Properties

Label 637.2.e.j.79.3
Level $637$
Weight $2$
Character 637.79
Analytic conductor $5.086$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.2696112.1
Defining polynomial: \(x^{6} - x^{5} + 5 x^{4} + 18 x^{2} - 8 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.3
Root \(-0.906803 + 1.57063i\) of defining polynomial
Character \(\chi\) \(=\) 637.79
Dual form 637.2.e.j.508.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.906803 - 1.57063i) q^{2} +(1.55139 + 2.68708i) q^{3} +(-0.644584 - 1.11645i) q^{4} +(-1.40680 + 2.43665i) q^{5} +5.62721 q^{6} +1.28917 q^{8} +(-3.31361 + 5.73933i) q^{9} +O(q^{10})\) \(q+(0.906803 - 1.57063i) q^{2} +(1.55139 + 2.68708i) q^{3} +(-0.644584 - 1.11645i) q^{4} +(-1.40680 + 2.43665i) q^{5} +5.62721 q^{6} +1.28917 q^{8} +(-3.31361 + 5.73933i) q^{9} +(2.55139 + 4.41913i) q^{10} +(-1.55139 - 2.68708i) q^{11} +(2.00000 - 3.46410i) q^{12} +1.00000 q^{13} -8.72999 q^{15} +(2.45819 - 4.25771i) q^{16} +(0.262219 + 0.454177i) q^{17} +(6.00958 + 10.4089i) q^{18} +(-0.406803 + 0.704604i) q^{19} +3.62721 q^{20} -5.62721 q^{22} +(-3.66902 + 6.35493i) q^{23} +(2.00000 + 3.46410i) q^{24} +(-1.45819 - 2.52566i) q^{25} +(0.906803 - 1.57063i) q^{26} -11.2544 q^{27} +8.28917 q^{29} +(-7.91638 + 13.7116i) q^{30} +(-0.695972 - 1.20546i) q^{31} +(-3.16902 - 5.48891i) q^{32} +(4.81361 - 8.33741i) q^{33} +0.951124 q^{34} +8.54359 q^{36} +(3.07583 - 5.32749i) q^{37} +(0.737781 + 1.27787i) q^{38} +(1.55139 + 2.68708i) q^{39} +(-1.81361 + 3.14126i) q^{40} -4.20555 q^{41} +6.75971 q^{43} +(-2.00000 + 3.46410i) q^{44} +(-9.32318 - 16.1482i) q^{45} +(6.65416 + 11.5253i) q^{46} +(2.98514 - 5.17041i) q^{47} +15.2544 q^{48} -5.28917 q^{50} +(-0.813607 + 1.40921i) q^{51} +(-0.644584 - 1.11645i) q^{52} +(1.24736 + 2.16049i) q^{53} +(-10.2056 + 17.6765i) q^{54} +8.72999 q^{55} -2.52444 q^{57} +(7.51664 - 13.0192i) q^{58} +(2.23527 + 3.87160i) q^{59} +(5.62721 + 9.74662i) q^{60} +(1.00000 - 1.73205i) q^{61} -2.52444 q^{62} -1.66196 q^{64} +(-1.40680 + 2.43665i) q^{65} +(-8.72999 - 15.1208i) q^{66} +(-5.01916 - 8.69343i) q^{67} +(0.338044 - 0.585510i) q^{68} -22.7683 q^{69} -8.72999 q^{71} +(-4.27180 + 7.39897i) q^{72} +(1.17153 + 2.02916i) q^{73} +(-5.57834 - 9.66196i) q^{74} +(4.52444 - 7.83656i) q^{75} +1.04888 q^{76} +5.62721 q^{78} +(6.77180 - 11.7291i) q^{79} +(6.91638 + 11.9795i) q^{80} +(-7.51916 - 13.0236i) q^{81} +(-3.81361 + 6.60536i) q^{82} +16.4791 q^{83} -1.47556 q^{85} +(6.12972 - 10.6170i) q^{86} +(12.8597 + 22.2737i) q^{87} +(-2.00000 - 3.46410i) q^{88} +(5.32318 - 9.22003i) q^{89} -33.8172 q^{90} +9.45998 q^{92} +(2.15944 - 3.74027i) q^{93} +(-5.41387 - 9.37710i) q^{94} +(-1.14458 - 1.98248i) q^{95} +(9.83276 - 17.0308i) q^{96} -1.18639 q^{97} +20.5628 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - q^{2} + 2q^{3} - 3q^{4} - 2q^{5} + 8q^{6} + 6q^{8} - 7q^{9} + O(q^{10}) \) \( 6q - q^{2} + 2q^{3} - 3q^{4} - 2q^{5} + 8q^{6} + 6q^{8} - 7q^{9} + 8q^{10} - 2q^{11} + 12q^{12} + 6q^{13} - 12q^{15} + q^{16} - 4q^{17} + 15q^{18} + 4q^{19} - 4q^{20} - 8q^{22} - 10q^{23} + 12q^{24} + 5q^{25} - q^{26} - 16q^{27} + 48q^{29} - 20q^{30} + 4q^{31} - 7q^{32} + 16q^{33} + 28q^{34} - 2q^{36} + 10q^{38} + 2q^{39} + 2q^{40} + 4q^{41} + 20q^{43} - 12q^{44} - 22q^{45} + 18q^{46} + 8q^{47} + 40q^{48} - 30q^{50} + 8q^{51} - 3q^{52} - 8q^{53} - 32q^{54} + 12q^{55} - 4q^{57} - 12q^{58} + 4q^{59} + 8q^{60} + 6q^{61} - 4q^{62} - 34q^{64} - 2q^{65} - 12q^{66} + 12q^{67} - 22q^{68} - 12q^{69} - 12q^{71} + q^{72} + 10q^{73} - 30q^{74} + 16q^{75} - 16q^{76} + 8q^{78} + 14q^{79} + 14q^{80} - 3q^{81} - 10q^{82} - 24q^{83} - 20q^{85} + 26q^{86} + 26q^{87} - 12q^{88} - 2q^{89} - 56q^{90} - 24q^{92} + 22q^{93} + 10q^{94} - 6q^{95} + 4q^{96} - 20q^{97} + 28q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.906803 1.57063i 0.641207 1.11060i −0.343957 0.938985i \(-0.611767\pi\)
0.985164 0.171617i \(-0.0548992\pi\)
\(3\) 1.55139 + 2.68708i 0.895694 + 1.55139i 0.832943 + 0.553358i \(0.186654\pi\)
0.0627507 + 0.998029i \(0.480013\pi\)
\(4\) −0.644584 1.11645i −0.322292 0.558226i
\(5\) −1.40680 + 2.43665i −0.629142 + 1.08971i 0.358583 + 0.933498i \(0.383260\pi\)
−0.987724 + 0.156207i \(0.950073\pi\)
\(6\) 5.62721 2.29730
\(7\) 0 0
\(8\) 1.28917 0.455790
\(9\) −3.31361 + 5.73933i −1.10454 + 1.91311i
\(10\) 2.55139 + 4.41913i 0.806820 + 1.39745i
\(11\) −1.55139 2.68708i −0.467761 0.810186i 0.531560 0.847020i \(-0.321606\pi\)
−0.999321 + 0.0368347i \(0.988273\pi\)
\(12\) 2.00000 3.46410i 0.577350 1.00000i
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −8.72999 −2.25407
\(16\) 2.45819 4.25771i 0.614548 1.06443i
\(17\) 0.262219 + 0.454177i 0.0635974 + 0.110154i 0.896071 0.443911i \(-0.146409\pi\)
−0.832474 + 0.554065i \(0.813076\pi\)
\(18\) 6.00958 + 10.4089i 1.41647 + 2.45340i
\(19\) −0.406803 + 0.704604i −0.0933271 + 0.161647i −0.908909 0.416994i \(-0.863084\pi\)
0.815582 + 0.578641i \(0.196417\pi\)
\(20\) 3.62721 0.811069
\(21\) 0 0
\(22\) −5.62721 −1.19973
\(23\) −3.66902 + 6.35493i −0.765044 + 1.32510i 0.175179 + 0.984537i \(0.443949\pi\)
−0.940223 + 0.340559i \(0.889384\pi\)
\(24\) 2.00000 + 3.46410i 0.408248 + 0.707107i
\(25\) −1.45819 2.52566i −0.291638 0.505132i
\(26\) 0.906803 1.57063i 0.177839 0.308026i
