Properties

Label 637.2.f.g.295.1
Level $637$
Weight $2$
Character 637.295
Analytic conductor $5.086$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(295,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.295");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1485512441856.7
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 24x^{6} + 455x^{4} + 2904x^{2} + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 295.1
Root \(-1.34203 - 2.32446i\) of defining polynomial
Character \(\chi\) \(=\) 637.295
Dual form 637.2.f.g.393.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.707107 + 1.22474i) q^{3} +(0.500000 + 0.866025i) q^{4} -2.68406 q^{5} +(-0.707107 - 1.22474i) q^{6} -3.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(1.34203 - 2.32446i) q^{10} +(-2.89792 + 5.01934i) q^{11} -1.41421 q^{12} +(2.75624 - 2.32446i) q^{13} +(1.89792 - 3.28729i) q^{15} +(0.500000 - 0.866025i) q^{16} +(-2.75624 - 4.77395i) q^{17} -1.00000 q^{18} +(1.41421 + 2.44949i) q^{19} +(-1.34203 - 2.32446i) q^{20} +(-2.89792 - 5.01934i) q^{22} +(-0.897916 + 1.55524i) q^{23} +(2.12132 - 3.67423i) q^{24} +2.20417 q^{25} +(0.634922 + 3.54921i) q^{26} -5.65685 q^{27} +(4.39792 - 7.61741i) q^{29} +(1.89792 + 3.28729i) q^{30} -1.41421 q^{31} +(-2.50000 - 4.33013i) q^{32} +(-4.09827 - 7.09841i) q^{33} +5.51249 q^{34} +(-0.500000 + 0.866025i) q^{36} +(3.39792 - 5.88536i) q^{37} -2.82843 q^{38} +(0.897916 + 5.01934i) q^{39} +8.05217 q^{40} +(-4.87756 + 8.44819i) q^{41} +(0.897916 + 1.55524i) q^{43} -5.79583 q^{44} +(-1.34203 - 2.32446i) q^{45} +(-0.897916 - 1.55524i) q^{46} +2.82843 q^{47} +(0.707107 + 1.22474i) q^{48} +(-1.10208 + 1.90887i) q^{50} +7.79583 q^{51} +(3.39116 + 1.22474i) q^{52} +6.59166 q^{53} +(2.82843 - 4.89898i) q^{54} +(7.77817 - 13.4722i) q^{55} -4.00000 q^{57} +(4.39792 + 7.61741i) q^{58} +(-0.562738 - 0.974691i) q^{59} +3.79583 q^{60} +(-0.779291 - 1.34977i) q^{61} +(0.707107 - 1.22474i) q^{62} +7.00000 q^{64} +(-7.39792 + 6.23899i) q^{65} +8.19654 q^{66} +(-2.89792 + 5.01934i) q^{67} +(2.75624 - 4.77395i) q^{68} +(-1.26984 - 2.19944i) q^{69} +(-3.00000 - 5.19615i) q^{71} +(-1.50000 - 2.59808i) q^{72} -5.80122 q^{73} +(3.39792 + 5.88536i) q^{74} +(-1.55858 + 2.69954i) q^{75} +(-1.41421 + 2.44949i) q^{76} +(-4.79583 - 1.73205i) q^{78} -11.7958 q^{79} +(-1.34203 + 2.32446i) q^{80} +(2.50000 - 4.33013i) q^{81} +(-4.87756 - 8.44819i) q^{82} -9.89949 q^{83} +(7.39792 + 12.8136i) q^{85} -1.79583 q^{86} +(6.21959 + 10.7726i) q^{87} +(8.69375 - 15.0580i) q^{88} +(-6.07522 + 10.5226i) q^{89} +2.68406 q^{90} -1.79583 q^{92} +(1.00000 - 1.73205i) q^{93} +(-1.41421 + 2.44949i) q^{94} +(-3.79583 - 6.57457i) q^{95} +7.07107 q^{96} +(2.12132 + 3.67423i) q^{97} -5.79583 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 4 q^{4} - 24 q^{8} + 4 q^{9} - 4 q^{11} - 4 q^{15} + 4 q^{16} - 8 q^{18} - 4 q^{22} + 12 q^{23} + 56 q^{25} + 16 q^{29} - 4 q^{30} - 20 q^{32} - 4 q^{36} + 8 q^{37} - 12 q^{39} - 12 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i −0.986869 0.161521i \(-0.948360\pi\)
0.633316 + 0.773893i \(0.281693\pi\)
\(3\) −0.707107 + 1.22474i −0.408248 + 0.707107i −0.994694 0.102882i \(-0.967194\pi\)
0.586445 + 0.809989i \(0.300527\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −2.68406 −1.20035 −0.600174 0.799870i \(-0.704902\pi\)
−0.600174 + 0.799870i \(0.704902\pi\)
\(6\) −0.707107 1.22474i −0.288675 0.500000i
\(7\) 0 0
\(8\) −3.00000 −1.06066
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 1.34203 2.32446i 0.424387 0.735060i
\(11\) −2.89792 + 5.01934i −0.873754 + 1.51339i −0.0156708 + 0.999877i \(0.504988\pi\)
−0.858084 + 0.513510i \(0.828345\pi\)
\(12\) −1.41421 −0.408248
\(13\) 2.75624 2.32446i 0.764444 0.644690i
\(14\) 0 0
\(15\) 1.89792 3.28729i 0.490040 0.848774i
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −2.75624 4.77395i −0.668487 1.15785i −0.978327 0.207065i \(-0.933609\pi\)
0.309840 0.950789i \(-0.399724\pi\)
\(18\) −1.00000 −0.235702
\(19\) 1.41421 + 2.44949i 0.324443 + 0.561951i 0.981399 0.191977i \(-0.0614899\pi\)
−0.656957 + 0.753928i \(0.728157\pi\)
\(20\) −1.34203 2.32446i −0.300087 0.519766i
\(21\) 0 0
\(22\) −2.89792 5.01934i −0.617838 1.07013i
\(23\) −0.897916 + 1.55524i −0.187228 + 0.324289i −0.944325 0.329014i \(-0.893284\pi\)
0.757097 + 0.653303i \(0.226617\pi\)
\(24\) 2.12132 3.67423i 0.433013 0.750000i
\(25\) 2.20417 0.440834
\(26\) 0.634922 + 3.54921i 0.124519 + 0.696057i
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) 4.39792 7.61741i 0.816672 1.41452i −0.0914483 0.995810i \(-0.529150\pi\)
0.908121 0.418708i \(-0.137517\pi\)
\(30\) 1.89792 + 3.28729i 0.346510 + 0.600174i
\(31\) −1.41421 −0.254000 −0.127000 0.991903i \(-0.540535\pi\)
−0.127000 + 0.991903i \(0.540535\pi\)
\(32\) −2.50000 4.33013i −0.441942 0.765466i
\(33\) −4.09827 7.09841i −0.713418 1.23568i
\(34\) 5.51249 0.945383
\(35\) 0 0
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 3.39792 5.88536i 0.558614 0.967548i −0.438999 0.898488i \(-0.644667\pi\)
0.997613 0.0690599i \(-0.0220000\pi\)
\(38\) −2.82843 −0.458831
\(39\) 0.897916 + 5.01934i 0.143782 + 0.803737i
\(40\) 8.05217 1.27316
\(41\) −4.87756 + 8.44819i −0.761747 + 1.31939i 0.180202 + 0.983630i \(0.442325\pi\)
