) −17.0104 + 29.4628i −0.653279 + 1.13151i
\(679\) 0 0
\(680\) −23.2708 40.3062i −0.892395 1.54567i
\(681\) −39.9916 −1.53248
\(682\) 40.4534 + 70.0673i 1.54904 + 2.68302i
\(683\) 1.80278 + 3.12250i 0.0689813 + 0.119479i 0.898453 0.439069i \(-0.144692\pi\)
−0.829472 + 0.558549i \(0.811358\pi\)
\(684\) 12.1490 0.464527
\(685\) −6.83003 11.8300i −0.260962 0.451999i
\(686\) 0 0
\(687\) 16.9361 29.3342i 0.646152 1.11917i
\(688\) −3.78890 −0.144450
\(689\) −3.38038 + 7.94399i −0.128782 + 0.302642i
\(690\) −6.55004 −0.249356
\(691\) 18.8796 32.7005i 0.718215 1.24399i −0.243491 0.969903i \(-0.578293\pi\)
0.961706 0.274082i \(-0.0883741\pi\)
\(692\) −16.8117 + 29.1187i −0.639084 + 1.10693i
\(693\) 0 0
\(694\) 35.0278 1.32964
\(695\) 11.5278 + 19.9667i 0.437273 + 0.757379i
\(696\) 7.48624 + 12.9665i 0.283765 + 0.491495i
\(697\) −71.4500 −2.70636
\(698\) −11.7215 20.3023i −0.443666 0.768452i
\(699\) 14.1868 24.5723i 0.536596 0.929411i
\(700\) 0 0
\(701\) 9.02776 0.340974 0.170487 0.985360i \(-0.445466\pi\)
0.170487 + 0.985360i \(0.445466\pi\)
\(702\) 14.0917 + 18.7350i 0.531856 + 0.707107i
\(703\) 18.6509 0.703431
\(704\) 31.4542 54.4802i 1.18547 2.05330i
\(705\) 3.54899 6.14703i 0.133663 0.231510i
\(706\) 30.4717 + 52.7786i 1.14682 + 1.98635i
\(707\) 0 0
\(708\) 10.1056 + 17.5033i 0.379790 + 0.657815i
\(709\) −16.3625 28.3407i −0.614506 1.06436i −0.990471 0.137722i \(-0.956022\pi\)
0.375965 0.926634i \(-0.377311\pi\)
\(710\) 19.9633 0.749209
\(711\) 5.60555 + 9.70910i 0.210225 + 0.364120i
\(712\) −9.75289 + 16.8925i −0.365505 + 0.633073i
\(713\) −2.16731 + 3.75389i −0.0811663 + 0.140584i
\(714\) 0 0
\(715\) −23.0555 30.6525i −0.862227 1.14634i
\(716\) 71.3583 2.66678
\(717\) −4.76206 + 8.24813i −0.177842 + 0.308032i
\(718\) 13.9222 24.1140i 0.519572 0.899925i
\(719\) 11.3934 + 19.7340i 0.424902 + 0.735952i 0.996411 0.0846433i \(-0.0269751\pi\)
−0.571509 + 0.820596i \(0.693642\pi\)
\(720\) 1.11373 0.0415064
\(721\) 0 0
\(722\) 16.4680 + 28.5235i 0.612877 + 1.06153i
\(723\) −20.2111 −0.751659
\(724\) 40.1253 + 69.4990i 1.49124 + 2.58291i
\(725\) −0.348612 + 0.603814i −0.0129471 + 0.0224251i
\(726\) −32.6691 + 56.5846i −1.21246 + 2.10005i
\(727\) 37.1031 1.37608 0.688038 0.725674i \(-0.258472\pi\)
0.688038 + 0.725674i \(0.258472\pi\)
\(728\) 0 0
\(729\) −0.669468 −0.0247951
\(730\) 10.8167 18.7350i 0.400342 0.693413i
\(731\) 44.7880 77.5751i 1.65654 2.86922i
\(732\) −15.5139 26.8708i −0.573409 0.993174i
\(733\) −6.70061 −0.247493 −0.123746 0.992314i \(-0.539491\pi\)
−0.123746 + 0.992314i \(0.539491\pi\)
\(734\) −29.4874 51.0737i −1.08840 1.88517i
\(735\) 0 0
\(736\) 3.21110 0.118363
\(737\) −2.45416 4.25074i −0.0904003 0.156578i
\(738\) 19.5058 33.7850i 0.718017 1.24364i
\(739\) 16.6056 28.7617i 0.610845 1.05801i −0.380253 0.924882i \(-0.624163\pi\)
0.991098 0.133132i \(-0.0425035\pi\)
\(740\) 61.5997 2.26445
\(741\) −6.63134 + 15.5838i −0.243609 + 0.572487i
\(742\) 0 0
\(743\) 20.6514 35.7693i 0.757626 1.31225i −0.186432 0.982468i \(-0.559692\pi\)
0.944058 0.329779i \(-0.106974\pi\)
\(744\) 23.2708 40.3062i 0.853150 1.47770i
\(745\) 18.9790 + 32.8726i 0.695336 + 1.20436i
\(746\) −29.2389 −1.07051
\(747\) −2.39607 4.15012i −0.0876676 0.151845i
\(748\) −58.0206 100.495i −2.12144 3.67445i
\(749\) 0 0
\(750\) 28.6791 + 49.6737i 1.04721 + 1.81383i
\(751\) 5.80278 10.0507i 0.211746 0.366755i −0.740515 0.672040i \(-0.765418\pi\)
0.952261 + 0.305285i \(0.0987516\pi\)
\(752\) 0.228762 0.396228i 0.00834210 0.0144489i
\(753\) 64.8999 2.36508
\(754\) −18.9790 + 2.31316i −0.691174 + 0.0842403i
\(755\) 17.7960 0.647662
\(756\) 0 0
\(757\) −3.11943 + 5.40301i −0.113378 + 0.196376i −0.917130 0.398588i \(-0.869500\pi\)
0.803752 + 0.594964i \(0.202834\pi\)
\(758\) 13.9542 + 24.1693i 0.506838 + 0.877869i
\(759\) −6.44177 −0.233821
\(760\) −7.04584 12.2037i −0.255579 0.442676i
\(761\) 21.1463 + 36.6265i 0.766553 + 1.32771i 0.939422 + 0.342763i \(0.111363\pi\)
−0.172869 + 0.984945i \(0.555304\pi\)
\(762\) 39.4691 1.42981
\(763\) 0 0
\(764\) −25.9222 + 44.8986i −0.937832 + 1.62437i
\(765\) −13.1653 + 22.8029i −0.475991 + 0.824441i
\(766\) −51.4193 −1.85786
\(767\) −10.1056 + 1.23167i −0.364890 + 0.0444729i
\(768\) −38.8129 −1.40054
\(769\) −23.5424 + 40.7766i −0.848959 + 1.47044i 0.0331785 + 0.999449i \(0.489437\pi\)
−0.882138 + 0.470991i \(0.843896\pi\)
\(770\) 0 0
\(771\) −6.83053 11.8308i −0.245996 0.426077i
\(772\) 65.4500 2.35560
\(773\) −14.2169 24.6244i −0.511347 0.885679i −0.999914 0.0131525i \(-0.995813\pi\)
0.488566 0.872527i \(-0.337520\pi\)
\(774\) 24.4542 + 42.3559i 0.878987 + 1.52245i
\(775\) 2.16731 0.0778520
\(776\) 20.4901 + 35.4899i 0.735551 + 1.27401i
\(777\) 0 0
\(778\)