\(27\) −11.2544 −2.16592
\(28\) 0 0
\(29\) 8.28917 1.53926 0.769630 0.638490i \(-0.220441\pi\)
0.769630 + 0.638490i \(0.220441\pi\)
\(30\) −7.91638 + 13.7116i −1.44533 + 2.50338i
\(31\) −0.695972 1.20546i −0.125000 0.216507i 0.796733 0.604332i \(-0.206560\pi\)
−0.921733 + 0.387825i \(0.873226\pi\)
\(32\) −3.16902 5.48891i −0.560209 0.970311i
\(33\) 4.81361 8.33741i 0.837941 1.45136i
\(34\) 0.951124 0.163116
\(35\) 0 0
\(36\) 8.54359 1.42393
\(37\) 3.07583 5.32749i 0.505663 0.875833i −0.494316 0.869282i \(-0.664581\pi\)
0.999979 0.00655099i \(-0.00208526\pi\)
\(38\) 0.737781 + 1.27787i 0.119684 + 0.207299i
\(39\) 1.55139 + 2.68708i 0.248421 + 0.430277i
\(40\) −1.81361 + 3.14126i −0.286756 + 0.496677i
\(41\) −4.20555 −0.656797 −0.328398 0.944539i \(-0.606509\pi\)
−0.328398 + 0.944539i \(0.606509\pi\)
\(42\) 0 0
\(43\) 6.75971 1.03085 0.515423 0.856936i \(-0.327635\pi\)
0.515423 + 0.856936i \(0.327635\pi\)
\(44\) −2.00000 + 3.46410i −0.301511 + 0.522233i
\(45\) −9.32318 16.1482i −1.38982 2.40724i
\(46\) 6.65416 + 11.5253i 0.981103 + 1.69932i
\(47\) 2.98514 5.17041i 0.435427 0.754183i −0.561903 0.827203i \(-0.689931\pi\)
0.997330 + 0.0730207i \(0.0232639\pi\)
\(48\) 15.2544 2.20179
\(49\) 0 0
\(50\) −5.28917 −0.748001
\(51\) −0.813607 + 1.40921i −0.113928 + 0.197329i
\(52\) −0.644584 1.11645i −0.0893878 0.154824i
\(53\) 1.24736 + 2.16049i 0.171338 + 0.296766i 0.938888 0.344223i \(-0.111858\pi\)
−0.767550 + 0.640989i \(0.778524\pi\)
\(54\) −10.2056 + 17.6765i −1.38880 + 2.40547i
\(55\) 8.72999 1.17715
\(56\) 0 0
\(57\) −2.52444 −0.334370
\(58\) 7.51664 13.0192i 0.986984 1.70951i
\(59\) 2.23527 + 3.87160i 0.291007 + 0.504039i 0.974048 0.226341i \(-0.0726763\pi\)
−0.683041 + 0.730380i \(0.739343\pi\)
\(60\) 5.62721 + 9.74662i 0.726470 + 1.25828i
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) −2.52444 −0.320604
\(63\) 0 0
\(64\) −1.66196 −0.207744
\(65\) −1.40680 + 2.43665i −0.174492 + 0.302230i
\(66\) −8.72999 15.1208i −1.07459 1.86124i
\(67\) −5.01916 8.69343i −0.613188 1.06207i −0.990700 0.136067i \(-0.956554\pi\)
0.377512 0.926005i \(-0.376780\pi\)
\(68\) 0.338044 0.585510i 0.0409939 0.0710035i
\(69\) −22.7683 −2.74098
\(70\) 0 0
\(71\) −8.72999 −1.03606 −0.518029 0.855363i \(-0.673334\pi\)
−0.518029 + 0.855363i \(0.673334\pi\)
\(72\) −4.27180 + 7.39897i −0.503436 + 0.871977i
\(73\) 1.17153 + 2.02916i 0.137118 + 0.237495i 0.926404 0.376530i \(-0.122883\pi\)
−0.789287 + 0.614025i \(0.789549\pi\)
\(74\) −5.57834 9.66196i −0.648469 1.12318i
\(75\) 4.52444 7.83656i 0.522437 0.904888i
\(76\) 1.04888 0.120314
\(77\) 0 0
\(78\) 5.62721 0.637156
\(79\) 6.77180 11.7291i 0.761887 1.31963i −0.179990 0.983668i \(-0.557607\pi\)
0.941877 0.335958i \(-0.109060\pi\)
\(80\) 6.91638 + 11.9795i 0.773275 + 1.33935i
\(81\) −7.51916 13.0236i −0.835462 1.44706i
\(82\) −3.81361 + 6.60536i −0.421142 + 0.729440i
\(83\) 16.4791 1.80882 0.904410 0.426665i \(-0.140312\pi\)
0.904410 + 0.426665i \(0.140312\pi\)
\(84\) 0 0
\(85\) −1.47556 −0.160047
\(86\) 6.12972 10.6170i 0.660985 1.14486i
\(87\) 12.8597 + 22.2737i 1.37871 + 2.38799i
\(88\) −2.00000 3.46410i −0.213201 0.369274i
\(89\) 5.32318 9.22003i 0.564256 0.977321i −0.432862 0.901460i \(-0.642496\pi\)
0.997118 0.0758606i \(-0.0241704\pi\)
\(90\) −33.8172 −3.56464
\(91\) 0 0
\(92\) 9.45998 0.986271
\(93\) 2.15944 3.74027i 0.223924 0.387848i
\(94\) −5.41387 9.37710i −0.558398 0.967174i
\(95\) −1.14458 1.98248i −0.117432 0.203398i
\(96\) 9.83276 17.0308i 1.00355 1.73820i
\(97\) −1.18639 −0.120460 −0.0602300 0.998185i \(-0.519183\pi\)
−0.0602300 + 0.998185i \(0.519183\pi\)
\(98\) 0 0
\(99\) 20.5628 2.06663
\(100\) −1.87985 + 3.25600i −0.187985 + 0.325600i
\(101\) −6.55139 11.3473i −0.651887 1.12910i −0.982664 0.185393i \(-0.940644\pi\)
0.330777 0.943709i \(-0.392689\pi\)
\(102\) 1.47556 + 2.55575i 0.146102 + 0.253057i
\(103\) −2.20555 + 3.82012i −0.217319 + 0.376408i −0.953988 0.299846i \(-0.903065\pi\)
0.736668 + 0.676254i \(0.236398\pi\)
\(104\) 1.28917 0.126413
\(105\) 0 0
\(106\) 4.52444 0.439452
\(107\) −0.289169 + 0.500855i −0.0279550 + 0.0484194i −0.879664 0.475595i \(-0.842233\pi\)
0.851709 + 0.524014i \(0.175566\pi\)
\(108\) 7.25443 + 12.5650i 0.698057 + 1.20907i
\(109\) −2.78666 4.82663i −0.266913 0.462307i 0.701150 0.713014i \(-0.252670\pi\)
−0.968063 + 0.250707i \(0.919337\pi\)
\(110\) 7.91638 13.7116i 0.754797 1.30735i
\(111\) 19.0872 1.81168
\(112\) 0 0
\(113\) 5.44584 0.512302 0.256151 0.966637i \(-0.417546\pi\)
0.256151 + 0.966637i \(0.417546\pi\)
\(114\) −2.28917 + 3.96496i −0.214400 + 0.371352i
\(115\) −10.3232 17.8803i −0.962642 1.66734i
\(116\) −5.34307 9.25446i −0.496091 0.859255i
\(117\) −3.31361 + 5.73933i −0.306343 + 0.530602i
\(118\) 8.10780 0.746383
\(119\) 0 0
\(120\) −11.2544 −1.02738
\(121\) 0.686393 1.18887i 0.0623994 0.108079i
\(122\) −1.81361 3.14126i −0.164196 0.284396i
\(123\) −6.52444 11.3007i −0.588289 1.01895i
\(124\) −0.897225 + 1.55404i −0.0805732 + 0.139557i
\(125\) −5.86248 −0.524356
\(126\) 0 0
\(127\) −12.8816 −1.14306 −0.571530 0.820581i \(-0.693650\pi\)
−0.571530 + 0.820581i \(0.693650\pi\)
\(128\) 4.83098 8.36750i 0.427002 0.739589i
\(129\) 10.4869 + 18.1639i 0.923322 + 1.59924i
\(130\) 2.55139 + 4.41913i 0.223771 + 0.387584i