−0.941949 + 0.335755i \(0.891008\pi\)
\(42\) 0 0
\(43\) 0.897916 + 1.55524i 0.136931 + 0.237171i 0.926333 0.376705i \(-0.122943\pi\)
−0.789403 + 0.613876i \(0.789610\pi\)
\(44\) −5.79583 −0.873754
\(45\) −1.34203 2.32446i −0.200058 0.346510i
\(46\) −0.897916 1.55524i −0.132390 0.229307i
\(47\) 2.82843 0.412568 0.206284 0.978492i \(-0.433863\pi\)
0.206284 + 0.978492i \(0.433863\pi\)
\(48\) 0.707107 + 1.22474i 0.102062 + 0.176777i
\(49\) 0 0
\(50\) −1.10208 + 1.90887i −0.155858 + 0.269954i
\(51\) 7.79583 1.09163
\(52\) 3.39116 + 1.22474i 0.470270 + 0.169842i
\(53\) 6.59166 0.905435 0.452717 0.891654i \(-0.350455\pi\)
0.452717 + 0.891654i \(0.350455\pi\)
\(54\) 2.82843 4.89898i 0.384900 0.666667i
\(55\) 7.77817 13.4722i 1.04881 1.81659i
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 4.39792 + 7.61741i 0.577475 + 1.00022i
\(59\) −0.562738 0.974691i −0.0732622 0.126894i 0.827067 0.562103i \(-0.190008\pi\)
−0.900329 + 0.435209i \(0.856674\pi\)
\(60\) 3.79583 0.490040
\(61\) −0.779291 1.34977i −0.0997780 0.172821i 0.811815 0.583915i \(-0.198480\pi\)
−0.911593 + 0.411095i \(0.865147\pi\)
\(62\) 0.707107 1.22474i 0.0898027 0.155543i
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) −7.39792 + 6.23899i −0.917599 + 0.773852i
\(66\) 8.19654 1.00892
\(67\) −2.89792 + 5.01934i −0.354037 + 0.613210i −0.986953 0.161011i \(-0.948525\pi\)
0.632916 + 0.774221i \(0.281858\pi\)
\(68\) 2.75624 4.77395i 0.334244 0.578927i
\(69\) −1.26984 2.19944i −0.152871 0.264781i
\(70\) 0 0
\(71\) −3.00000 5.19615i −0.356034 0.616670i 0.631260 0.775571i \(-0.282538\pi\)
−0.987294 + 0.158901i \(0.949205\pi\)
\(72\) −1.50000 2.59808i −0.176777 0.306186i
\(73\) −5.80122 −0.678982 −0.339491 0.940609i \(-0.610255\pi\)
−0.339491 + 0.940609i \(0.610255\pi\)
\(74\) 3.39792 + 5.88536i 0.395000 + 0.684160i
\(75\) −1.55858 + 2.69954i −0.179970 + 0.311716i
\(76\) −1.41421 + 2.44949i −0.162221 + 0.280976i
\(77\) 0 0
\(78\) −4.79583 1.73205i −0.543021 0.196116i
\(79\) −11.7958 −1.32713 −0.663567 0.748117i \(-0.730958\pi\)
−0.663567 + 0.748117i \(0.730958\pi\)
\(80\) −1.34203 + 2.32446i −0.150043 + 0.259883i
\(81\) 2.50000 4.33013i 0.277778 0.481125i
\(82\) −4.87756 8.44819i −0.538637 0.932946i
\(83\) −9.89949 −1.08661 −0.543305 0.839535i \(-0.682827\pi\)
−0.543305 + 0.839535i \(0.682827\pi\)
\(84\) 0 0
\(85\) 7.39792 + 12.8136i 0.802417 + 1.38983i
\(86\) −1.79583 −0.193649
\(87\) 6.21959 + 10.7726i 0.666810 + 1.15495i
\(88\) 8.69375 15.0580i 0.926757 1.60519i
\(89\) −6.07522 + 10.5226i −0.643972 + 1.11539i 0.340565 + 0.940221i \(0.389382\pi\)
−0.984538 + 0.175172i \(0.943952\pi\)
\(90\) 2.68406 0.282925
\(91\) 0 0
\(92\) −1.79583 −0.187228
\(93\) 1.00000 1.73205i 0.103695 0.179605i
\(94\) −1.41421 + 2.44949i −0.145865 + 0.252646i
\(95\) −3.79583 6.57457i −0.389444 0.674537i
\(96\) 7.07107 0.721688
\(97\) 2.12132 + 3.67423i 0.215387 + 0.373062i 0.953392 0.301733i \(-0.0975652\pi\)
−0.738005 + 0.674795i \(0.764232\pi\)
\(98\) 0 0
\(99\) −5.79583 −0.582503
\(100\) 1.10208 + 1.90887i 0.110208 + 0.190887i
\(101\) 1.48640 2.57452i 0.147902 0.256174i −0.782550 0.622588i \(-0.786081\pi\)
0.930452 + 0.366414i \(0.119415\pi\)
\(102\) −3.89792 + 6.75139i −0.385951 + 0.668487i
\(103\) −8.19654 −0.807629 −0.403815 0.914841i \(-0.632316\pi\)
−0.403815 + 0.914841i \(0.632316\pi\)
\(104\) −8.26873 + 6.97339i −0.810815 + 0.683797i
\(105\) 0 0
\(106\) −3.29583 + 5.70855i −0.320119 + 0.554463i
\(107\) 3.00000 5.19615i 0.290021 0.502331i −0.683793 0.729676i \(-0.739671\pi\)
0.973814 + 0.227345i \(0.0730044\pi\)
\(108\) −2.82843 4.89898i −0.272166 0.471405i
\(109\) −17.5917 −1.68498 −0.842488 0.538715i \(-0.818910\pi\)
−0.842488 + 0.538715i \(0.818910\pi\)
\(110\) 7.77817 + 13.4722i 0.741620 + 1.28452i
\(111\) 4.80538 + 8.32316i 0.456106 + 0.789999i
\(112\) 0 0
\(113\) 8.29583 + 14.3688i 0.780406 + 1.35170i 0.931705 + 0.363215i \(0.118321\pi\)
−0.151299 + 0.988488i \(0.548346\pi\)
\(114\) 2.00000 3.46410i 0.187317 0.324443i
\(115\) 2.41006 4.17434i 0.224739 0.389260i
\(116\) 8.79583 0.816672
\(117\) 3.39116 + 1.22474i 0.313513 + 0.113228i
\(118\) 1.12548 0.103608
\(119\) 0 0
\(120\) −5.69375 + 9.86186i −0.519766 + 0.900260i
\(121\) −11.2958 19.5650i −1.02689 1.77863i
\(122\) 1.55858 0.141107
\(123\) −6.89792 11.9475i −0.621964 1.07727i
\(124\) −0.707107 1.22474i −0.0635001 0.109985i
\(125\) 7.50417 0.671194
\(126\) 0 0
\(127\) −3.79583 + 6.57457i −0.336826 + 0.583399i −0.983834 0.179084i \(-0.942687\pi\)
0.647008 + 0.762483i \(0.276020\pi\)
\(128\) 1.50000 2.59808i 0.132583 0.229640i
\(129\) −2.53969 −0.223607
\(130\) −1.70417 9.52628i −0.149465 0.835510i
\(131\) −8.19654 −0.716135 −0.358068 0.933696i \(-0.616564\pi\)
−0.358068 + 0.933696i \(0.616564\pi\)
\(132\) 4.09827 7.09841i 0.356709 0.617838i
\(133\) 0 0
\(134\) −2.89792 5.01934i −0.250342 0.433605i
\(135\) 15.1833 1.30677
\(136\) 8.26873 + 14.3219i 0.709038 + 1.22809i
\(137\) 4.60208 + 7.97104i 0.393183 + 0.681012i 0.992867 0.119224i \(-0.0380407\pi\)
−0.599685 + 0.800236i \(0.704707\pi\)
\(138\) 2.53969 0.216193
\(139\) 7.63381 + 13.2221i 0.647491 + 1.12149i 0.983720 + 0.179707i \(0.0575150\pi\)
−0.336229 + 0.941780i \(0.609152\pi\)
\(140\) 0 0
\(141\) −2.00000 + 3.46410i −0.168430 + 0.291730i
\(142\) 6.00000 0.503509
\(143\) 3.67990 + 20.5706i 0.307729 + 1.72020i
\(144\) 1.00000 0.0833333
\(145\) −11.8043 + 20.4456i −0.980291 + 1.69791i
\(146\) 2.90061 5.02401i 0.240056 0.415790i
\(147\) 0 0
\(148\) 6.79583 0.558614
\(149\) −2.29583 3.97650i −0.188082 0.325767i 0.756529 0.653960i \(-0.226894\pi\)
−0.944611 + 0.328193i \(0.893560\pi\)
\(150\) −1.55858 2.69954i −0.127258 0.220417i
\(151\) −17.5917 −1.43159 −0.715795 0.698311i \(-0.753935\pi\)
−0.715795 + 0.698311i \(0.753935\pi\)
\(152\) −4.24264 7.34847i −0.344124 0.596040i
\(153\) 2.75624 4.77395i 0.222829 0.385951i
\(154\) 0 0
\(155\) 3.79583 0.304889
\(156\) −3.89792 + 3.28729i −0.312083 + 0.263194i
\(157\) −6.92670 −0.552811 −0.276405 0.961041i \(-0.589143\pi\)
−0.276405 + 0.961041i \(0.589143\pi\)
\(158\) 5.89792 10.2155i 0.469213 0.812701i
\(159\) −4.66101 + 8.07311i −0.369642 + 0.640239i
\(160\) 6.71015 + 11.6223i 0.530484 + 0.918825i
\(161\) 0 0
\(162\) 2.50000 + 4.33013i 0.196419 + 0.340207i
\(163\) 6.69375 + 11.5939i 0.524295 + 0.908105i 0.999600 + 0.0282841i \(0.00900432\pi\)
−0.475305 + 0.879821i \(0.657662\pi\)
\(164\) −9.75513 −0.761747
\(165\) 11.0000 + 19.0526i 0.856349 + 1.48324i
\(166\) 4.94975 8.57321i 0.384175 0.665410i
\(167\) −7.63381 + 13.2221i −0.590722 + 1.02316i 0.403414 + 0.915018i \(0.367824\pi\)
−0.994135 + 0.108142i \(0.965510\pi\)
\(168\) 0 0
\(169\) 2.19375 12.8136i 0.168750 0.985659i
\(170\) −14.7958 −1.13479
\(171\) −1.41421 + 2.44949i −0.108148 + 0.187317i
\(172\) −0.897916 + 1.55524i −0.0684654 + 0.118586i
\(173\) −4.66101 8.07311i −0.354370 0.613787i 0.632640 0.774446i \(-0.281971\pi\)
−0.987010 + 0.160659i \(0.948638\pi\)
\(174\) −12.4392 −0.943012
\(175\) 0 0
\(176\) 2.89792 + 5.01934i 0.218439 + 0.378347i
\(177\) 1.59166 0.119637
\(178\) −6.07522 10.5226i −0.455357 0.788702i
\(179\) 0.204168 0.353630i 0.0152603 0.0264316i −0.858294 0.513158i \(-0.828476\pi\)
0.873555 + 0.486726i \(0.161809\pi\)
\(180\) 1.34203 2.32446i 0.100029 0.173255i
\(181\) −16.5375 −1.22922 −0.614610 0.788831i \(-0.710686\pi\)
−0.614610 + 0.788831i \(0.710686\pi\)
\(182\) 0 0
\(183\) 2.20417 0.162937
\(184\) 2.69375 4.66571i 0.198586 0.343960i
\(185\) −9.12020 + 15.7967i −0.670531 + 1.16139i
\(186\) 1.00000 + 1.73205i 0.0733236 + 0.127000i
\(187\) 31.9494 2.33637
\(188\) 1.41421 + 2.44949i 0.103142 + 0.178647i
\(189\) 0 0
\(190\) 7.59166 0.550757
\(191\) 12.8979 + 22.3398i 0.933260 + 1.61645i 0.777707 + 0.628627i \(0.216383\pi\)
0.155553 + 0.987827i \(0.450284\pi\)
\(192\) −4.94975 + 8.57321i −0.357217 + 0.618718i
\(193\) −1.70417 + 2.95171i −0.122669 + 0.212468i −0.920819 0.389990i \(-0.872479\pi\)
0.798151 + 0.602458i \(0.205812\pi\)
\(194\) −4.24264 −0.304604
\(195\) −2.41006 13.4722i −0.172588 0.964764i
\(196\) 0 0
\(197\) 4.00000 6.92820i 0.284988 0.493614i −0.687618 0.726073i \(-0.741344\pi\)
0.972606 + 0.232458i \(0.0746770\pi\)
\(198\) 2.89792 5.01934i 0.205946 0.356709i
\(199\) 11.0250 + 19.0958i 0.781539 + 1.35367i 0.931045 + 0.364905i \(0.118899\pi\)
−0.149505 + 0.988761i \(0.547768\pi\)
\(200\) −6.61251 −0.467575
\(201\) −4.09827 7.09841i −0.289070 0.500684i
\(202\) 1.48640 + 2.57452i 0.104583 + 0.181142i
\(203\) 0 0
\(204\) 3.89792 + 6.75139i 0.272909 + 0.472692i
\(205\) 13.0917 22.6754i 0.914361 1.58372i
\(206\) 4.09827 7.09841i 0.285540 0.494570i
\(207\) −1.79583 −0.124819
\(208\) −0.634922 3.54921i −0.0440239 0.246093i
\(209\) −16.3931 −1.13393
\(210\) 0 0
\(211\) 0.897916 1.55524i 0.0618151 0.107067i −0.833462 0.552577i \(-0.813644\pi\)
0.895277 + 0.445510i \(0.146978\pi\)
\(212\) 3.29583 + 5.70855i 0.226359 + 0.392065i
\(213\) 8.48528 0.581402
\(214\) 3.00000 + 5.19615i 0.205076 + 0.355202i
\(215\) −2.41006 4.17434i −0.164365 0.284688i
\(216\) 16.9706 1.15470
\(217\) 0 0
\(218\) 8.79583 15.2348i 0.595729 1.03183i
\(219\) 4.10208 7.10502i 0.277193 0.480113i
\(220\) 15.5563 1.04881
\(221\) −18.6937 6.75139i −1.25748 0.454148i
\(222\) −9.61076 −0.645032
\(223\) 2.82843 4.89898i 0.189405 0.328060i −0.755647 0.654979i \(-0.772677\pi\)
0.945052 + 0.326920i \(0.106011\pi\)
\(224\) 0 0
\(225\) 1.10208 + 1.90887i 0.0734723 + 0.127258i
\(226\) −16.5917 −1.10366
\(227\) −10.4622 18.1211i −0.694403 1.20274i −0.970382 0.241577i \(-0.922335\pi\)
0.275979 0.961164i \(-0.410998\pi\)
\(228\) −2.00000 3.46410i −0.132453 0.229416i
\(229\) 12.7279 0.841085 0.420542 0.907273i \(-0.361840\pi\)
0.420542 + 0.907273i \(0.361840\pi\)
\(230\) 2.41006 + 4.17434i 0.158915 + 0.275248i
\(231\) 0 0
\(232\) −13.1937 + 22.8522i −0.866212 + 1.50032i
\(233\) −21.1833 −1.38777 −0.693883 0.720088i \(-0.744101\pi\)
−0.693883 + 0.720088i \(0.744101\pi\)
\(234\) −2.75624 + 2.32446i −0.180181 + 0.151955i
\(235\) −7.59166 −0.495225
\(236\) 0.562738 0.974691i 0.0366311 0.0634470i
\(237\) 8.34091 14.4469i 0.541800 0.938426i
\(238\) 0 0
\(239\) −19.7958 −1.28049 −0.640243 0.768172i \(-0.721166\pi\)
−0.640243 + 0.768172i \(0.721166\pi\)
\(240\) −1.89792 3.28729i −0.122510 0.212193i
\(241\) −2.19350 3.79926i −0.141296 0.244732i 0.786689 0.617350i \(-0.211794\pi\)
−0.927985 + 0.372618i \(0.878460\pi\)
\(242\) 22.5917 1.45225