\(131\) −4.52444 + 7.83656i −0.395302 + 0.684683i −0.993140 0.116934i \(-0.962693\pi\)
0.597838 + 0.801617i \(0.296027\pi\)
\(132\) −12.4111 −1.08025
\(133\) 0 0
\(134\) −18.2056 −1.57272
\(135\) 15.8328 27.4232i 1.36267 2.36021i
\(136\) 0.338044 + 0.585510i 0.0289871 + 0.0502071i
\(137\) 3.12972 + 5.42084i 0.267390 + 0.463134i 0.968187 0.250227i \(-0.0805053\pi\)
−0.700797 + 0.713361i \(0.747172\pi\)
\(138\) −20.6464 + 35.7606i −1.75754 + 3.04414i
\(139\) −11.5733 −0.981636 −0.490818 0.871262i \(-0.663302\pi\)
−0.490818 + 0.871262i \(0.663302\pi\)
\(140\) 0 0
\(141\) 18.5244 1.56004
\(142\) −7.91638 + 13.7116i −0.664328 + 1.15065i
\(143\) −1.55139 2.68708i −0.129734 0.224705i
\(144\) 16.2910 + 28.2168i 1.35758 + 2.35140i
\(145\) −11.6612 + 20.1978i −0.968412 + 1.67734i
\(146\) 4.24940 0.351683
\(147\) 0 0
\(148\) −7.93051 −0.651884
\(149\) −4.26222 + 7.38238i −0.349175 + 0.604788i −0.986103 0.166135i \(-0.946871\pi\)
0.636928 + 0.770923i \(0.280205\pi\)
\(150\) −8.20555 14.2124i −0.669980 1.16044i
\(151\) 5.99221 + 10.3788i 0.487639 + 0.844615i 0.999899 0.0142150i \(-0.00452494\pi\)
−0.512260 + 0.858830i \(0.671192\pi\)
\(152\) −0.524438 + 0.908353i −0.0425375 + 0.0736772i
\(153\) −3.47556 −0.280983
\(154\) 0 0
\(155\) 3.91638 0.314571
\(156\) 2.00000 3.46410i 0.160128 0.277350i
\(157\) 6.41387 + 11.1091i 0.511883 + 0.886607i 0.999905 + 0.0137756i \(0.00438504\pi\)
−0.488023 + 0.872831i \(0.662282\pi\)
\(158\) −12.2814 21.2720i −0.977054 1.69231i
\(159\) −3.87028 + 6.70351i −0.306933 + 0.531623i
\(160\) 17.8328 1.40980
\(161\) 0 0
\(162\) −27.2736 −2.14282
\(163\) 6.72999 11.6567i 0.527133 0.913022i −0.472367 0.881402i \(-0.656600\pi\)
0.999500 0.0316196i \(-0.0100665\pi\)
\(164\) 2.71083 + 4.69530i 0.211680 + 0.366641i
\(165\) 13.5436 + 23.4582i 1.05437 + 1.82622i
\(166\) 14.9433 25.8826i 1.15983 2.00888i
\(167\) −2.02972 −0.157064 −0.0785322 0.996912i \(-0.525023\pi\)
−0.0785322 + 0.996912i \(0.525023\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −1.33804 + 2.31756i −0.102623 + 0.177749i
\(171\) −2.69597 4.66956i −0.206166 0.357090i
\(172\) −4.35720 7.54689i −0.332233 0.575445i
\(173\) −10.1489 + 17.5784i −0.771605 + 1.33646i 0.165078 + 0.986281i \(0.447212\pi\)
−0.936683 + 0.350179i \(0.886121\pi\)
\(174\) 46.6449 3.53614
\(175\) 0 0
\(176\) −15.2544 −1.14985
\(177\) −6.93554 + 12.0127i −0.521307 + 0.902930i
\(178\) −9.65416 16.7215i −0.723610 1.25333i
\(179\) 5.50179 + 9.52937i 0.411223 + 0.712259i 0.995024 0.0996381i \(-0.0317685\pi\)
−0.583801 + 0.811897i \(0.698435\pi\)
\(180\) −12.0192 + 20.8178i −0.895855 + 1.55167i
\(181\) 0.691675 0.0514118 0.0257059 0.999670i \(-0.491817\pi\)
0.0257059 + 0.999670i \(0.491817\pi\)
\(182\) 0 0
\(183\) 6.20555 0.458727
\(184\) −4.72999 + 8.19258i −0.348699 + 0.603965i
\(185\) 8.65416 + 14.9894i 0.636267 + 1.10205i
\(186\) −3.91638 6.78337i −0.287163 0.497381i
\(187\) 0.813607 1.40921i 0.0594968 0.103051i
\(188\) −7.69670 −0.561339
\(189\) 0 0
\(190\) −4.15165 −0.301192
\(191\) −3.91638 + 6.78337i −0.283379 + 0.490828i −0.972215 0.234090i \(-0.924789\pi\)
0.688835 + 0.724918i \(0.258122\pi\)
\(192\) −2.57834 4.46581i −0.186075 0.322292i
\(193\) 6.10278 + 10.5703i 0.439287 + 0.760868i 0.997635 0.0687393i \(-0.0218977\pi\)
−0.558347 + 0.829607i \(0.688564\pi\)
\(194\) −1.07583 + 1.86338i −0.0772398 + 0.133783i
\(195\) −8.72999 −0.625167
\(196\) 0 0
\(197\) −18.8222 −1.34103 −0.670513 0.741898i \(-0.733926\pi\)
−0.670513 + 0.741898i \(0.733926\pi\)
\(198\) 18.6464 32.2965i 1.32514 2.29521i
\(199\) −10.8058 18.7162i −0.766004 1.32676i −0.939714 0.341961i \(-0.888909\pi\)
0.173710 0.984797i \(-0.444424\pi\)
\(200\) −1.87985 3.25600i −0.132926 0.230234i
\(201\) 15.5733 26.9738i 1.09846 1.90258i
\(202\) −23.7633 −1.67198
\(203\) 0 0
\(204\) 2.09775 0.146872
\(205\) 5.91638 10.2475i 0.413218 0.715715i
\(206\) 4.00000 + 6.92820i 0.278693 + 0.482711i
\(207\) −24.3154 42.1155i −1.69004 2.92723i
\(208\) 2.45819 4.25771i 0.170445 0.295219i
\(209\) 2.52444 0.174619
\(210\) 0 0
\(211\) −17.3764 −1.19624 −0.598119 0.801407i \(-0.704085\pi\)
−0.598119 + 0.801407i \(0.704085\pi\)
\(212\) 1.60806 2.78524i 0.110442 0.191291i
\(213\) −13.5436 23.4582i −0.927992 1.60733i
\(214\) 0.524438 + 0.908353i 0.0358498 + 0.0620937i
\(215\) −9.50958 + 16.4711i −0.648548 + 1.12332i
\(216\) −14.5089 −0.987202
\(217\) 0 0
\(218\) −10.1078 −0.684586
\(219\) −3.63501 + 6.29602i −0.245631 + 0.425445i
\(220\) −5.62721 9.74662i −0.379387 0.657117i
\(221\) 0.262219 + 0.454177i 0.0176388 + 0.0305512i
\(222\) 17.3083 29.9789i 1.16166 2.01205i
\(223\) −10.5486 −0.706388 −0.353194 0.935550i \(-0.614904\pi\)
−0.353194 + 0.935550i \(0.614904\pi\)
\(224\) 0 0
\(225\) 19.3275 1.28850
\(226\) 4.93831 8.55340i 0.328491 0.568964i
\(227\) 3.47556 + 6.01985i 0.230681 + 0.399551i 0.958009 0.286739i \(-0.0925712\pi\)
−0.727328 + 0.686290i \(0.759238\pi\)
\(228\) 1.62721 + 2.81842i 0.107765 + 0.186654i
\(229\) 10.5436 18.2620i 0.696740 1.20679i −0.272850 0.962057i \(-0.587966\pi\)
0.969590 0.244733i \(-0.0787003\pi\)
\(230\) −37.4444 −2.46901
\(231\) 0 0
\(232\) 10.6861 0.701579
\(233\) −3.04181 + 5.26857i −0.199276 + 0.345155i −0.948294 0.317394i \(-0.897192\pi\)
0.749018 + 0.662549i \(0.230526\pi\)
\(234\) 6.00958 + 10.4089i 0.392858 + 0.680451i