\(243\) −4.94975 8.57321i −0.317526 0.549972i
\(244\) 0.779291 1.34977i 0.0498890 0.0864103i
\(245\) 0 0
\(246\) 13.7958 0.879590
\(247\) 9.59166 + 3.46410i 0.610303 + 0.220416i
\(248\) 4.24264 0.269408
\(249\) 7.00000 12.1244i 0.443607 0.768350i
\(250\) −3.75209 + 6.49881i −0.237303 + 0.411021i
\(251\) 1.55858 + 2.69954i 0.0983769 + 0.170394i 0.911013 0.412378i \(-0.135302\pi\)
−0.812636 + 0.582771i \(0.801968\pi\)
\(252\) 0 0
\(253\) −5.20417 9.01388i −0.327183 0.566698i
\(254\) −3.79583 6.57457i −0.238172 0.412525i
\(255\) −20.9245 −1.31034
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) −7.70599 + 13.3472i −0.480686 + 0.832573i −0.999754 0.0221596i \(-0.992946\pi\)
0.519068 + 0.854733i \(0.326279\pi\)
\(258\) 1.26984 2.19944i 0.0790571 0.136931i
\(259\) 0 0
\(260\) −9.10208 3.28729i −0.564487 0.203869i
\(261\) 8.79583 0.544448
\(262\) 4.09827 7.09841i 0.253192 0.438542i
\(263\) 12.6937 21.9862i 0.782730 1.35573i −0.147616 0.989045i \(-0.547160\pi\)
0.930346 0.366683i \(-0.119507\pi\)
\(264\) 12.2948 + 21.2952i 0.756694 + 1.31063i
\(265\) −17.6924 −1.08684
\(266\) 0 0
\(267\) −8.59166 14.8812i −0.525801 0.910714i
\(268\) −5.79583 −0.354037
\(269\) 0.562738 + 0.974691i 0.0343107 + 0.0594279i 0.882671 0.469992i \(-0.155743\pi\)
−0.848360 + 0.529420i \(0.822410\pi\)
\(270\) −7.59166 + 13.1491i −0.462014 + 0.800232i
\(271\) 11.5877 20.0705i 0.703903 1.21920i −0.263183 0.964746i \(-0.584772\pi\)
0.967086 0.254450i \(-0.0818944\pi\)
\(272\) −5.51249 −0.334244
\(273\) 0 0
\(274\) −9.20417 −0.556044
\(275\) −6.38749 + 11.0635i −0.385180 + 0.667152i
\(276\) 1.26984 2.19944i 0.0764357 0.132390i
\(277\) 3.09166 + 5.35492i 0.185760 + 0.321746i 0.943832 0.330425i \(-0.107192\pi\)
−0.758072 + 0.652170i \(0.773859\pi\)
\(278\) −15.2676 −0.915690
\(279\) −0.707107 1.22474i −0.0423334 0.0733236i
\(280\) 0 0
\(281\) 15.2042 0.907005 0.453502 0.891255i \(-0.350174\pi\)
0.453502 + 0.891255i \(0.350174\pi\)
\(282\) −2.00000 3.46410i −0.119098 0.206284i
\(283\) 14.7049 25.4696i 0.874114 1.51401i 0.0164104 0.999865i \(-0.494776\pi\)
0.857704 0.514145i \(-0.171891\pi\)
\(284\) 3.00000 5.19615i 0.178017 0.308335i
\(285\) 10.7362 0.635960
\(286\) −19.6546 7.09841i −1.16220 0.419738i
\(287\) 0 0
\(288\) 2.50000 4.33013i 0.147314 0.255155i
\(289\) −6.69375 + 11.5939i −0.393750 + 0.681995i
\(290\) −11.8043 20.4456i −0.693170 1.20061i
\(291\) −6.00000 −0.351726
\(292\) −2.90061 5.02401i −0.169745 0.294008i
\(293\) 4.87756 + 8.44819i 0.284950 + 0.493548i 0.972597 0.232497i \(-0.0746896\pi\)
−0.687647 + 0.726045i \(0.741356\pi\)
\(294\) 0 0
\(295\) 1.51042 + 2.61613i 0.0879401 + 0.152317i
\(296\) −10.1937 + 17.6561i −0.592500 + 1.02624i
\(297\) 16.3931 28.3937i 0.951223 1.64757i
\(298\) 4.59166 0.265988
\(299\) 1.14021 + 6.37378i 0.0659403 + 0.368605i
\(300\) −3.11716 −0.179970
\(301\) 0 0
\(302\) 8.79583 15.2348i 0.506143 0.876666i
\(303\) 2.10208 + 3.64092i 0.120762 + 0.209165i
\(304\) 2.82843 0.162221
\(305\) 2.09166 + 3.62287i 0.119768 + 0.207445i
\(306\) 2.75624 + 4.77395i 0.157564 + 0.272909i
\(307\) 34.2004 1.95192 0.975960 0.217951i \(-0.0699374\pi\)
0.975960 + 0.217951i \(0.0699374\pi\)
\(308\) 0 0
\(309\) 5.79583 10.0387i 0.329713 0.571080i
\(310\) −1.89792 + 3.28729i −0.107794 + 0.186705i
\(311\) 11.8617 0.672616 0.336308 0.941752i \(-0.390822\pi\)
0.336308 + 0.941752i \(0.390822\pi\)
\(312\) −2.69375 15.0580i −0.152503 0.852492i
\(313\) 1.70295 0.0962565 0.0481283 0.998841i \(-0.484674\pi\)
0.0481283 + 0.998841i \(0.484674\pi\)
\(314\) 3.46335 5.99870i 0.195448 0.338526i
\(315\) 0 0
\(316\) −5.89792 10.2155i −0.331784 0.574666i
\(317\) −12.5917 −0.707218 −0.353609 0.935393i \(-0.615046\pi\)
−0.353609 + 0.935393i \(0.615046\pi\)
\(318\) −4.66101 8.07311i −0.261376 0.452717i
\(319\) 25.4896 + 44.1492i 1.42714 + 2.47188i
\(320\) −18.7884 −1.05030
\(321\) 4.24264 + 7.34847i 0.236801 + 0.410152i
\(322\) 0 0
\(323\) 7.79583 13.5028i 0.433772 0.751315i
\(324\) 5.00000 0.277778
\(325\) 6.07522 5.12351i 0.336993 0.284201i
\(326\) −13.3875 −0.741465
\(327\) 12.4392 21.5453i 0.687888 1.19146i
\(328\) 14.6327 25.3446i 0.807955 1.39942i
\(329\) 0 0
\(330\) −22.0000 −1.21106
\(331\) −0.306253 0.530445i −0.0168332 0.0291559i 0.857486 0.514507i \(-0.172025\pi\)
−0.874319 + 0.485351i \(0.838692\pi\)
\(332\) −4.94975 8.57321i −0.271653 0.470516i
\(333\) 6.79583 0.372409
\(334\) −7.63381 13.2221i −0.417703 0.723483i
\(335\) 7.77817 13.4722i 0.424967 0.736065i
\(336\) 0 0
\(337\) −29.9792 −1.63307 −0.816534 0.577297i \(-0.804108\pi\)
−0.816534 + 0.577297i \(0.804108\pi\)
\(338\) 10.0000 + 8.30662i 0.543928 + 0.451821i
\(339\) −23.4642 −1.27440
\(340\) −7.39792 + 12.8136i −0.401208 + 0.694913i
\(341\) 4.09827 7.09841i 0.221934 0.384401i
\(342\) −1.41421 2.44949i −0.0764719 0.132453i
\(343\) 0 0
\(344\) −2.69375 4.66571i −0.145237 0.251558i
\(345\) 3.40834 + 5.90341i 0.183499 + 0.317829i
\(346\) 9.32202 0.501155
\(347\) −7.48958 12.9723i −0.402062 0.696391i 0.591913 0.806002i \(-0.298373\pi\)
−0.993975 + 0.109611i \(0.965040\pi\)
\(348\) −6.21959 + 10.7726i −0.333405 + 0.577475i
\(349\) −6.50833 + 11.2728i −0.348383 + 0.603417i −0.985962 0.166968i \(-0.946602\pi\)
0.637579 + 0.770385i \(0.279936\pi\)
\(350\) 0 0
\(351\) −15.5917 + 13.1491i −0.832221 + 0.701849i
\(352\) 28.9792 1.54459
\(353\) 7.56162 13.0971i 0.402464 0.697089i −0.591558 0.806262i \(-0.701487\pi\)
0.994023 + 0.109173i \(0.0348204\pi\)
\(354\) −0.795832 + 1.37842i −0.0422980 + 0.0732622i
\(355\) 8.05217 + 13.9468i 0.427365 + 0.740218i
\(356\) −12.1504 −0.643972
\(357\) 0 0
\(358\) 0.204168 + 0.353630i 0.0107906 + 0.0186899i
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 4.02609 + 6.97339i 0.212193 + 0.367530i
\(361\) 5.50000 9.52628i 0.289474 0.501383i
\(362\) 8.26873 14.3219i 0.434595 0.752740i
\(363\) 31.9494 1.67691
\(364\) 0 0
\(365\) 15.5708 0.815014
\(366\) −1.10208 + 1.90887i −0.0576069 + 0.0997780i
\(367\) −10.6066 + 18.3712i −0.553660 + 0.958967i 0.444346 + 0.895855i \(0.353436\pi\)
−0.998006 + 0.0631123i \(0.979897\pi\)
\(368\) 0.897916 + 1.55524i 0.0468071 + 0.0810723i
\(369\) −9.75513 −0.507832
\(370\) −9.12020 15.7967i −0.474137 0.821229i
\(371\) 0 0
\(372\) 2.00000 0.103695
\(373\) 6.29583 + 10.9047i 0.325986 + 0.564624i 0.981711 0.190375i \(-0.0609705\pi\)
−0.655726 + 0.754999i \(0.727637\pi\)
\(374\) −15.9747 + 27.6690i −0.826033 + 1.43073i
\(375\) −5.30625 + 9.19070i −0.274014 + 0.474606i
\(376\) −8.48528 −0.437595
\(377\) −5.58467 31.2182i −0.287625 1.60782i
\(378\) 0 0
\(379\) 1.69375 2.93366i 0.0870020 0.150692i −0.819241 0.573450i \(-0.805605\pi\)
0.906243 + 0.422758i \(0.138938\pi\)
\(380\) 3.79583 6.57457i 0.194722 0.337268i
\(381\) −5.36812 9.29785i −0.275017 0.476343i
\(382\) −25.7958 −1.31983
\(383\) 7.48944 + 12.9721i 0.382692 + 0.662843i 0.991446 0.130517i \(-0.0416636\pi\)
−0.608754 + 0.793359i \(0.708330\pi\)
\(384\) 2.12132 + 3.67423i 0.108253 + 0.187500i
\(385\) 0 0
\(386\) −1.70417 2.95171i −0.0867399 0.150238i
\(387\) −0.897916 + 1.55524i −0.0456436 + 0.0790571i
\(388\) −2.12132 + 3.67423i −0.107694 + 0.186531i
\(389\) 28.3875 1.43930 0.719652 0.694335i \(-0.244302\pi\)
0.719652 + 0.694335i \(0.244302\pi\)
\(390\) 12.8723 + 4.64893i 0.651814 + 0.235407i
\(391\) 9.89949 0.500639
\(392\) 0 0
\(393\) 5.79583 10.0387i 0.292361 0.506384i
\(394\) 4.00000 + 6.92820i 0.201517 + 0.349038i
\(395\) 31.6607 1.59302
\(396\) −2.89792 5.01934i −0.145626 0.252231i
\(397\) −3.53553 6.12372i −0.177443 0.307341i 0.763561 0.645736i \(-0.223449\pi\)
−0.941004 + 0.338395i \(0.890116\pi\)
\(398\) −22.0499 −1.10526
\(399\) 0 0
\(400\) 1.10208 1.90887i 0.0551042 0.0954433i
\(401\) −12.1937 + 21.1202i −0.608927 + 1.05469i 0.382491 + 0.923959i \(0.375066\pi\)
−0.991418 + 0.130733i \(0.958267\pi\)
\(402\) 8.19654 0.408806
\(403\) −3.89792 + 3.28729i −0.194169 + 0.163751i
\(404\) 2.97280 0.147902
\(405\) −6.71015 + 11.6223i −0.333430 + 0.577517i
\(406\) 0 0
\(407\) 19.6937 + 34.1106i 0.976183 + 1.69080i
\(408\) −23.3875 −1.15785
\(409\) 14.3440 + 24.8445i 0.709263 + 1.22848i 0.965131 + 0.261767i \(0.0843053\pi\)
−0.255868 + 0.966712i \(0.582361\pi\)
\(410\) 13.0917 + 22.6754i 0.646551 + 1.11986i
\(411\) −13.0167 −0.642064
\(412\) −4.09827 7.09841i −0.201907 0.349714i
\(413\) 0 0
\(414\) 0.897916 1.55524i 0.0441302 0.0764357i
\(415\) 26.5708 1.30431
\(416\) −16.9558 6.12372i −0.831328 0.300240i
\(417\) −21.5917 −1.05735
\(418\) 8.19654 14.1968i 0.400906 0.694390i
\(419\) −14.2718 + 24.7194i −0.697221 + 1.20762i 0.272205 + 0.962239i \(0.412247\pi\)
−0.969426 + 0.245384i \(0.921086\pi\)
\(420\) 0 0
\(421\) −6.59166 −0.321258 −0.160629 0.987015i \(-0.551352\pi\)
−0.160629 + 0.987015i \(0.551352\pi\)
\(422\) 0.897916 + 1.55524i 0.0437099 + 0.0757077i
\(423\) 1.41421 + 2.44949i 0.0687614 + 0.119098i
\(424\) −19.7750 −0.960358
\(425\) −6.07522 10.5226i −0.294692 0.510421i
\(426\) −4.24264 + 7.34847i −0.205557 + 0.356034i
\(427\) 0 0
\(428\) 6.00000 0.290021
\(429\) −27.7958 10.0387i −1.34200 0.484672i
\(430\) 4.82012 0.232447
\(431\) 2.59166 4.48889i 0.124836 0.216222i −0.796833 0.604200i \(-0.793493\pi\)
0.921669 + 0.387978i \(0.126826\pi\)
\(432\) −2.82843 + 4.89898i −0.136083 + 0.235702i
\(433\) −6.71015 11.6223i −0.322469 0.558533i 0.658528 0.752556i \(-0.271179\pi\)
−0.980997 + 0.194024i \(0.937846\pi\)
\(434\) 0 0
\(435\) −16.6937 28.9144i −0.800404 1.38634i
\(436\) −8.79583 15.2348i −0.421244 0.729616i
\(437\) −5.07938 −0.242980
\(438\) 4.10208 + 7.10502i 0.196005 + 0.339491i
\(439\) −17.1002 + 29.6184i −0.816148 + 1.41361i 0.0923531 + 0.995726i \(0.470561\pi\)
−0.908501 + 0.417883i \(0.862772\pi\)
\(440\) −23.3345 + 40.4166i −1.11243 + 1.92678i
\(441\) 0 0
\(442\) 15.1937 12.8136i 0.722693 0.609479i
\(443\) 10.0000 0.475114 0.237557 0.971374i \(-0.423653\pi\)
0.237557 + 0.971374i \(0.423653\pi\)
\(444\) −4.80538 + 8.32316i −0.228053 + 0.395000i
\(445\) 16.3063 28.2433i 0.772991 1.33886i
\(446\) 2.82843 + 4.89898i 0.133930 + 0.231973i
\(447\) 6.49359 0.307136
\(448\) 0 0
\(449\) −2.20417 3.81773i −0.104021 0.180170i 0.809317 0.587372i \(-0.199838\pi\)
−0.913338 + 0.407203i \(0.866504\pi\)
\(450\) −2.20417 −0.103905
\(451\) −28.2695 48.9643i −1.33116 2.30564i
\(452\) −8.29583 + 14.3688i −0.390203 + 0.675852i
\(453\) 12.4392 21.5453i 0.584444 1.01229i
\(454\) 20.9245 0.982034
\(455\) 0 0
\(456\) 12.0000 0.561951
\(457\) 7.29583 12.6368i 0.341285 0.591122i −0.643387 0.765541i \(-0.722471\pi\)