\(235\) 8.39901 + 14.5475i 0.547891 + 0.948975i
\(236\) 2.88164 4.99115i 0.187579 0.324896i
\(237\) 42.0227 2.72967
\(238\) 0 0
\(239\) −14.2056 −0.918881 −0.459440 0.888209i \(-0.651950\pi\)
−0.459440 + 0.888209i \(0.651950\pi\)
\(240\) −21.4600 + 37.1698i −1.38524 + 2.39930i
\(241\) −4.22041 7.30996i −0.271860 0.470876i 0.697478 0.716606i \(-0.254306\pi\)
−0.969338 + 0.245730i \(0.920972\pi\)
\(242\) −1.24485 2.15614i −0.0800218 0.138602i
\(243\) 6.44861 11.1693i 0.413679 0.716512i
\(244\) −2.57834 −0.165061
\(245\) 0 0
\(246\) −23.6655 −1.50886
\(247\) −0.406803 + 0.704604i −0.0258843 + 0.0448329i
\(248\) −0.897225 1.55404i −0.0569738 0.0986816i
\(249\) 25.5655 + 44.2808i 1.62015 + 2.80618i
\(250\) −5.31612 + 9.20779i −0.336221 + 0.582352i
\(251\) −23.9844 −1.51388 −0.756941 0.653483i \(-0.773307\pi\)
−0.756941 + 0.653483i \(0.773307\pi\)
\(252\) 0 0
\(253\) 22.7683 1.43143
\(254\) −11.6811 + 20.2323i −0.732938 + 1.26949i
\(255\) −2.28917 3.96496i −0.143353 0.248295i
\(256\) −10.4234 18.0539i −0.651466 1.12837i
\(257\) −7.80581 + 13.5201i −0.486913 + 0.843359i −0.999887 0.0150459i \(-0.995211\pi\)
0.512974 + 0.858404i \(0.328544\pi\)
\(258\) 38.0383 2.36816
\(259\) 0 0
\(260\) 3.62721 0.224950
\(261\) −27.4670 + 47.5743i −1.70017 + 2.94478i
\(262\) 8.20555 + 14.2124i 0.506941 + 0.878047i
\(263\) 7.58540 + 13.1383i 0.467736 + 0.810143i 0.999320 0.0368628i \(-0.0117365\pi\)
−0.531584 + 0.847005i \(0.678403\pi\)
\(264\) 6.20555 10.7483i 0.381925 0.661514i
\(265\) −7.01916 −0.431183
\(266\) 0 0
\(267\) 33.0333 2.02160
\(268\) −6.47054 + 11.2073i −0.395251 + 0.684595i
\(269\) −11.6464 20.1721i −0.710092 1.22991i −0.964822 0.262903i \(-0.915320\pi\)
0.254731 0.967012i \(-0.418013\pi\)
\(270\) −28.7144 49.7348i −1.74750 3.02676i
\(271\) −6.37279 + 11.0380i −0.387119 + 0.670510i −0.992061 0.125760i \(-0.959863\pi\)
0.604941 + 0.796270i \(0.293196\pi\)
\(272\) 2.57834 0.156335
\(273\) 0 0
\(274\) 11.3522 0.685810
\(275\) −4.52444 + 7.83656i −0.272834 + 0.472562i
\(276\) 14.6761 + 25.4197i 0.883397 + 1.53009i
\(277\) −4.06097 7.03380i −0.244000 0.422620i 0.717850 0.696198i \(-0.245126\pi\)
−0.961850 + 0.273578i \(0.911793\pi\)
\(278\) −10.4947 + 18.1774i −0.629431 + 1.09021i
\(279\) 9.22471 0.552269
\(280\) 0 0
\(281\) 19.0333 1.13543 0.567715 0.823225i \(-0.307827\pi\)
0.567715 + 0.823225i \(0.307827\pi\)
\(282\) 16.7980 29.0950i 1.00031 1.73258i
\(283\) −5.57331 9.65326i −0.331299 0.573827i 0.651468 0.758676i \(-0.274154\pi\)
−0.982767 + 0.184849i \(0.940820\pi\)
\(284\) 5.62721 + 9.74662i 0.333914 + 0.578355i
\(285\) 3.55139 6.15118i 0.210366 0.364365i
\(286\) −5.62721 −0.332744
\(287\) 0 0
\(288\) 42.0036 2.47508
\(289\) 8.36248 14.4842i 0.491911 0.852014i
\(290\) 21.1489 + 36.6309i 1.24191 + 2.15104i
\(291\) −1.84056 3.18794i −0.107895 0.186880i
\(292\) 1.51030 2.61592i 0.0883839 0.153085i
\(293\) −14.1758 −0.828161 −0.414080 0.910240i \(-0.635897\pi\)
−0.414080 + 0.910240i \(0.635897\pi\)
\(294\) 0 0
\(295\) −12.5783 −0.732339
\(296\) 3.96526 6.86803i 0.230476 0.399196i
\(297\) 17.4600 + 30.2416i 1.01313 + 1.75479i
\(298\) 7.72999 + 13.3887i 0.447786 + 0.775588i
\(299\) −3.66902 + 6.35493i −0.212185 + 0.367515i
\(300\) −11.6655 −0.673509
\(301\) 0 0
\(302\) 21.7350 1.25071
\(303\) 20.3275 35.2082i 1.16778 2.02266i
\(304\) 2.00000 + 3.46410i 0.114708 + 0.198680i
\(305\) 2.81361 + 4.87331i 0.161107 + 0.279045i
\(306\) −3.15165 + 5.45882i −0.180168 + 0.312060i
\(307\) 13.5592 0.773863 0.386932 0.922108i \(-0.373535\pi\)
0.386932 + 0.922108i \(0.373535\pi\)
\(308\) 0 0
\(309\) −13.6867 −0.778606
\(310\) 3.55139 6.15118i 0.201705 0.349364i
\(311\) −0.213343 0.369521i −0.0120976 0.0209536i 0.859913 0.510440i \(-0.170518\pi\)
−0.872011 + 0.489487i \(0.837184\pi\)
\(312\) 2.00000 + 3.46410i 0.113228 + 0.196116i
\(313\) 9.07583 15.7198i 0.512996 0.888535i −0.486890 0.873463i \(-0.661869\pi\)
0.999886 0.0150721i \(-0.00479777\pi\)
\(314\) 23.2645 1.31289
\(315\) 0 0
\(316\) −17.4600 −0.982200
\(317\) −4.71083 + 8.15940i −0.264587 + 0.458278i −0.967455 0.253042i \(-0.918569\pi\)
0.702869 + 0.711320i \(0.251902\pi\)
\(318\) 7.01916 + 12.1575i 0.393615 + 0.681761i
\(319\) −12.8597 22.2737i −0.720006 1.24709i
\(320\) 2.33804 4.04961i 0.130701 0.226380i
\(321\) −1.79445 −0.100156
\(322\) 0 0
\(323\) −0.426686 −0.0237415
\(324\) −9.69346 + 16.7896i −0.538526 + 0.932754i
\(325\) −1.45819 2.52566i −0.0808859 0.140098i
\(326\) −12.2056 21.1406i −0.676003 1.17087i
\(327\) 8.64637 14.9760i 0.478145 0.828172i
\(328\) −5.42166 −0.299361
\(329\) 0 0
\(330\) 49.1255 2.70427
\(331\) 8.70027 15.0693i 0.478210 0.828284i −0.521478 0.853265i \(-0.674619\pi\)
0.999688 + 0.0249807i \(0.00795244\pi\)
\(332\) −10.6222 18.3982i −0.582968 1.00973i
\(333\) 20.3842 + 35.3064i 1.11704 + 1.93478i
\(334\) −1.84056 + 3.18794i −0.100711 + 0.174436i
\(335\) 28.2439 1.54313
\(336\) 0 0
\(337\) 22.0524 1.20127 0.600637 0.799522i \(-0.294914\pi\)
0.600637 + 0.799522i \(0.294914\pi\)
\(338\) 0.906803 1.57063i 0.0493236 0.0854310i
\(339\) 8.44861 + 14.6334i 0.458866 + 0.794779i
\(340\) 0.951124 + 1.64740i 0.0515819 + 0.0893426i
\(341\) −2.15944 + 3.74027i −0.116940 + 0.202547i
\(342\) −9.77886 −0.528780
\(343\) 0 0
\(344\) 8.71440 0.469849
\(345\) 32.0305 55.4785i 1.72447 2.98686i