0.984672 + 0.174419i \(0.0558047\pi\)
\(458\) −6.36396 + 11.0227i −0.297368 + 0.515057i
\(459\) 15.5917 + 27.0056i 0.727757 + 1.26051i
\(460\) 4.82012 0.224739
\(461\) −15.4842 26.8194i −0.721169 1.24910i −0.960531 0.278172i \(-0.910272\pi\)
0.239362 0.970930i \(-0.423062\pi\)
\(462\) 0 0
\(463\) 11.3875 0.529222 0.264611 0.964355i \(-0.414756\pi\)
0.264611 + 0.964355i \(0.414756\pi\)
\(464\) −4.39792 7.61741i −0.204168 0.353630i
\(465\) −2.68406 + 4.64893i −0.124470 + 0.215589i
\(466\) 10.5917 18.3453i 0.490649 0.849830i
\(467\) −4.82012 −0.223048 −0.111524 0.993762i \(-0.535573\pi\)
−0.111524 + 0.993762i \(0.535573\pi\)
\(468\) 0.634922 + 3.54921i 0.0293493 + 0.164062i
\(469\) 0 0
\(470\) 3.79583 6.57457i 0.175089 0.303262i
\(471\) 4.89792 8.48344i 0.225684 0.390896i
\(472\) 1.68821 + 2.92407i 0.0777063 + 0.134591i
\(473\) −10.4083 −0.478576
\(474\) 8.34091 + 14.4469i 0.383111 + 0.663567i
\(475\) 3.11716 + 5.39909i 0.143025 + 0.247727i
\(476\) 0 0
\(477\) 3.29583 + 5.70855i 0.150906 + 0.261376i
\(478\) 9.89792 17.1437i 0.452720 0.784134i
\(479\) 3.67990 6.37378i 0.168139 0.291225i −0.769627 0.638494i \(-0.779558\pi\)
0.937766 + 0.347269i \(0.112891\pi\)
\(480\) −18.9792 −0.866276
\(481\) −4.31483 24.1198i −0.196739 1.09977i
\(482\) 4.38701 0.199823
\(483\) 0 0
\(484\) 11.2958 19.5650i 0.513447 0.889316i
\(485\) −5.69375 9.86186i −0.258540 0.447804i
\(486\) 9.89949 0.449050
\(487\) −9.79583 16.9669i −0.443891 0.768843i 0.554083 0.832462i \(-0.313069\pi\)
−0.997974 + 0.0636190i \(0.979736\pi\)
\(488\) 2.33787 + 4.04932i 0.105831 + 0.183304i
\(489\) −18.9328 −0.856170
\(490\) 0 0
\(491\) 4.79583 8.30662i 0.216433 0.374873i −0.737282 0.675585i \(-0.763891\pi\)
0.953715 + 0.300712i \(0.0972244\pi\)
\(492\) 6.89792 11.9475i 0.310982 0.538637i
\(493\) −48.4869 −2.18374
\(494\) −7.79583 + 6.57457i −0.350751 + 0.295804i
\(495\) 15.5563 0.699206
\(496\) −0.707107 + 1.22474i −0.0317500 + 0.0549927i
\(497\) 0 0
\(498\) 7.00000 + 12.1244i 0.313678 + 0.543305i
\(499\) 16.2042 0.725398 0.362699 0.931906i \(-0.381855\pi\)
0.362699 + 0.931906i \(0.381855\pi\)
\(500\) 3.75209 + 6.49881i 0.167798 + 0.290635i
\(501\) −10.7958 18.6989i −0.482322 0.835407i
\(502\) −3.11716 −0.139126
\(503\) 14.2718 + 24.7194i 0.636347 + 1.10218i 0.986228 + 0.165391i \(0.0528885\pi\)
−0.349881 + 0.936794i \(0.613778\pi\)
\(504\) 0 0
\(505\) −3.98958 + 6.91015i −0.177534 + 0.307498i
\(506\) 10.4083 0.462707
\(507\) 14.1421 + 11.7473i 0.628074 + 0.521718i
\(508\) −7.59166 −0.336826
\(509\) −13.2185 + 22.8951i −0.585899 + 1.01481i 0.408864 + 0.912595i \(0.365925\pi\)
−0.994763 + 0.102211i \(0.967408\pi\)
\(510\) 10.4622 18.1211i 0.463275 0.802417i
\(511\) 0 0
\(512\) −11.0000 −0.486136
\(513\) −8.00000 13.8564i −0.353209 0.611775i
\(514\) −7.70599 13.3472i −0.339897 0.588718i
\(515\) 22.0000 0.969436
\(516\) −1.26984 2.19944i −0.0559018 0.0968247i
\(517\) −8.19654 + 14.1968i −0.360484 + 0.624376i
\(518\) 0 0
\(519\) 13.1833 0.578684
\(520\) 22.1937 18.7170i 0.973260 0.820794i
\(521\) 25.0227 1.09627 0.548133 0.836391i \(-0.315339\pi\)
0.548133 + 0.836391i \(0.315339\pi\)
\(522\) −4.39792 + 7.61741i −0.192492 + 0.333405i
\(523\) −14.2865 + 24.7450i −0.624705 + 1.08202i 0.363893 + 0.931441i \(0.381448\pi\)
−0.988598 + 0.150580i \(0.951886\pi\)
\(524\) −4.09827 7.09841i −0.179034 0.310096i
\(525\) 0 0
\(526\) 12.6937 + 21.9862i 0.553474 + 0.958645i
\(527\) 3.89792 + 6.75139i 0.169796 + 0.294095i
\(528\) −8.19654 −0.356709
\(529\) 9.88749 + 17.1256i 0.429891 + 0.744593i
\(530\) 8.84620 15.3221i 0.384255 0.665548i
\(531\) 0.562738 0.974691i 0.0244207 0.0422980i
\(532\) 0 0
\(533\) 6.19375 + 34.6230i 0.268281 + 1.49969i
\(534\) 17.1833 0.743595
\(535\) −8.05217 + 13.9468i −0.348126 + 0.602972i
\(536\) 8.69375 15.0580i 0.375513 0.650407i
\(537\) 0.288738 + 0.500109i 0.0124600 + 0.0215813i
\(538\) −1.12548 −0.0485227
\(539\) 0 0
\(540\) 7.59166 + 13.1491i 0.326693 + 0.565849i
\(541\) −12.5917 −0.541358 −0.270679 0.962670i \(-0.587248\pi\)
−0.270679 + 0.962670i \(0.587248\pi\)
\(542\) 11.5877 + 20.0705i 0.497735 + 0.862102i
\(543\) 11.6937 20.2542i 0.501827 0.869189i
\(544\) −13.7812 + 23.8698i −0.590865 + 1.02341i
\(545\) 47.2170 2.02256
\(546\) 0 0
\(547\) −36.9792 −1.58111 −0.790557 0.612388i \(-0.790209\pi\)
−0.790557 + 0.612388i \(0.790209\pi\)
\(548\) −4.60208 + 7.97104i −0.196591 + 0.340506i
\(549\) 0.779291 1.34977i 0.0332593 0.0576069i
\(550\) −6.38749 11.0635i −0.272364 0.471748i
\(551\) 24.8784 1.05985
\(552\) 3.80953 + 6.59831i 0.162145 + 0.280843i
\(553\) 0 0
\(554\) −6.18333 −0.262704
\(555\) −12.8979 22.3398i −0.547486 0.948274i
\(556\) −7.63381 + 13.2221i −0.323745 + 0.560744i
\(557\) −10.2958 + 17.8329i −0.436248 + 0.755604i −0.997397 0.0721110i \(-0.977026\pi\)
0.561148 + 0.827715i \(0.310360\pi\)
\(558\) 1.41421 0.0598684
\(559\) 6.08996 + 2.19944i 0.257578 + 0.0930262i
\(560\) 0 0
\(561\) −22.5917 + 39.1299i −0.953821 + 1.65207i
\(562\) −7.60208 + 13.1672i −0.320675 + 0.555425i
\(563\) 0.562738 + 0.974691i 0.0237166 + 0.0410783i 0.877640 0.479320i \(-0.159117\pi\)
−0.853924 + 0.520399i \(0.825783\pi\)
\(564\) −4.00000 −0.168430
\(565\) −22.2665 38.5667i −0.936758 1.62251i
\(566\) 14.7049 + 25.4696i 0.618092 + 1.07057i
\(567\) 0 0
\(568\) 9.00000 + 15.5885i 0.377632 + 0.654077i
\(569\) −3.20417 + 5.54978i −0.134326 + 0.232659i −0.925340 0.379139i \(-0.876220\pi\)
0.791014 + 0.611798i \(0.209554\pi\)
\(570\) −5.36812 + 9.29785i −0.224846 + 0.389444i
\(571\) 15.1833 0.635402 0.317701 0.948191i \(-0.397089\pi\)
0.317701 + 0.948191i \(0.397089\pi\)
\(572\) −15.9747 + 13.4722i −0.667937 + 0.563301i
\(573\) −36.4808 −1.52401
\(574\) 0 0
\(575\) −1.97916 + 3.42800i −0.0825366 + 0.142958i
\(576\) 3.50000 + 6.06218i 0.145833 + 0.252591i
\(577\) −9.17765 −0.382071 −0.191035 0.981583i \(-0.561184\pi\)
−0.191035 + 0.981583i \(0.561184\pi\)
\(578\) −6.69375 11.5939i −0.278423 0.482243i
\(579\) −2.41006 4.17434i −0.100159 0.173480i
\(580\) −23.6085 −0.980291
\(581\) 0 0
\(582\) 3.00000 5.19615i 0.124354 0.215387i
\(583\) −19.1021 + 33.0858i −0.791127 + 1.37027i
\(584\) 17.4037 0.720169
\(585\) −9.10208 3.28729i −0.376325 0.135913i
\(586\) −9.75513 −0.402981
\(587\) −1.55858 + 2.69954i −0.0643296 + 0.111422i −0.896396 0.443253i \(-0.853824\pi\)
0.832067 + 0.554675i \(0.187158\pi\)
\(588\) 0 0
\(589\) −2.00000 3.46410i −0.0824086 0.142736i
\(590\) −3.02084 −0.124366
\(591\) 5.65685 + 9.79796i 0.232692 + 0.403034i
\(592\) −3.39792 5.88536i −0.139653 0.241887i
\(593\) −1.55858 −0.0640033 −0.0320017 0.999488i \(-0.510188\pi\)
−0.0320017 + 0.999488i \(0.510188\pi\)
\(594\) 16.3931 + 28.3937i 0.672617 + 1.16501i
\(595\) 0 0
\(596\) 2.29583 3.97650i 0.0940409 0.162884i
\(597\) −31.1833 −1.27625
\(598\) −6.08996 2.19944i −0.249037 0.0899416i
\(599\) −14.4083 −0.588709 −0.294354 0.955696i \(-0.595105\pi\)
−0.294354 + 0.955696i \(0.595105\pi\)
\(600\) 4.67575 8.09863i 0.190887 0.330625i
\(601\) 15.4842 26.8194i 0.631612 1.09398i −0.355610 0.934634i \(-0.615727\pi\)
0.987222 0.159350i \(-0.0509398\pi\)
\(602\) 0 0
\(603\) −5.79583 −0.236025
\(604\) −8.79583 15.2348i −0.357897 0.619896i
\(605\) 30.3187 + 52.5135i 1.23263 + 2.13498i
\(606\) −4.20417 −0.170783
\(607\) 17.9517 + 31.0932i 0.728636 + 1.26203i 0.957460 + 0.288566i \(0.0931786\pi\)
−0.228824 + 0.973468i \(0.573488\pi\)
\(608\) 7.07107 12.2474i 0.286770 0.496700i
\(609\) 0 0
\(610\) −4.18333 −0.169378
\(611\) 7.79583 6.57457i 0.315386 0.265979i
\(612\) 5.51249 0.222829
\(613\) 2.98958 5.17810i 0.120748 0.209142i −0.799315 0.600912i \(-0.794804\pi\)
0.920063 + 0.391771i \(0.128137\pi\)
\(614\) −17.1002 + 29.6184i −0.690108 + 1.19530i
\(615\) 18.5144 + 32.0679i 0.746573 + 1.29310i
\(616\) 0 0
\(617\) 12.1937 + 21.1202i 0.490902 + 0.850267i 0.999945 0.0104740i \(-0.00333405\pi\)
−0.509043 + 0.860741i \(0.670001\pi\)
\(618\) 5.79583 + 10.0387i 0.233143 + 0.403815i
\(619\) 33.9116 1.36302 0.681512 0.731807i \(-0.261323\pi\)
0.681512 + 0.731807i \(0.261323\pi\)
\(620\) 1.89792 + 3.28729i 0.0762221 + 0.132021i
\(621\) 5.07938 8.79774i 0.203828 0.353041i
\(622\) −5.93085 + 10.2725i −0.237806 + 0.411891i
\(623\) 0 0
\(624\) 4.79583 + 1.73205i 0.191987 + 0.0693375i
\(625\) −31.1625 −1.24650
\(626\) −0.851476 + 1.47480i −0.0340318 + 0.0589448i
\(627\) 11.5917 20.0773i 0.462926 0.801812i
\(628\) −3.46335 5.99870i −0.138203 0.239374i
\(629\) −37.4619 −1.49370
\(630\) 0 0
\(631\) 10.2042 + 17.6741i 0.406222 + 0.703596i 0.994463 0.105089i \(-0.0335128\pi\)
−0.588241 + 0.808685i \(0.700179\pi\)
\(632\) 35.3875 1.40764
\(633\) 1.26984 + 2.19944i 0.0504718 + 0.0874197i
\(634\) 6.29583 10.9047i 0.250039 0.433081i
\(635\) 10.1882 17.6465i 0.404308 0.700281i
\(636\) −9.32202 −0.369642
\(637\) 0 0
\(638\) −50.9792 −2.01828
\(639\) 3.00000 5.19615i 0.118678 0.205557i
\(640\) −4.02609 + 6.97339i −0.159145 + 0.275647i
\(641\) −2.39792 4.15331i −0.0947120 0.164046i 0.814776 0.579775i \(-0.196860\pi\)
−0.909488 + 0.415729i \(0.863526\pi\)
\(642\) −8.48528 −0.334887
\(643\) −2.82843 4.89898i −0.111542 0.193197i 0.804850 0.593478i \(-0.202246\pi\)
−0.916392 + 0.400281i \(0.868912\pi\)
\(644\) 0 0
\(645\) 6.81667 0.268406
\(646\) 7.79583 + 13.5028i 0.306723 + 0.531260i
\(647\) 0.981107 1.69933i 0.0385713 0.0668074i −0.846095 0.533032i \(-0.821053\pi\)
0.884667 + 0.466224i \(0.154386\pi\)
\(648\) −7.50000 + 12.9904i −0.294628 + 0.510310i
\(649\) 6.52307 0.256053
\(650\) 1.39948 + 7.82305i 0.0548920 + 0.306845i
\(651\) 0 0
\(652\) −6.69375 + 11.5939i −0.262147 + 0.454053i
\(653\) −12.5917 + 21.8094i −0.492750 + 0.853468i −0.999965 0.00835161i \(-0.997342\pi\)
0.507215 + 0.861819i \(0.330675\pi\)
\(654\) 12.4392 + 21.5453i 0.486411 + 0.842488i
\(655\) 22.0000 0.859611
\(656\) 4.87756 + 8.44819i 0.190437 + 0.329846i
\(657\) −2.90061 5.02401i −0.113164 0.196005i
\(658\) 0 0
\(659\) 18.7958 + 32.5553i 0.732182 + 1.26818i 0.955949 + 0.293533i \(0.0948311\pi\)
−0.223767 + 0.974643i \(0.571836\pi\)
\(660\) −11.0000 + 19.0526i −0.428174 + 0.741620i
\(661\) −13.9256 + 24.1198i −0.541642 + 0.938152i 0.457168 + 0.889381i \(0.348864\pi\)
−0.998810 + 0.0487715i \(0.984469\pi\)
\(662\) 0.612505 0.0238057
\(663\) 21.4872 18.1211i 0.834494 0.703766i
\(664\) 29.6985 1.15252
\(665\) 0 0
\(666\) −3.39792 + 5.88536i −0.131667 + 0.228053i
\(667\) 7.89792 + 13.6796i 0.305809 + 0.529676i
\(668\) −15.2676 −0.590722