\(346\) 18.4061 + 31.8803i 0.989517 + 1.71389i
\(347\) −12.6761 21.9556i −0.680488 1.17864i −0.974832 0.222940i \(-0.928434\pi\)
0.294344 0.955700i \(-0.404899\pi\)
\(348\) 16.5783 28.7145i 0.888692 1.53926i
\(349\) −5.70529 −0.305397 −0.152699 0.988273i \(-0.548796\pi\)
−0.152699 + 0.988273i \(0.548796\pi\)
\(350\) 0 0
\(351\) −11.2544 −0.600717
\(352\) −9.83276 + 17.0308i −0.524088 + 0.907747i
\(353\) 14.3380 + 24.8342i 0.763137 + 1.32179i 0.941226 + 0.337778i \(0.109675\pi\)
−0.178089 + 0.984014i \(0.556991\pi\)
\(354\) 12.5783 + 21.7863i 0.668531 + 1.15793i
\(355\) 12.2814 21.2720i 0.651828 1.12900i
\(356\) −13.7250 −0.727422
\(357\) 0 0
\(358\) 19.9561 1.05472
\(359\) −5.52167 + 9.56381i −0.291423 + 0.504759i −0.974146 0.225918i \(-0.927462\pi\)
0.682724 + 0.730677i \(0.260795\pi\)
\(360\) −12.0192 20.8178i −0.633465 1.09719i
\(361\) 9.16902 + 15.8812i 0.482580 + 0.835853i
\(362\) 0.627213 1.08636i 0.0329656 0.0570981i
\(363\) 4.25945 0.223563
\(364\) 0 0
\(365\) −6.59247 −0.345066
\(366\) 5.62721 9.74662i 0.294139 0.509464i
\(367\) −13.6733 23.6829i −0.713741 1.23624i −0.963443 0.267914i \(-0.913666\pi\)
0.249701 0.968323i \(-0.419668\pi\)
\(368\) 18.0383 + 31.2433i 0.940312 + 1.62867i
\(369\) 13.9355 24.1371i 0.725455 1.25653i
\(370\) 31.3905 1.63191
\(371\) 0 0
\(372\) −5.56777 −0.288676
\(373\) −8.07306 + 13.9829i −0.418007 + 0.724009i −0.995739 0.0922172i \(-0.970605\pi\)
0.577732 + 0.816227i \(0.303938\pi\)
\(374\) −1.47556 2.55575i −0.0762995 0.132155i
\(375\) −9.09498 15.7530i −0.469663 0.813480i
\(376\) 3.84835 6.66554i 0.198463 0.343749i
\(377\) 8.28917 0.426914
\(378\) 0 0
\(379\) 26.1305 1.34223 0.671117 0.741351i \(-0.265815\pi\)
0.671117 + 0.741351i \(0.265815\pi\)
\(380\) −1.47556 + 2.55575i −0.0756947 + 0.131107i
\(381\) −19.9844 34.6140i −1.02383 1.77333i
\(382\) 7.10278 + 12.3024i 0.363410 + 0.629444i
\(383\) 10.5244 18.2289i 0.537774 0.931451i −0.461250 0.887270i \(-0.652599\pi\)
0.999024 0.0441810i \(-0.0140678\pi\)
\(384\) 29.9789 1.52985
\(385\) 0 0
\(386\) 22.1361 1.12670
\(387\) −22.3990 + 38.7962i −1.13861 + 1.97212i
\(388\) 0.764731 + 1.32455i 0.0388233 + 0.0672440i
\(389\) 10.8030 + 18.7114i 0.547736 + 0.948707i 0.998429 + 0.0560278i \(0.0178435\pi\)
−0.450693 + 0.892679i \(0.648823\pi\)
\(390\) −7.91638 + 13.7116i −0.400862 + 0.694313i
\(391\) −3.84835 −0.194619
\(392\) 0 0
\(393\) −28.0766 −1.41628
\(394\) −17.0680 + 29.5627i −0.859875 + 1.48935i
\(395\) 19.0532 + 33.0011i 0.958669 + 1.66046i
\(396\) −13.2544 22.9573i −0.666060 1.15365i
\(397\) 13.8476 23.9848i 0.694992 1.20376i −0.275191 0.961390i \(-0.588741\pi\)
0.970183 0.242372i \(-0.0779256\pi\)
\(398\) −39.1950 −1.96467
\(399\) 0 0
\(400\) −14.3380 −0.716902
\(401\) 1.28917 2.23291i 0.0643780 0.111506i −0.832040 0.554716i \(-0.812827\pi\)
0.896418 + 0.443210i \(0.146160\pi\)
\(402\) −28.2439 48.9198i −1.40868 2.43990i
\(403\) −0.695972 1.20546i −0.0346688 0.0600482i
\(404\) −8.44584 + 14.6286i −0.420196 + 0.727801i
\(405\) 42.3119 2.10250
\(406\) 0 0
\(407\) −19.0872 −0.946117
\(408\) −1.04888 + 1.81671i −0.0519271 + 0.0899404i
\(409\) −7.55845 13.0916i −0.373742 0.647339i 0.616396 0.787436i \(-0.288592\pi\)
−0.990138 + 0.140097i \(0.955259\pi\)
\(410\) −10.7300 18.5849i −0.529916 0.917842i
\(411\) −9.71083 + 16.8197i −0.479000 + 0.829652i
\(412\) 5.68665 0.280161
\(413\) 0 0
\(414\) −88.1971 −4.33465
\(415\) −23.1829 + 40.1540i −1.13800 + 1.97108i
\(416\) −3.16902 5.48891i −0.155374 0.269116i
\(417\) −17.9547 31.0984i −0.879245 1.52290i
\(418\) 2.28917 3.96496i 0.111967 0.193932i
\(419\) −9.99446 −0.488261 −0.244131 0.969742i \(-0.578503\pi\)
−0.244131 + 0.969742i \(0.578503\pi\)
\(420\) 0 0
\(421\) −25.9250 −1.26351 −0.631753 0.775170i \(-0.717664\pi\)
−0.631753 + 0.775170i \(0.717664\pi\)
\(422\) −15.7569 + 27.2918i −0.767036 + 1.32854i
\(423\) 19.7832 + 34.2654i 0.961890 + 1.66604i
\(424\) 1.60806 + 2.78524i 0.0780941 + 0.135263i
\(425\) 0.764731 1.32455i 0.0370949 0.0642502i
\(426\) −49.1255 −2.38014
\(427\) 0 0
\(428\) 0.745574 0.0360387
\(429\) 4.81361 8.33741i 0.232403 0.402534i
\(430\) 17.2466 + 29.8720i 0.831706 + 1.44056i
\(431\) −15.3380 26.5663i −0.738808 1.27965i −0.953033 0.302868i \(-0.902056\pi\)
0.214225 0.976784i \(-0.431277\pi\)
\(432\) −27.6655 + 47.9181i −1.33106 + 2.30546i
\(433\) −3.51941 −0.169132 −0.0845661 0.996418i \(-0.526950\pi\)
−0.0845661 + 0.996418i \(0.526950\pi\)
\(434\) 0 0
\(435\) −72.3643 −3.46960
\(436\) −3.59247 + 6.22234i −0.172048 + 0.297996i
\(437\) −2.98514 5.17041i −0.142799 0.247334i
\(438\) 6.59247 + 11.4185i 0.315000 + 0.545597i
\(439\) −16.1758 + 28.0174i −0.772030 + 1.33720i 0.164418 + 0.986391i \(0.447425\pi\)
−0.936449 + 0.350805i \(0.885908\pi\)
\(440\) 11.2544 0.536534
\(441\) 0 0
\(442\) 0.951124 0.0452404
\(443\) −7.72292 + 13.3765i −0.366927 + 0.635536i −0.989083 0.147357i \(-0.952923\pi\)
0.622156 + 0.782893i \(0.286257\pi\)
\(444\) −12.3033 21.3099i −0.583889 1.01133i
\(445\) 14.9773 + 25.9415i 0.709994 + 1.22975i
\(446\) −9.56552 + 16.5680i −0.452941 + 0.784516i
\(447\) −26.4494 −1.25101
\(448\) 0 0
\(449\) −14.4705 −0.682907 −0.341453 0.939899i \(-0.610919\pi\)
−0.341453 + 0.939899i \(0.610919\pi\)
\(450\) 17.5262 30.3563i 0.826194 1.43101i
\(451\) 6.52444 + 11.3007i 0.307224 + 0.532127i