\(669\) 4.00000 + 6.92820i 0.154649 + 0.267860i
\(670\) 7.77817 + 13.4722i 0.300497 + 0.520476i
\(671\) 9.03328 0.348726
\(672\) 0 0
\(673\) −11.9896 + 20.7666i −0.462164 + 0.800492i −0.999069 0.0431511i \(-0.986260\pi\)
0.536904 + 0.843643i \(0.319594\pi\)
\(674\) 14.9896 25.9627i 0.577377 1.00005i
\(675\) −12.4687 −0.479919
\(676\) 12.1937 4.50694i 0.468990 0.173344i
\(677\) 34.7779 1.33662 0.668311 0.743882i \(-0.267018\pi\)
0.668311 + 0.743882i \(0.267018\pi\)
\(678\) 11.7321 20.3206i 0.450568 0.780406i
\(679\) 0 0
\(680\) −22.1937 38.4407i −0.851091 1.47413i
\(681\) 29.5917 1.13395
\(682\) 4.09827 + 7.09841i 0.156931 + 0.271812i
\(683\) −25.3875 43.9724i −0.971425 1.68256i −0.691259 0.722607i \(-0.742944\pi\)
−0.280166 0.959952i \(-0.590390\pi\)
\(684\) −2.82843 −0.108148
\(685\) −12.3523 21.3947i −0.471956 0.817451i
\(686\) 0 0
\(687\) −9.00000 + 15.5885i −0.343371 + 0.594737i
\(688\) 1.79583 0.0684654
\(689\) 18.1682 15.3221i 0.692154 0.583725i
\(690\) −6.81667 −0.259506
\(691\) −5.51249 + 9.54790i −0.209705 + 0.363219i −0.951622 0.307273i \(-0.900584\pi\)
0.741917 + 0.670492i \(0.233917\pi\)
\(692\) 4.66101 8.07311i 0.177185 0.306893i
\(693\) 0 0
\(694\) 14.9792 0.568601
\(695\) −20.4896 35.4890i −0.777214 1.34617i
\(696\) −18.6588 32.3179i −0.707259 1.22501i
\(697\) 53.7750 2.03687
\(698\) −6.50833 11.2728i −0.246344 0.426680i
\(699\) 14.9789 25.9442i 0.566553 0.981299i
\(700\) 0 0
\(701\) −10.4083 −0.393117 −0.196559 0.980492i \(-0.562977\pi\)
−0.196559 + 0.980492i \(0.562977\pi\)
\(702\) −3.59166 20.0773i −0.135559 0.757771i
\(703\) 19.2215 0.724953
\(704\) −20.2854 + 35.1354i −0.764535 + 1.32421i
\(705\) 5.36812 9.29785i 0.202175 0.350177i
\(706\) 7.56162 + 13.0971i 0.284585 + 0.492916i
\(707\) 0 0
\(708\) 0.795832 + 1.37842i 0.0299092 + 0.0518042i
\(709\) 9.39792 + 16.2777i 0.352946 + 0.611321i 0.986764 0.162162i \(-0.0518466\pi\)
−0.633818 + 0.773482i \(0.718513\pi\)
\(710\) −16.1043 −0.604385
\(711\) −5.89792 10.2155i −0.221189 0.383111i
\(712\) 18.2257 31.5678i 0.683036 1.18305i
\(713\) 1.26984 2.19944i 0.0475561 0.0823695i
\(714\) 0 0
\(715\) −9.87707 55.2127i −0.369382 2.06484i
\(716\) 0.408337 0.0152603
\(717\) 13.9978 24.2448i 0.522756 0.905440i
\(718\) 2.00000 3.46410i 0.0746393 0.129279i
\(719\) −14.5605 25.2195i −0.543015 0.940530i −0.998729 0.0504035i \(-0.983949\pi\)
0.455714 0.890126i \(-0.349384\pi\)
\(720\) −2.68406 −0.100029
\(721\) 0 0
\(722\) 5.50000 + 9.52628i 0.204689 + 0.354531i
\(723\) 6.20417 0.230736
\(724\) −8.26873 14.3219i −0.307305 0.532268i
\(725\) 9.69375 16.7901i 0.360017 0.623567i
\(726\) −15.9747 + 27.6690i −0.592877 + 1.02689i
\(727\) −35.3259 −1.31016 −0.655082 0.755558i \(-0.727366\pi\)
−0.655082 + 0.755558i \(0.727366\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) −7.78541 + 13.4847i −0.288151 + 0.499092i
\(731\) 4.94975 8.57321i 0.183073 0.317092i
\(732\) 1.10208 + 1.90887i 0.0407342 + 0.0705537i
\(733\) 0.692369 0.0255732 0.0127866 0.999918i \(-0.495930\pi\)
0.0127866 + 0.999918i \(0.495930\pi\)
\(734\) −10.6066 18.3712i −0.391497 0.678092i
\(735\) 0 0
\(736\) 8.97916 0.330976
\(737\) −16.7958 29.0912i −0.618682 1.07159i
\(738\) 4.87756 8.44819i 0.179546 0.310982i
\(739\) −7.59166 + 13.1491i −0.279264 + 0.483699i −0.971202 0.238258i \(-0.923424\pi\)
0.691938 + 0.721957i \(0.256757\pi\)
\(740\) −18.2404 −0.670531
\(741\) −11.0250 + 9.29785i −0.405012 + 0.341565i
\(742\) 0 0
\(743\) −4.59166 + 7.95299i −0.168452 + 0.291767i −0.937876 0.346971i \(-0.887210\pi\)
0.769424 + 0.638738i \(0.220543\pi\)
\(744\) −3.00000 + 5.19615i −0.109985 + 0.190500i
\(745\) 6.16215 + 10.6731i 0.225764 + 0.391034i
\(746\) −12.5917 −0.461014
\(747\) −4.94975 8.57321i −0.181102 0.313678i
\(748\) 15.9747 + 27.6690i 0.584094 + 1.01168i
\(749\) 0 0
\(750\) −5.30625 9.19070i −0.193757 0.335597i
\(751\) −0.897916 + 1.55524i −0.0327654 + 0.0567514i −0.881943 0.471356i \(-0.843765\pi\)
0.849178 + 0.528107i \(0.177098\pi\)
\(752\) 1.41421 2.44949i 0.0515711 0.0893237i
\(753\) −4.40834 −0.160649
\(754\) 29.8281 + 10.7726i 1.08628 + 0.392317i
\(755\) 47.2170 1.71840
\(756\) 0 0
\(757\) 12.5917 21.8094i 0.457652 0.792676i −0.541185 0.840904i \(-0.682024\pi\)
0.998836 + 0.0482277i \(0.0153573\pi\)
\(758\) 1.69375 + 2.93366i 0.0615197 + 0.106555i
\(759\) 14.7196 0.534288
\(760\) 11.3875 + 19.7237i 0.413068 + 0.715454i
\(761\) −4.66101 8.07311i −0.168961 0.292650i 0.769094 0.639136i \(-0.220708\pi\)
−0.938055 + 0.346486i \(0.887375\pi\)
\(762\) 10.7362 0.388933
\(763\) 0 0
\(764\) −12.8979 + 22.3398i −0.466630 + 0.808227i
\(765\) −7.39792 + 12.8136i −0.267472 + 0.463275i
\(766\) −14.9789 −0.541209
\(767\) −3.81667 1.37842i −0.137812 0.0497719i
\(768\) −24.0416 −0.867528
\(769\) −2.12132 + 3.67423i −0.0764968 + 0.132496i −0.901736 0.432287i \(-0.857707\pi\)
0.825239 + 0.564783i \(0.191040\pi\)
\(770\) 0 0
\(771\) −10.8979 18.8757i −0.392479 0.679793i
\(772\) −3.40834 −0.122669
\(773\) −3.82427 6.62383i −0.137549 0.238243i 0.789019 0.614369i \(-0.210589\pi\)
−0.926568 + 0.376126i \(0.877256\pi\)
\(774\) −0.897916 1.55524i −0.0322749 0.0559018i
\(775\) −3.11716 −0.111972
\(776\) −6.36396 11.0227i −0.228453 0.395692i
\(777\) 0 0
\(778\) −14.1937 +