\(452\) −3.51030 6.08003i −0.165111 0.285980i
\(453\) −18.5925 + 32.2031i −0.873550 + 1.51303i
\(454\) 12.6066 0.591657
\(455\) 0 0
\(456\) −3.25443 −0.152402
\(457\) 17.3353 30.0256i 0.810910 1.40454i −0.101318 0.994854i \(-0.532306\pi\)
0.912228 0.409683i \(-0.134361\pi\)
\(458\) −19.1219 33.1202i −0.893509 1.54760i
\(459\) −2.95112 5.11150i −0.137747 0.238584i
\(460\) −13.3083 + 23.0507i −0.620504 + 1.07474i
\(461\) 12.5400 0.584047 0.292024 0.956411i \(-0.405671\pi\)
0.292024 + 0.956411i \(0.405671\pi\)
\(462\) 0 0
\(463\) 12.1517 0.564735 0.282368 0.959306i \(-0.408880\pi\)
0.282368 + 0.959306i \(0.408880\pi\)
\(464\) 20.3764 35.2929i 0.945949 1.63843i
\(465\) 6.07583 + 10.5236i 0.281760 + 0.488022i
\(466\) 5.51664 + 9.55511i 0.255554 + 0.442632i
\(467\) 18.5166 32.0718i 0.856848 1.48410i −0.0180717 0.999837i \(-0.505753\pi\)
0.874920 0.484268i \(-0.160914\pi\)
\(468\) 8.54359 0.394928
\(469\) 0 0
\(470\) 30.4650 1.40525
\(471\) −19.9008 + 34.4692i −0.916980 + 1.58826i
\(472\) 2.88164 + 4.99115i 0.132638 + 0.229736i
\(473\) −10.4869 18.1639i −0.482189 0.835176i
\(474\) 38.1063 66.0021i 1.75028 3.03158i
\(475\) 2.37279 0.108871
\(476\) 0 0
\(477\) −16.5330 −0.756996
\(478\) −12.8816 + 22.3117i −0.589192 + 1.02051i
\(479\) −6.00430 10.3997i −0.274343 0.475177i 0.695626 0.718404i \(-0.255127\pi\)
−0.969969 + 0.243228i \(0.921794\pi\)
\(480\) 27.6655 + 47.9181i 1.26275 + 2.18715i
\(481\) 3.07583 5.32749i 0.140246 0.242912i
\(482\) −15.3083 −0.697275
\(483\) 0 0
\(484\) −1.76975 −0.0804434
\(485\) 1.66902 2.89083i 0.0757864 0.131266i
\(486\) −11.6952 20.2568i −0.530507 0.918865i
\(487\) −5.55918 9.62878i −0.251911 0.436322i 0.712141 0.702036i \(-0.247726\pi\)
−0.964052 + 0.265714i \(0.914392\pi\)
\(488\) 1.28917 2.23291i 0.0583579 0.101079i
\(489\) 41.7633 1.88860
\(490\) 0 0
\(491\) 0.0594386 0.00268243 0.00134121 0.999999i \(-0.499573\pi\)
0.00134121 + 0.999999i \(0.499573\pi\)
\(492\) −8.41110 + 14.5685i −0.379202 + 0.656797i
\(493\) 2.17358 + 3.76475i 0.0978930 + 0.169556i
\(494\) 0.737781 + 1.27787i 0.0331943 + 0.0574943i
\(495\) −28.9277 + 50.1043i −1.30021 + 2.25202i
\(496\) −6.84333 −0.307274
\(497\) 0 0
\(498\) 92.7316 4.15540
\(499\) −5.14888 + 8.91812i −0.230496 + 0.399230i −0.957954 0.286922i \(-0.907368\pi\)
0.727458 + 0.686152i \(0.240701\pi\)
\(500\) 3.77886 + 6.54518i 0.168996 + 0.292710i
\(501\) −3.14888 5.45402i −0.140682 0.243668i
\(502\) −21.7491 + 37.6706i −0.970712 + 1.68132i
\(503\) −9.32391 −0.415733 −0.207866 0.978157i \(-0.566652\pi\)
−0.207866 + 0.978157i \(0.566652\pi\)
\(504\) 0 0
\(505\) 36.8661 1.64052
\(506\) 20.6464 35.7606i 0.917843 1.58975i
\(507\) 1.55139 + 2.68708i 0.0688995 + 0.119338i
\(508\) 8.30330 + 14.3817i 0.368399 + 0.638087i
\(509\) −19.8476 + 34.3771i −0.879730 + 1.52374i −0.0280937 + 0.999605i \(0.508944\pi\)
−0.851637 + 0.524132i \(0.824390\pi\)
\(510\) −8.30330 −0.367676
\(511\) 0 0
\(512\) −18.4842 −0.816892
\(513\) 4.57834 7.92991i 0.202139 0.350114i
\(514\) 14.1567 + 24.5201i 0.624424 + 1.08153i
\(515\) −6.20555 10.7483i −0.273449 0.473628i
\(516\) 13.5194 23.4163i 0.595159 1.03085i
\(517\) −18.5244 −0.814704
\(518\) 0 0
\(519\) −62.9794 −2.76449
\(520\) −1.81361 + 3.14126i −0.0795319 + 0.137753i
\(521\) −11.1814 19.3667i −0.489865 0.848471i 0.510067 0.860135i \(-0.329621\pi\)
−0.999932 + 0.0116639i \(0.996287\pi\)
\(522\) 49.8144 + 86.2811i 2.18032 + 3.77642i
\(523\) 10.3275 17.8877i 0.451589 0.782176i −0.546896 0.837201i \(-0.684191\pi\)
0.998485 + 0.0550252i \(0.0175239\pi\)
\(524\) 11.6655 0.509611
\(525\) 0 0
\(526\) 27.5139 1.19966
\(527\) 0.364994 0.632188i 0.0158994 0.0275386i
\(528\) −23.6655 40.9899i −1.02991 1.78386i
\(529\) −15.4234 26.7142i −0.670585 1.16149i
\(530\) −6.36499 + 11.0245i −0.276478 + 0.478873i
\(531\) −29.6272 −1.28571
\(532\) 0 0
\(533\) −4.20555 −0.182163
\(534\) 29.9547 51.8831i 1.29627 2.24520i
\(535\) −0.813607 1.40921i −0.0351753 0.0609254i
\(536\) −6.47054 11.2073i −0.279485 0.484082i
\(537\) −17.0708 + 29.5675i −0.736659 + 1.27593i
\(538\) −42.2439 −1.82126
\(539\) 0 0
\(540\) −40.8222 −1.75671
\(541\) −2.81084 + 4.86851i −0.120847 + 0.209314i −0.920102 0.391679i \(-0.871894\pi\)
0.799255 + 0.600992i \(0.205228\pi\)
\(542\) 11.5577 + 20.0186i 0.496447 + 0.859871i
\(543\) 1.07306 + 1.85859i 0.0460492 + 0.0797596i
\(544\) 1.66196 2.87859i 0.0712558 0.123419i
\(545\) 15.6811 0.671705
\(546\) 0 0
\(547\) −10.3970 −0.444542 −0.222271 0.974985i \(-0.571347\pi\)
−0.222271 + 0.974985i \(0.571347\pi\)
\(548\) 4.03474 6.98838i 0.172356 0.298529i
\(549\) 6.62721 + 11.4787i 0.282843 + 0.489898i
\(550\) 8.20555 + 14.2124i 0.349886 + 0.606020i
\(551\) −3.37206 + 5.84058i −0.143655 + 0.248817i
\(552\) −29.3522 −1.24931
\(553\) 0 0
\(554\) −14.7300 −0.625817
\(555\) −26.8519 + 46.5089i −1.13980 + 1.97419i
\(556\) 7.45998 + 12.9211i 0.316373 + 0.547975i
\(557\) −7.32748 12.6916i −0.310475 0.537759i 0.667990 0.744170i \(-0.267155\pi\)
−0.978465 + 0.206411i \(0.933822\pi\)
\(558\) 8.36499 14.4886i 0.354118 0.613351i
\(559\) 6.75971 0.285905
\(560\) 0 0
\(561\) 5.04888 0.213164
\(562\) 17.2594 29.8942i 0.728046 1.26101i
\(563\) 12.3728 + 21.4303i 0.521451 + 0.903179i 0.999689 + 0.0249490i \(0.00794233\pi\)
−0.478238 + 0.878230i \(0.658724\pi\)
\(564\) −11.9406 20.6817i −0.502788 0.870855i
\(565\) −7.66123 + 13.2696i −0.322310 + 0.558258i
\(566\) −20.2156 −0.849725
\(567\) 0 0
\(568\) −11.2544 −0.472225
\(569\) 10.2665 17.7821i 0.430395 0.745466i −0.566512 0.824053i \(-0.691708\pi\)
0.996907 + 0.0785876i \(0.0250410\pi\)
\(570\) −6.44082 11.1558i −0.269776 0.467266i
\(571\) 20.9476 + 36.2824i 0.876631 + 1.51837i 0.855015 + 0.518603i \(0.173548\pi\)
0.0216158 + 0.999766i \(0.493119\pi\)
\(572\) −2.00000 + 3.46410i −0.0836242 + 0.144841i
\(573\) −24.3033 −1.01529
\(574\) 0 0
\(575\) 21.4005 0.892464
\(576\) 5.50707 9.53852i 0.229461 0.397438i
\(577\) 10.0872 + 17.4715i 0.419935 + 0.727349i 0.995932 0.0901025i \(-0.0287195\pi\)
−0.575997 + 0.817452i \(0.695386\pi\)
\(578\) −15.1663 26.2687i −0.630833 1.09263i
\(579\) −18.9355 + 32.7973i −0.786934 + 1.36301i
\(580\) 30.0666 1.24845
\(581\) 0 0
\(582\) −6.67609 −0.276733
\(583\) 3.87028 6.70351i 0.160290 0.277631i
\(584\) 1.51030 + 2.61592i 0.0624968 + 0.108248i
\(585\) −9.32318 16.1482i −0.385466 0.667647i
\(586\) −12.8547 + 22.2650i −0.531022 + 0.919758i
\(587\) −18.7441 −0.773653 −0.386826 0.922153i \(-0.626429\pi\)
−0.386826 + 0.922153i \(0.626429\pi\)
\(588\) 0 0
\(589\) 1.13249 0.0466636
\(590\) −11.4061 + 19.7559i −0.469581 + 0.813338i
\(591\) −29.2005 50.5768i −1.20115 2.08045i
\(592\) −15.1219 26.1920i −0.621508 1.07648i
\(593\) 1.49042 2.58149i 0.0612043 0.106009i −0.833800 0.552067i \(-0.813839\pi\)
0.895004 + 0.446058i \(0.147173\pi\)
\(594\) 63.3311 2.59850
\(595\) 0 0
\(596\) 10.9894 0.450145
\(597\) 33.5280 58.0722i 1.37221 2.37674i
\(598\) 6.65416 + 11.5253i 0.272109 + 0.471307i
\(599\) −3.73705 6.47277i −0.152692 0.264470i 0.779524 0.626372i \(-0.215461\pi\)
−0.932216 + 0.361902i \(0.882128\pi\)
\(600\) 5.83276 10.1026i 0.238122 0.412439i
\(601\) 21.4700 0.875780 0.437890 0.899028i \(-0.355726\pi\)
0.437890 + 0.899028i \(0.355726\pi\)
\(602\) 0 0
\(603\) 66.5260 2.70915
\(604\) 7.72496 13.3800i 0.314324 0.544426i
\(605\) 1.93124 + 3.34501i 0.0785161 + 0.135994i
\(606\) −36.8661 63.8539i −1.49758 2.59389i
\(607\) 11.4522 19.8358i 0.464830 0.805109i −0.534364 0.845254i \(-0.679449\pi\)
0.999194 + 0.0401456i \(0.0127822\pi\)
\(608\) 5.15667 0.209131
\(609\) 0 0
\(610\) 10.2056 0.413211
\(611\) 2.98514 5.17041i 0.120766 0.209173i
\(612\) 2.24029 + 3.88030i 0.0905585 + 0.156852i
\(613\) 10.0731 + 17.4470i 0.406847 + 0.704679i 0.994535 0.104408i \(-0.0332949\pi\)
−0.587688 + 0.809088i \(0.699962\pi\)
\(614\) 12.2955 21.2964i 0.496206 0.859455i
\(615\) 36.7144 1.48047
\(616\) 0 0
\(617\) −13.7844 −0.554939 −0.277470 0.960734i \(-0.589496\pi\)
−0.277470 + 0.960734i \(0.589496\pi\)
\(618\) −12.4111 + 21.4967i −0.499248 + 0.864722i
\(619\) 9.83276 + 17.0308i 0.395212 + 0.684527i 0.993128 0.117031i \(-0.0373378\pi\)
−0.597916 + 0.801559i \(0.704004\pi\)
\(620\) −2.52444 4.37245i −0.101384 0.175602i
\(621\) 41.2927 71.5211i 1.65702 2.87004i
\(622\) −0.773841 −0.0310282
\(623\) 0 0
\(624\) 15.2544 0.610666
\(625\) 15.5383 26.9131i 0.621533 1.07653i
\(626\) −16.4600 28.5095i −0.657873 1.13947i
\(627\) 3.91638 + 6.78337i 0.156405 + 0.270902i
\(628\) 8.26856 14.3216i 0.329951 0.571493i
\(629\) 3.22616 0.128635
\(630\) 0 0
\(631\) −16.1672 −0.643608 −0.321804 0.946806i \(-0.604289\pi\)
−0.321804 + 0.946806i \(0.604289\pi\)
\(632\) 8.72999 15.1208i 0.347260 0.601472i
\(633\) −26.9575 46.6917i −1.07146 1.85583i
\(634\) 8.54359 + 14.7979i 0.339309 + 0.587701i
\(635\) 18.1219 31.3881i 0.719147 1.24560i
\(636\) 9.97887 0.395688
\(637\) 0 0
\(638\) −46.6449 −1.84669
\(639\) 28.9277 50.1043i 1.14436 1.98210i
\(640\) 13.5925 + 23.5428i 0.537290 + 0.930613i
\(641\) 14.5018 + 25.1178i 0.572786 + 0.992095i 0.996278 + 0.0861949i \(0.0274708\pi\)
−0.423492 + 0.905900i \(0.639196\pi\)
\(642\) −1.62721 + 2.81842i −0.0642210 + 0.111234i
\(643\) −39.2233 −1.54681 −0.773407 0.633910i \(-0.781449\pi\)
−0.773407 + 0.633910i \(0.781449\pi\)
\(644\) 0 0
\(645\) −59.0122 −2.32360
\(646\) −0.386920 + 0.670166i −0.0152232 + 0.0263673i
\(647\) 5.99221 + 10.3788i 0.235578 + 0.408033i 0.959440 0.281911i \(-0.0909684\pi\)
−0.723863 + 0.689944i \(0.757635\pi\)
\(648\) −9.69346 16.7896i −0.380795 0.659556i
\(649\) 6.93554 12.0127i 0.272244 0.471540i
\(650\) −5.28917 −0.207458
\(651\) 0 0
\(652\) −17.3522 −0.679564
\(653\) −22.6655 + 39.2578i −0.886971 + 1.53628i −0.0435323 + 0.999052i \(0.513861\pi\)
−0.843438 + 0.537226i \(0.819472\pi\)
\(654\) −15.6811 27.1605i −0.613180 1.06206i
\(655\) −12.7300 22.0490i −0.497402 0.861525i
\(656\) −10.3380 + 17.9060i −0.403633 + 0.699113i
\(657\) −15.5280 −0.605805
\(658\) 0 0
\(659\) 6.12193 0.238477 0.119238 0.992866i \(-0.461955\pi\)
0.119238 + 0.992866i \(0.461955\pi\)
\(660\) 17.4600 30.2416i 0.679629 1.17715i
\(661\) 13.7640 + 23.8400i 0.535358 + 0.927267i 0.999146 + 0.0413207i \(0.0131565\pi\)
−0.463788 + 0.885946i \(0.653510\pi\)
\(662\) −15.7789 27.3298i −0.613263 1.06220i
\(663\) −0.813607 + 1.40921i −0.0315979 + 0.0547291i
\(664\) 21.2444 0.824442
\(665\) 0 0
\(666\) 73.9377 2.86503
\(667\) −30.4131 + 52.6771i −1.17760 + 2.03967i
\(668\) 1.30833 + 2.26609i 0.0506206 + 0.0876775i
\(669\) −16.3650 28.3450i −0.632707 1.09588i
\(670\) 25.6116 44.3606i 0.989463 1.71380i
\(671\) −6.20555 −0.239563
\(672\) 0 0
\(673\) 27.9547 1.07757 0.538787 0.842442i \(-0.318883\pi\)
0.538787 + 0.842442i \(0.318883\pi\)
\(674\) 19.9972 34.6362i 0.770265 1.33414i
\(675\) 16.4111 + 28.4249i 0.631664 + 1.09407i
\(676\) −0.644584 1.11645i −0.0247917 0.0429405i
\(677\) 6.33025 10.9643i 0.243291 0.421393i −0.718359 0.695673i \(-0.755106\pi\)
0.961650 + 0.274280i \(0.0884396\pi\)
\(678\) 30.6449 1.17691
\(679\) 0 0
\(680\) −1.90225 −0.0729479
\(681\) −10.7839 + 18.6782i −0.413239 + 0.715752i
\(682\) 3.91638 + 6.78337i 0.149966 + 0.259749i
\(683\) 14.1517 + 24.5114i 0.541498 + 0.937902i 0.998818 + 0.0485999i \(0.0154759\pi\)
−0.457320 + 0.889302i \(0.651191\pi\)
\(684\) −3.47556 + 6.01985i −0.132891 + 0.230175i
\(685\) −17.6116 −0.672906
\(686\) 0 0
\(687\) 65.4288 2.49626
\(688\) 16.6167 28.7809i 0.633504 1.09726i
\(689\) 1.24736 + 2.16049i 0.0475206 + 0.0823081i
\(690\) −58.0908 100.616i −2.21148 3.83039i
\(691\) −6.11763 + 10.5961i −0.232726 + 0.403093i −0.958609 0.284725i \(-0.908098\pi\)
0.725884 + 0.687818i \(0.241431\pi\)
\(692\) 26.1672 0.994729
\(693\) 0 0
\(694\) −45.9789 −1.74533
\(695\) 16.2814 28.2002i 0.617588 1.06969i
\(696\) 16.5783 + 28.7145i 0.628400 + 1.08842i
\(697\) −1.10278 1.91006i −0.0417706 0.0723488i
\(698\) −5.17358 + 8.96090i −0.195823 + 0.339175i
\(699\) −18.8761 −0.713960
\(700\) 0 0
\(701\) 51.0419 1.92783 0.963913 0.266219i \(-0.0857743\pi\)
0.963913 + 0.266219i \(0.0857743\pi\)
\(702\) −10.2056 + 17.6765i −0.385184 + 0.667158i
\(703\) 2.50251 + 4.33448i 0.0943840 + 0.163478i
\(704\) 2.57834 + 4.46581i 0.0971747 + 0.168312i
\(705\) −26.0602 + 45.1377i −0.981485 + 1.69998i
\(706\) 52.0071 1.95731
\(707\) 0 0
\(708\) 17.8822 0.672053
\(709\) −21.2955 + 36.8849i −0.799770 + 1.38524i 0.119996 + 0.992774i \(0.461712\pi\)
−0.919766 + 0.392467i \(0.871622\pi\)
\(710\) −22.2736 38.5790i −0.835913 1.44784i
\(711\) 44.8781 + 77.7312i 1.68306 + 2.91515i
\(712\) 6.86248 11.8862i 0.257182 0.445453i
\(713\) 10.2141 0.382523
\(714\) 0 0
\(715\) 8.72999 0.326483
\(716\) 7.09273 12.2850i 0.265068 0.459111i
\(717\) −22.0383 38.1715i −0.823036 1.42554i
\(718\) 10.0141 + 17.3450i 0.373724 + 0.647309i
\(719\) 21.2466 36.8002i 0.792366 1.37242i −0.132133 0.991232i \(-0.542183\pi\)
0.924499 0.381186i \(-0.124484\pi\)
\(720\) −91.6727 −3.41644
\(721\) 0 0
\(722\) 33.2580 1.23773
\(723\) 13.0950 22.6812i 0.487008 0.843522i
\(724\) −0.445843 0.772222i −0.0165696 0.0286994i
\(725\) −12.0872 20.9356i −0.448907 0.777530i
\(726\) 3.86248 6.69002i 0.143350 0.248290i
\(727\) −3.75614 −0.139307 −0.0696537 0.997571i \(-0.522189\pi\)
−0.0696537 + 0.997571i \(0.522189\pi\)
\(728\) 0 0
\(729\) −5.09775 −0.188806
\(730\) −5.97807 + 10.3543i −0.221258 + 0.383231i
\(731\) 1.77252 + 3.07010i 0.0655592 + 0.113552i
\(732\) −4.00000 6.92820i −0.147844 0.256074i
\(733\) −22.8910 + 39.6483i −0.845497 + 1.46444i 0.0396921 + 0.999212i \(0.487362\pi\)
−0.885189 + 0.465232i \(0.845971\pi\)
\(734\) −49.5960 −1.83062
\(735\) 0 0
\(736\) 46.5089 1.71434
\(737\) −15.5733 + 26.9738i −0.573650 + 0.993592i
\(738\) −25.2736 43.7751i −0.930333 1.61138i
\(739\) 7.02695 + 12.1710i 0.258491 + 0.447719i 0.965838 0.259148i \(-0.0834416\pi\)
−0.707347 + 0.706866i \(0.750108\pi\)
\(740\) 11.1567 19.3239i 0.410127 0.710362i
\(741\) −2.52444 −0.0927375
\(742\) 0 0
\(743\) 4.74557 0.174098 0.0870491 0.996204i \(-0.472256\pi\)
0.0870491 + 0.996204i \(0.472256\pi\)
\(744\) 2.78389 4.82183i 0.102062 0.176777i
\(745\) −11.9922 20.7711i −0.439360 0.760995i
\(746\) 14.6413 + 25.3596i 0.536058 + 0.928479i
\(747\) −54.6054 + 94.5793i −1.99791 + 3.46047i
\(748\) −2.09775 −0.0767014
\(749\) 0 0
\(750\) −32.9894 −1.20460
\(751\) −18.0504 + 31.2642i −0.658669 + 1.14085i 0.322292 + 0.946640i \(0.395547\pi\)
−0.980961 + 0.194207i \(0.937787\pi\)
\(752\) −14.6761 25.4197i −0.535182 0.926962i
\(753\) −37.2091 64.4481i −1.35598 2.34862i
\(754\) 7.51664 13.0192i 0.273740 0.474132i
\(755\) −33.7194 −1.22718
\(756\) 0 0
\(757\) −1.03474 −0.0376084 −0.0188042 0.999823i \(-0.505986\pi\)
−0.0188042 + 0.999823i \(0.505986\pi\)
\(758\) 23.6952 41.0414i 0.860650 1.49069i
\(759\) 35.3225 + 61.1803i 1.28212 + 2.22070i
\(760\) −1.47556 2.55575i −0.0535243 0.0927067i
\(761\) −14.9207 + 25.8434i −0.540874 + 0.936822i 0.457980 + 0.888963i \(0.348573\pi\)
−0.998854 + 0.0478590i \(0.984760\pi\)
\(762\) −72.4877 −2.62595
\(763\) 0 0
\(764\) 10.0978 0.365324
\(765\) 4.88943 8.46874i 0.176778 0.306188i
\(766\) −19.0872 33.0600i −0.689648 1.19451i
\(767\) 2.23527 + 3.87160i 0.0807109 + 0.139795i
\(768\) 32.3416 56.0173i 1.16703 2.02135i
\(769\) 23.6358 0.852329 0.426164 0.904646i \(-0.359864\pi\)
0.426164 + 0.904646i \(0.359864\pi\)
\(770\) 0 0
\(771\) −48.4394 −1.74450
\(772\) 7.86751 13.6269i 0.283158 0.490444i
\(773\) −6.51388 11.2824i −0.234288 0.405798i 0.724778 0.688983i \(-0.241942\pi\)
−0.959065 + 0.283184i \(0.908609\pi\)
\(774\) 40.6230 + 70.3611i 1.46016 + 2.52908i
\(775\) −2.02972 + 3.51558i −0.0729097 + 0.126283i
\(776\) −1.52946 −0.0549045
\(777\) 0 0
\(778\) 39.1849 1.40485
\(779\) 1.71083 2.96325i 0.0612969 0.106169i
\(780\) 5.62721 + 9.74662i 0.201487 + 0.348985i
\(781\) 13.5436 + 23.4582i 0.484628 + 0.839400i
\(782\) −3.48970 + 6.04433i −0.124791 + 0.216145i
\(783\) −93.2898 −3.33391
\(784\)